Tisler, Selina; Liang, Chuanzhou; Carvalho, Pedro N.; Bester, Kai
Science of the Total Environment, 761, 143228, 2021
doi.org/10.1016/j.scitotenv.2020.143228
100 ethylene oxide (EO)/propylene oxide (PO) copolymer precursor and metabolites were detected in wastewater effluents. The homopolymers of EO and PO as well as the EO/PO copolymers are widely used as surfactants, e.g., for the production of cosmetics, pharmaceuticals and lubricants. Concomitantly, these compounds are discharged into the wastewater and the environmental fate of the PO homopolymers, also called polypropylene glycols (PPGs), and EO/PO copolymers is mostly unknown. In the present study, we identified hitherto unknown copolymer EO/PO homologous series and their metabolites in wastewater effluent. The identified compounds occur in homologous series and consist of PPGs and EO/PO copolymers, and their carbonylated, carboxylated and dicarboxylated metabolites. MBBR lab incubations of PPGs and EO/PO copolymers showed the successive degradation by cleavage of individual PO and EO groups, with high removal (>90%) in the initial 8 h for most of the copolymers. Carbonylated and carboxylated metabolites were degraded within 40 h. EO/PO copolymers with a higher number of EO and PO units showed a higher removal in MBBR and conventional activated sludge wastewater treatment plants. Polymers with lower molecular weight were initially formed by degradation of the EO/PO polymers. The mono-carboxylated metabolites were also detected in surface waters. Overall, our results provide new knowledge about degradation pathways of PO containing compounds and show the hitherto unnoticed occurrence of EO/PO copolymers and metabolites in the water cycle.
Fig. S 3: initial detected homologous series in the wastewater effluent with m/z difference of repeating unit between m/z 14 and 58.1