Cluster algebras are defined recursively from a set of initial data and it is a question how one writes cluster algebra elements in terms of the initial ones. There have been different ways to answer this question, i.e. compute the cluster expansion formulas for elements using such as snake graphs, T-paths or CC-map in the representation theory of algebras. In a joint work with E. Kantarcı Oğuz, we compute the cluster expansion formulas using 2 by 2 matrices for the cluster algebra elements associated with arcs coming from surfaces. The method we introduce is quite efficient and also can be generalised to different settings.