

Safety of cellulose-based materials for food contact

Prof. Dr. Cristina Nerin

I3A, EINA, Universidad de Zaragoza, Campus Rio Ebro, María de Luna 3, 50018 Zaragoza, Spain

<u>cnerin@unizar.es</u>

FOREWORD

Cellulose-based materials: Paper and Board and films as FCM

- Applications where **intimate contact (primary packaging)** is involved, such as tea bags, baking papers, and filters, and direct contact packaging such as butter wrapping, sugar bags, and cartons for dry and frozen foods
- Secondary packaging (transport and distribution packaging).
- In multilayer (tetrabriks combined with plastics and Al, others)
- Coated paper
- Films of cellulose-based
- Uncoated and untreated paper and board is not suitable to pack food with very high moisture content
- The main application is contact with dry food.
- Completely different **manufacturing process** compared to plastics
- Transparent films cellulose-based

Paper and Board

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

- (CoE (ReSAP 2005...) and BfR)
- Cooking Papers, Hot Filter Papers and Filter Layers: Recommendation XXXVI/1
- Web link: http://bfr.zadi.de/kse/faces/resources/pdf/361-english.pdf
- Paper and Paperboard for Baking Purposes: Recommendation XXXVI/2
- Web link: http://bfr.zadi.de/kse/faces/resources/pdf/362-english.pdf
- Absorber pads based on cellulosic fibres for food packaging: Recommendation XXXVI/3
- Web link: http://bfr.zadi.de/kse/faces/resources/pdf/363-english.pdf

Recycled Paper & Board

- a) identify the source of any contaminants;
- b) establish a methodology for reducing those contaminants to a safe level in the final product;
- c) state any restrictions on food type which might result from a risk assessment of the above steps.

Safety of Cellulose-based FCM

Assessment taking into account **the intended use** of the material including:

- food type,
- contact time
- temperature
- the likelihood of transfer of constituents during that use.

Testing: extraction and migration

- Preparation of a cold water **extract**
- Preparation of a hot water **extract**
- Preparation of an organic solvent extract
- Conditions for determination of **migration** from paper and board using modified polyphenylene oxide (MPPO, Tenax) as simulant

Testing: Target análisis (I)

- Determination of cadmium, lead and chromium in an aqueous extract
- Determination of mercury in an aqueous extract
- Determination of pentachlorophenol in an aqueous extract
- Determination of transfer of antimicrobic constituents (migration): (BIT (1,2-Benzisothiazolin-3-One), MIT (2-methyl-4-isothiazolin-3-one), CMIT,etc.)
- Primary aromatic amines (migration)
- Michler ketone (diethylaminobenzophenone, DEAB) (migration)

Testing: Target análisis(II)

- Determination of the fastness of fluorescent whitened paper and board
- Polyaromatic Hydrocarbons (PAHs)
- Phthalates
- Benzophenone
- Bisphenol A in food simulants.
- Mineral oils (MOHs and MOAHs)

What recycled P&B can contain

- Functional absorbents to reduce the migration
- Functional barriers (Al, varnishes, coatings, films, etc.)
- Recycled fibers (scraps aren't considered recycled fibers)

Compliance

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

- Global migration limit: 10 mg/dm²
- Absence of toxic substances and CMR
- Control of the substances with SML
- Identification and Quantification of NIAS
- Odour (<3)
- Absence of microorganisms (Regulation (EG) No. 852/2004)
- Biocides

Substances of concern

- Mineral oils(MOSH y MOAH)
- Endocrine disruptors: Polifluoroderivatives (PFAS), surfactants, phthalates, bisphenol A and derivatives
- Plasticisers
- Metals
- Photoiniciators
- Primary aromatic amines (PAAs)
- Michler ketone (dimethylaminobenzophenone)

Universidad Zaragoza

Instituto Universitario de Investigación de Ingeniería de Aragón **Universidad** Zaragoza

How to demonstrate the compliance

TESTS

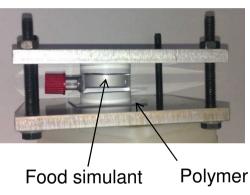
- Extraction in cold water
- Extraction in hot water
- In ethanol 95%
- In isoctane
- In 3% Hac (metals and PAAs)
- Migration to simulants for coated paper
- Migration to Tenax

Results expressed as surface /mass of food: 13,3 dm²/Kg for paper and board of 300 g/m²

 Tests under the worst conditions of intended use

Indicators of recycled P&B:

- DipN
- **BPA**


Migration tests, one layer contact

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

MIGRATION CELL

Simulant **Observation** Ethanol 10% (v/v) Α Hydrophilic character Acetic acid 3% (w/v) В Hydrophilic character: pH <4.5 Ethanol 20% (v/v) Hydrophilic character: alcohol content С <20%, organic ingredients Ethanol 50% Lipophilic character: alcoholic food and **D1** emulsions Vegetable oil (ethanol 95%, isooctane): **D2** free fat at the surface Lipophilic character Tenax ® (2,6-diphenyl-p-phenylene oxide) Ε Dry foods

EU/10/2011

✓ **Time** and **temperature** conditions

Practical details

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

- Take always a representative sample.
- Uncoated P&B are tested with Tenax
- Coated paper and board are tested with liquid simulants.
- Tenax rate in the test: 4 g/dm²
- Clean Tenax before using.
- Using Tenax, OM is not applicable
- After the exposure Tenax has to be extracted and recovered
- Optimized extraction of Tenax is always required.

Referencias interesantes

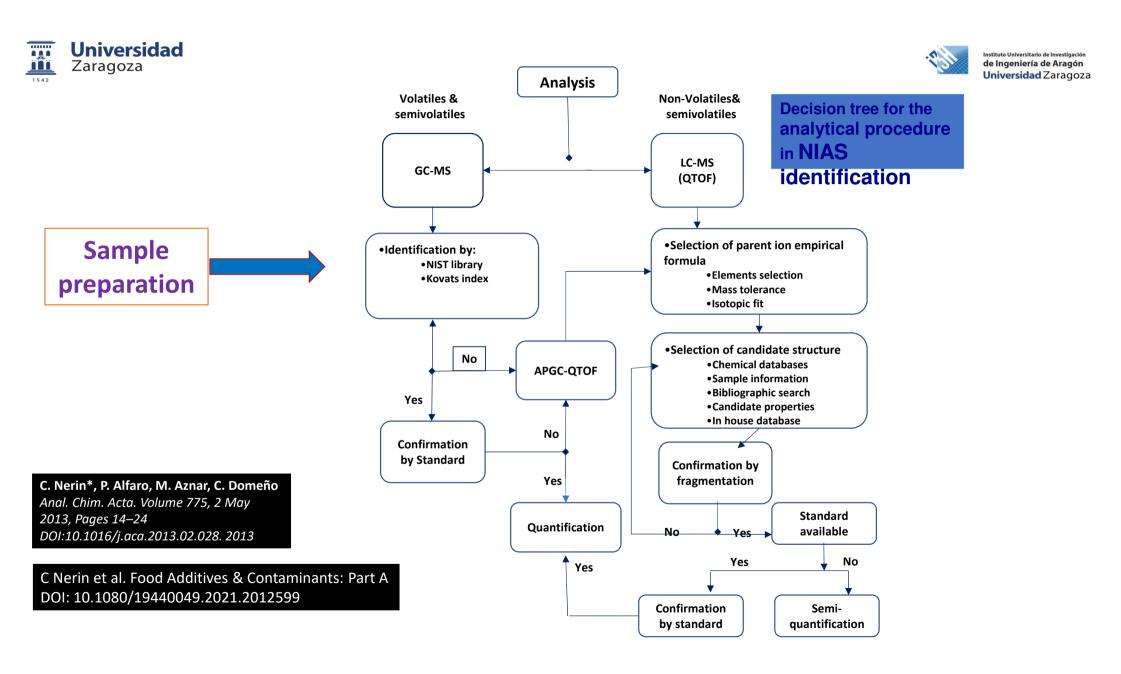
Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

An Overview of Approaches for Analysing NIAS from different FCMs

ILSI Europe Report Series , 05/04/2023

Oldring, Peter Sherwin Williams ; Faust, Birgit; Gude,Thomas; Lesueur, Céline; Simat, Thomas; Stoermer, Angela; Van Hoek, Els; Nerin, Cristina

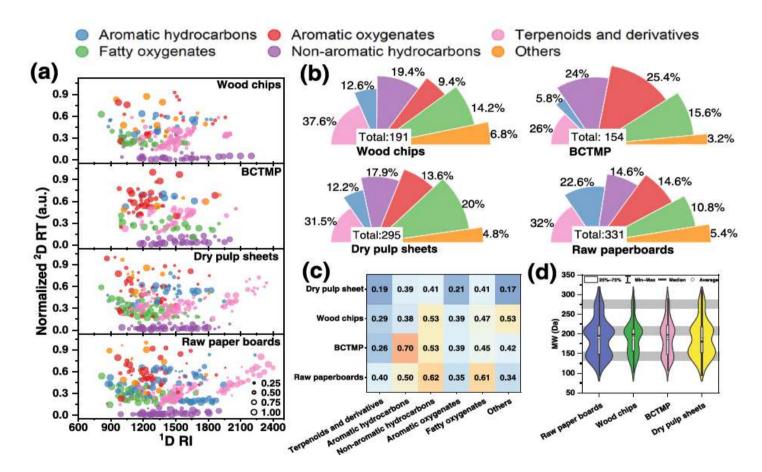
Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS)


<u>Cristina Nerín 1</u>, <u>Siméon Bourdoux 2</u>, <u>Birgit Faust 3</u>, <u>Thomas Gude 4</u>, <u>Céline Lesueur 5</u>, <u>Thomas Simat 6</u>, <u>Angela Stoermer 7</u>, <u>Els Van Hoek 8</u>, <u>Peter Oldring 9</u> Food Addit Contam Part A Chem Anal Control Expo Risk Assess . 2022 Mar;39(3):620-643. doi: 10.1080/19440049.2021.2012599. Epub 2022 Jan 26.

Methodologies to Assess the Biodegradability of Bio-Based

Polymers—Current Knowledge and Existing Gaps

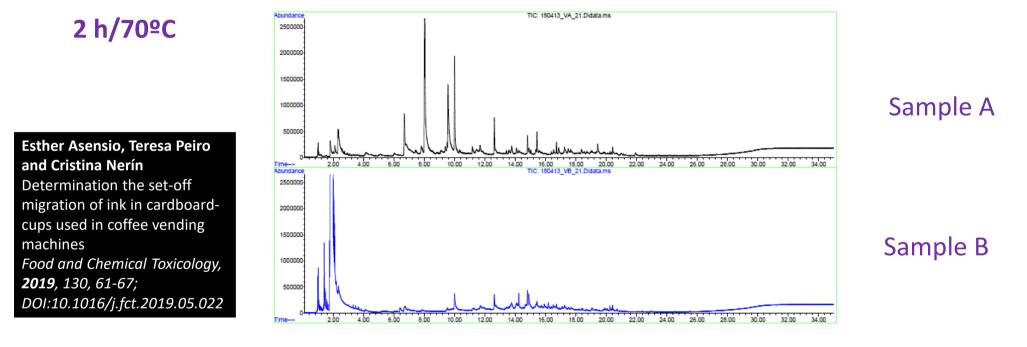
João Ricardo Afonso Pires, Victor Gomes Lauriano Souza, Pablo Fuciños, Lorenzo Pastrana and Ana Luísa Fernando


Polymers 2022,14,1359. https://doi.org/10.3390/polym14071359

Volatile compounds found

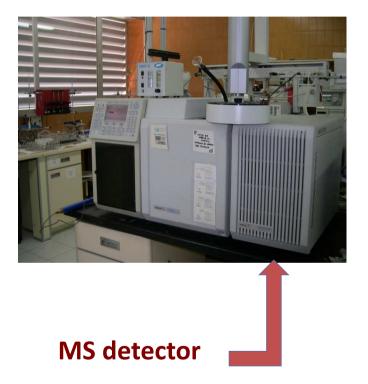
BCTMP= Bleach chemi-thermomechanical pulp

Origin:


- Natural/raw materials
- Pro
- processing aids
- Functional additives (IAS)
- Degradatin compounds

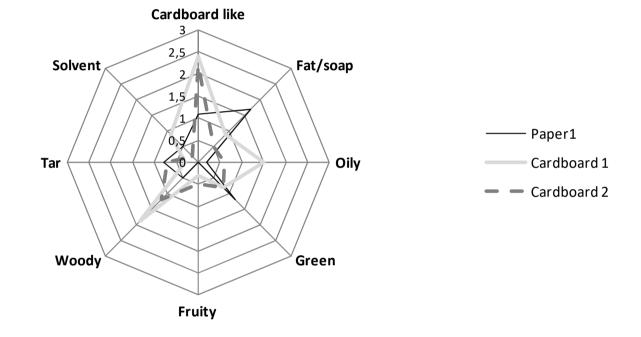
Hanke et al, Food Packaging and Shelf Life 37 (2023) 101062

Migration from paper cups from coffee machines


HS-SPME-GC-MS (DVB/CAR/PDMS) con columna capilar HP-5MS

Migration from 0.48 ug/Kg para 3,5-di-tert-butyl-4-hydroxybenzaldehyde^{b,d} in simulant C to 1942.5 ± 414.9 ug/Kg for ATBC en simulant D1

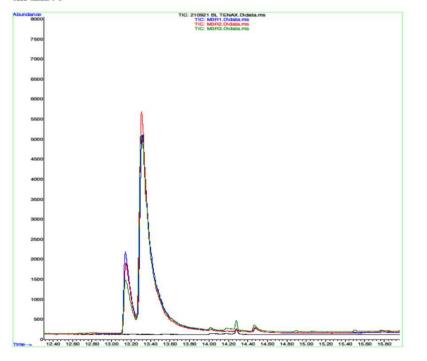
Instrumental Olfactometry GC-O-MS


<image>

by GC-O-MS

Nº	Odorous compounds	IK	Odor	Material detected	FM
				Paper1	55
1	Toluene	1046	Paint	PP4	48
				Cardboard 1	60
2	Hexanal	1087	Fat, grass	Paper 1	82
2	1.02	1116	-	Cardboard 1	72
3	b-Pinene	1116	Resin	Cardboard 1	45 55
7	Limonene	1203	Pine	Paper 1	55 70
,	Emonene	1205	The	Cardboard 1 Cardboard 2	74
8	1,2,4-trimethyl benzene	1276	Plastic, sweet	Cardboard 1	48
		1000		PP4	90
9	Octanal	1280	Fat, soap	PE1	75
	1,3,5-trimethyl benzene	1290	Oily, aromatic	Paper 1	45
10				Cardboard 1 Cardboard 2	60
				Calubbald I Calubbald 2	52
			Mint and acetone odor	Paper 1	55
11	Cyclohexanone	1308		Cardboard 1 Cardboard 2	65
10	1000	1005			63
12	1,2,3-trimethyl benzene	1337	Oily,aromatic	Cardboard 1	67 85
				Paper 1	85 90
15	Nonanal	1395	Fat, citrus, green	PP4	90
15	Nonanai	1595	Fat, citrus, green	PE1	72
				Cardboard 1 Cardboard 2	78
					65
				PP1	50
•			~	PP2	55
20	2-ethyl-1-hexanol	1485	Green	PP3	62
				Paper 1	43
				Cardboard 1 Cardboard 2	47
21	Longyfolene	1510	Woody	Cardboard 1 Cardboard 2	72
21	Longylolene	1510	woody	Calubbald I Calubbald 2	69
				PP1	45
				PP2	58
			Fruity, sweet,	Paper 1	57
23	Benzaldehyde	1542	almond cherry	PP3	52 49
			2	PE2	49
				Cardboard 1 Cardboard 2	42 61
					55
				PP1	58
				PP4	45
30	Acetophenone	1671	Almond, flower	PE1	45
20	· · · · · · · · · · · · · · · · · · ·	10,1		PE2	61
				Paper 1	66
				Cardboard 1 Cardboard 2	54
31	4-ethyl-benzaldehyde	1722	Fruity	PP4	43
32	Verbenone	1733	Spicy odor and camphoraceous	Cardboard 1	57
				PP1	66
				PP4	49
33	Naphthalene	1770	Tar	Paper1	52
	-			Cardboard 1	61

Paula Vera, Elena Canellas and Cristina Nerín. Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials *Food Chemistry*, **2020**, 309, 125792, DOI:10.1016/j.foodchem.2019.125792



Migration of surfynol from printed board

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

File :C:\gcms\l\data\QUIMOVIL\210921 BL TENAX.D Operator : MAGDA Acquired : 21.5ep 21 9:10 am using AcqWethod SIM QUIMOVIL.M Instrument : 5975B inert XL NB Sample Name: 210921 BL TENAX Vial Number: 9

UPLC -qTOF-MS

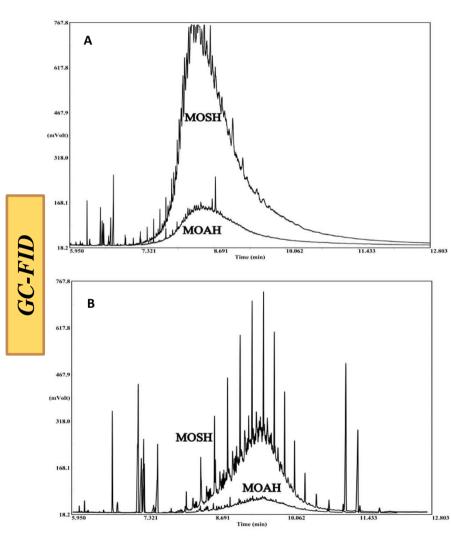
Surfynol: 2,4,7,9-tetrametil-5-decino-4,7-diol (CAS 126-86-3)

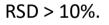
Simulant	M1	M3	M5
Tonov	447± 8	377 ± 7	370 ± 7
Tenax	µg/dm²	µg/dm²*	µg/dm²
Simulant	M1	M3	M5
T erre err	2.68± 0.7	2.26 ± 0.5	2.22± 0.5
Tenax	mg/Kg	mg/Kg*	mg/Kg*

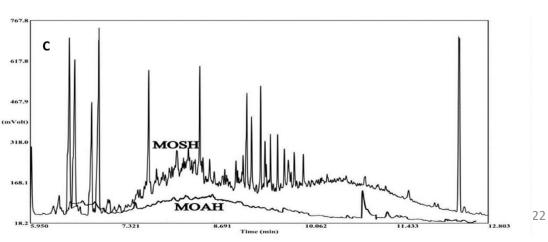
LOD 15 µg/Kg, ppb

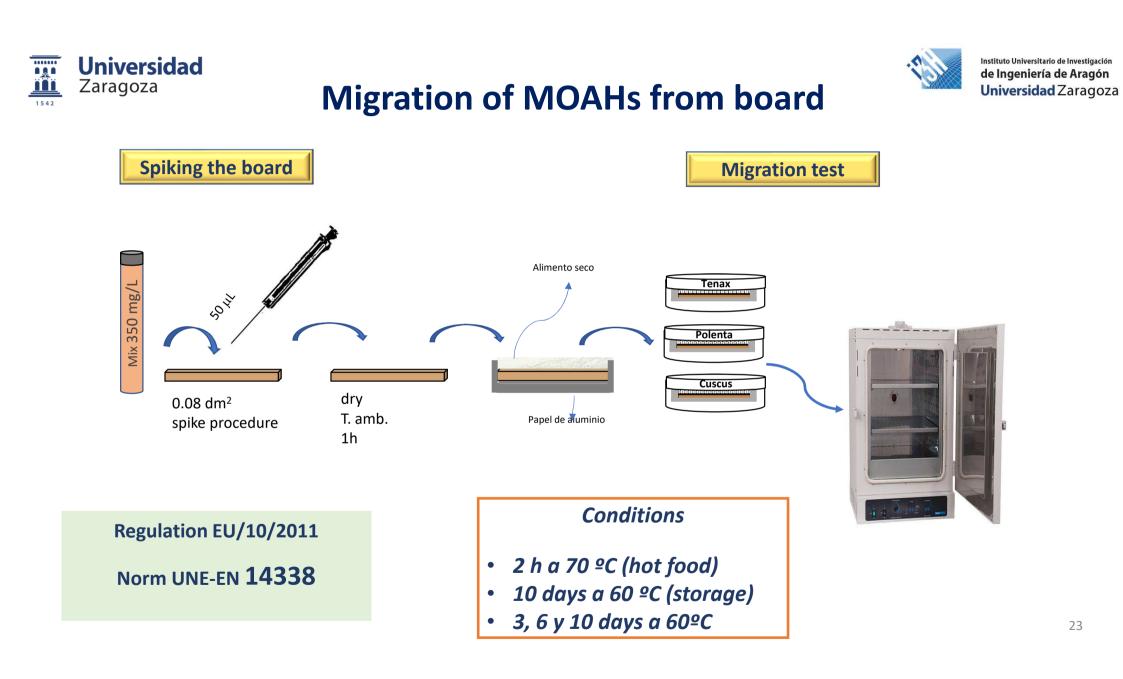
SML = 50 μ g/Kg

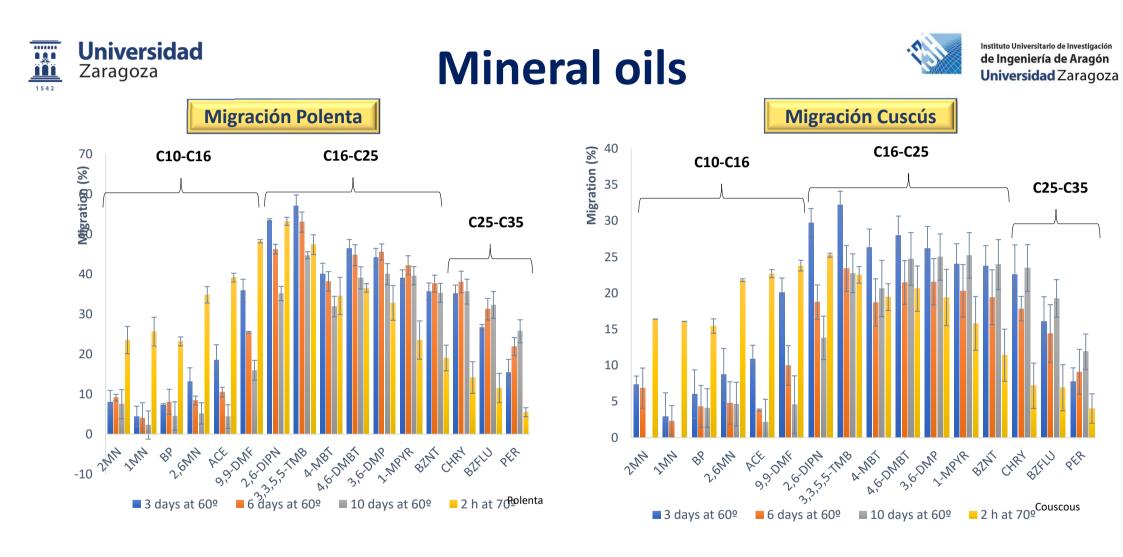
Nerin et al *Food and Chemical Toxicology 113 (2018) 115–124* https://doi.org/10.1016/j.fct.2018.01.044


García Calvo et al. Food and Chemical Toxicology 146 (2020) 111849 https://doi.org/10.1016/j.fct.2020.111849


Mineral oils



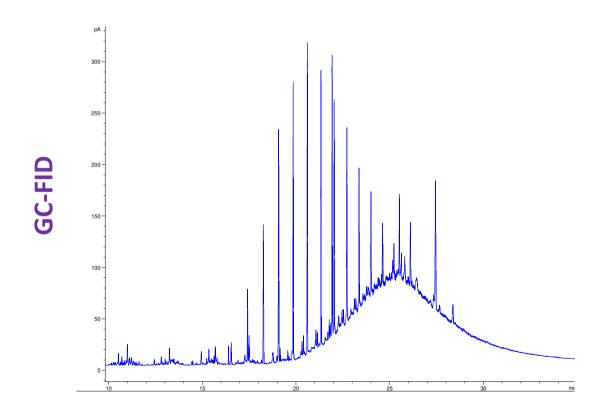

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza



Sample	n-alcanre range	MOAH concentration
Mineral oil (A)	C13-C35	
rPet (B)	C14-C25	8,62 y 16,33 mg kg ⁻¹
Recycled board (C)	C14-C28	25,12 mg kg ⁻¹

- C10-C16: (polenta <40%, Cuscús < 25%)
- C16-C25: (polenta <60%, Cuscús < 35%)
- C25-C35: lenta y más baja

Análisis del cartón después de la migración


24

- 0% no hubo retención de los analitos
- 100% todos los analitos se retuvieron

Migration of paraffin from coated board

Results

	Limit (SML) according to Swiss Regulation
170 ± 17 μg/dm2	(50 ng/dm ²)

Approach to solve the problem of identification

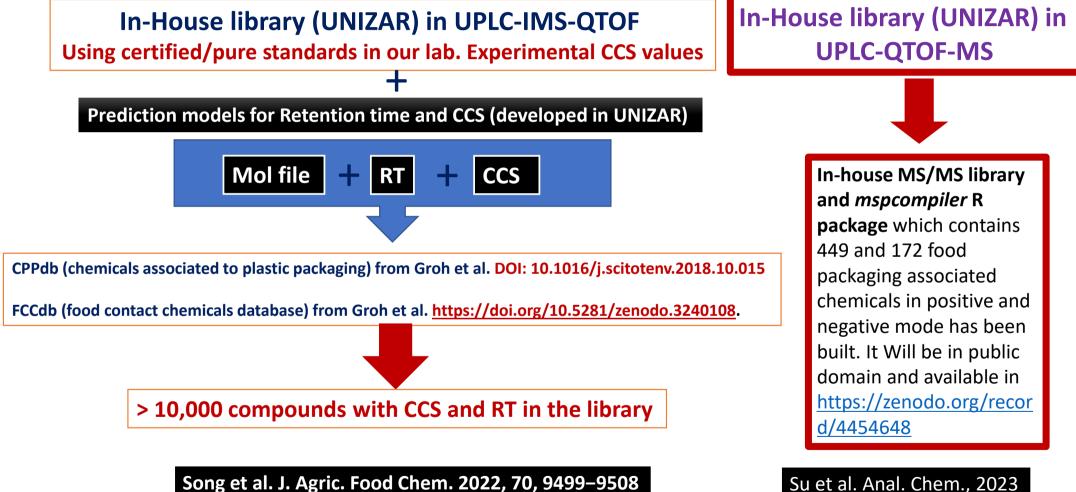
Use the specific databases for FCM

FCCdb (food contact chemicals database) from Groh et al.

https://doi.org/10.5281/zenodo.3240108.

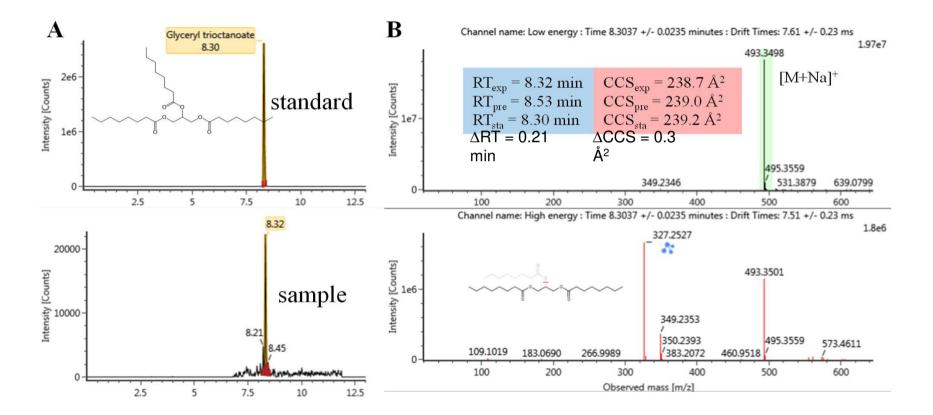
9391 compounds in total

BUT:

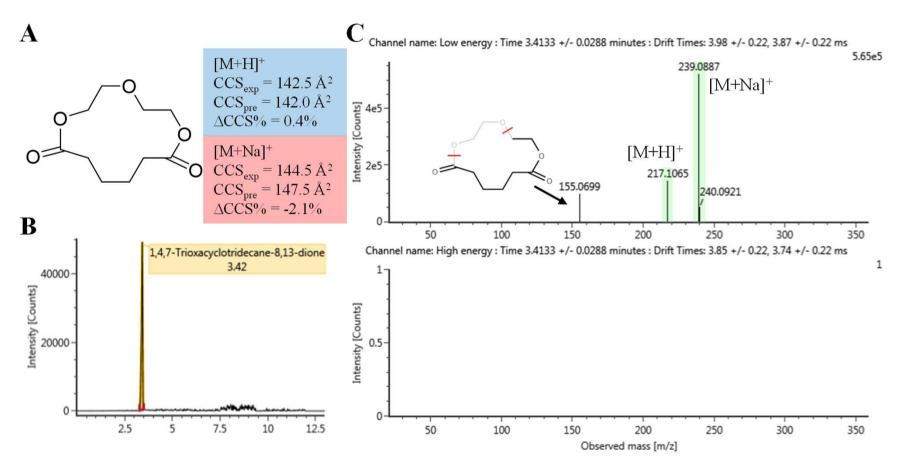

They need the analytical data (MS fragments, Retention Time, Ion mobility (CCS)

Identification using LIBRARIES

de Ingeniería de Aragón Universidad Zaragoza



Song et al. J. Agric. Food Chem. 2022, 70, 9499–9508


Predicted RT and CCS improve the confidence of identification

CCS helps the identification of unknowns

RISK ASSESSMENT OF NIAS

TOXICITY CLASIFICATION-Cramer rules (Toxtree v1.51)

Class I (Low) <1.8 mg/person/day

Class II (Medium) <0.54 mg/person/day

Class III (High) 0.09 mg/person/day

Toxtree (Estimation of Toxic Hazard - A Deci Edit Chemical Congounds Toxic Hazard Method		- 0
<< >> Enter SMILES:	0.w	V Got
alifable structure attributes BLES OC1=C(C=C(C=C1C(C)(C	Toxic Hazard by Crame	er nules
Tree Aree .cramer .Cram [Intermediate (Class II) Tree Aree .cramer .Cram [1N,2N,3N,5N,6N,7N,16N,	Low (Class 1)	
	Intermediate (Class II)	
	High (Class III)	
ucture diagram	Verbose explanation	
+	Conserved Qi.Normal constituent of the body No Q2.Contains functional groups associated with Q3.Contains elements other than C, H,O,N, divale Q5.Simply branched aliphatic hydrocarbon or a Q6.Benzene derivative with certain substituent Q7.Heterocyclic No	nt 3 No common carbohydrate No
	Q16.Common terpene No Q17.Readily hydrolysed to a common terpene Q19.Open chain No Q23.kromatic Yes Q27.Rings with substituents Yes Q28.More than one aromatic ring No	No
/ ~	Q10.Aromatic Ring with complex substituents Q10.One of the list (see explanation) Yes	No Class Intermediate (Class II)
First Prev 1 / 1 Next Last	e .	

EDI (Estimated Dayly Intake) (mg/person/day)= Mig (mg/Kg) x 3 Kg /day/person x GF

Conclusions

- The number of migrants from packaging materials can be very high.
- There are **analytical tools** for studying the packaging materials, BUT a combination of different technologies and instruments is required.
- High resolution is an essential key for identification chemical structures of organic compounds.
- Special care and **Critical interpretation** of the data are needed to avoid wrong identification.
- Databases and libraries as well as experience are extremmely important for identifying the chemicals.
- **Confirmation** always with certified standards is required.

(the latest ones)

- >MIGRESIVES Project (EU, VI FP, Collective Research Project)
- >NAFISPACK Project (EU, VII FP)

>SAFEMTECH (EU, IAPP, Marie Curie)

>AGL-04363 and AGL- 2012-37886 (Spanish Ministry of R&D&i)

➤4 INNPACTO Projects (Spain)

➤ACTIBIOPACK

- ►NANOFLEXIPACK
- ➤ AGL-2015
- ➢ RTI-2018
- ➤ (RTC2019-007161-2)
- FOODYPLAST (EU)
- PID2021-123742OB-I00
- TED2021-129138B-C21
- SCPP2100C008568XV0

➤Several Companies...

Instituto de Investigación en Ingeniería de Aragón (I3A)

Gobierno de Aragón
Grupo GUIA (T53_20R) and
Fondo Social Europeo

GUIA group, University of Zaragoza, Spain

Instituto Universitario de Investigación de Ingeniería de Aragón Universidad Zaragoza

Thank you very much for the attention

cnerin@unizar.es