Aarhus University Seal / Aarhus Universitets segl


Projects (general)


Bio-inorganic nanocatalysts can be synthesised on the surface of bacteria, and such bio-inorganiccatalysts have emerged as interesting candidates for catalysing degradation of persistent compounds in the environment. The combination of active microbial cells with inorganic nanocatalysts for degradation of otherwise persistent compounds will be explored with the aim to identify the optimal combination of microorganisms, nanoparticles, and environmental conditions required for efficient degradation of the compounds.

Soil filters

Soil filters will be optimized in a way that sorption enhances retention time and the matrix supports biofilms able to degrade persistent pollutants. Finally it is intended to implement knowledge from the bio-inorganic nanocatalysts into these systems to perform reactions otherwise not possible.


Phytodegradation is a removal process based on plant uptake and metabolism as well as plant stimulated microbial degradation in the rhizosphere of plants. The degradation products of xenobiotics are conjungated with endogenous substrates such as sugars, amino acids, or glutathione, and finally secondary conjugation may occur forming insoluble residues. Plants also exude organic compounds and oxygen from roots that can be used to structure and support soil filters in respect of nutrients and oxygen supply. In this work package plant uptake and metabolism as well as the interaction plant-microbe-soil-degradation will be studied.

Biocides from Buildings

Biocides are used to protect buildings. However these biocides are leached by rain from the respective buildings. This project aims at understanding the processes relevant for the leaching of these compounds as well as assessing the concentrations in surface waters. For this project compounds from material science, engineering, and environmental science are combined.