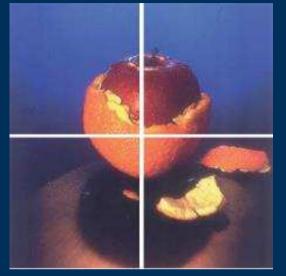
ADVANCES IN CELLULOSE-BASED MATERIALS IN FOOD PACKAGING

Seminar

VTT Technical Research Centre of Finland In collaboration with: **Aarhus University**

Seminar under the scope of COST Action CIRCUL-A-BILITY CA19124, supported by COST (European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.



CATOLICA FACULTY OF BIOTECHNOLOGY

PORTO

Applications of bacterial nanocellulose in active packaging

Francisco A.G. Soares da Silva, Miguel Gama, Paula Teixeira, Fátima Poças

Funded by the

Seminar ADVANCES IN CELLULOSE-BASED MATERIALS IN FOOD PACKAGING

22 to 23 May 2023

Agenda

- 1. Food Packaging
 - 1. Requirements
 - 2. Synthetic vs Bio-based
- 2. Active & Intelligent Food Packaging
 - 1. Active agents
 - 2. Nanocellulose application
- 3. Plant vs Bacterial nanocellulose
 - 1. Production & characterization
 - 2. BNC production and properties

- 4. Nanocellulose composite processing
 - 1. Solvent vs Coating vs Impregnation
- 5. Safety of NCs based composites
 - 1. Cellulose vs NCs
 - 2. Migration onto food
- 6. Case study
 - 1. BNC_{ZnO} as active packaging

1. Food packaging

- > Aiming to protect the food from the environment
 - Food packaging requirements
 - Food intrinsic properties (Water activity)
 - Extrinsic factors (temperature, humidity, light)
 - > Shelf-life
 - Properties to be monitored
 - Permeability water vapour, oxygen and other gases
 - Mechanical performance

Packaging requirements

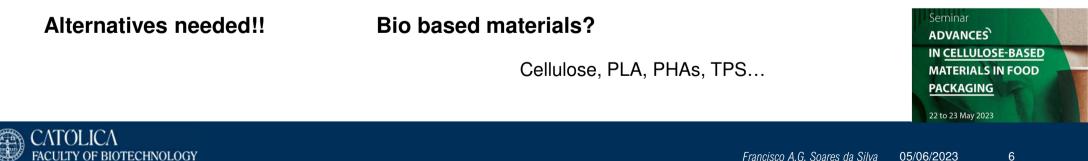
Product	WVTR	Oxygen permeance	Shelf-life	Materials typically used	
Product	(g/m².day) 23 °C	(cm ³ _{STP} /m ² .day.Pa) 23 °C	(months)	Materials typically used	
		Low moisture foods, a	< 0.6		
	· · · · · · · · · · · · · · · · · · ·			Metallised films, Laminates with	
Nuts, snacks, chips	0.093 - 3.0	1.6x10 ⁻⁶ – 9.6x10 ⁻⁵	3 – 12	Ethylene vinyl alcohol (EVOH),	
				Polypropylene (PP)	
	High moisture foods, a ,> 0.9		,> 0.9		
Fruit juices, soft	0.47,40.0			Glass, PET, Metal cans, bag in box,	
drinks	0.47 - 12.2	6.1x10 ⁻⁶ – 6.14x10 ⁻⁴	1 - 18	Aseptic multilayer	
Fats	5.2 – 9.2	6.8x10 ⁻⁵ – 8.0x10 ⁻⁴	3	Fat resistant paper, PP	
		Fresh foods			
Fruits, vegetables,		1x10 ⁻¹ - 2	0.35	Low-density polyethylene (LDPE), PP	
fresh salads	10 – 4 000		0.25		
Meat and meat	2 100				
based product	2 - 100	2x10 ⁻⁴ – 1x10 ⁻¹	0.25 – 0.5	Polystyrene (PS) and PET trays	

Seminar ADVANCES^A IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD PACKAGING 22 to 23 May 2023

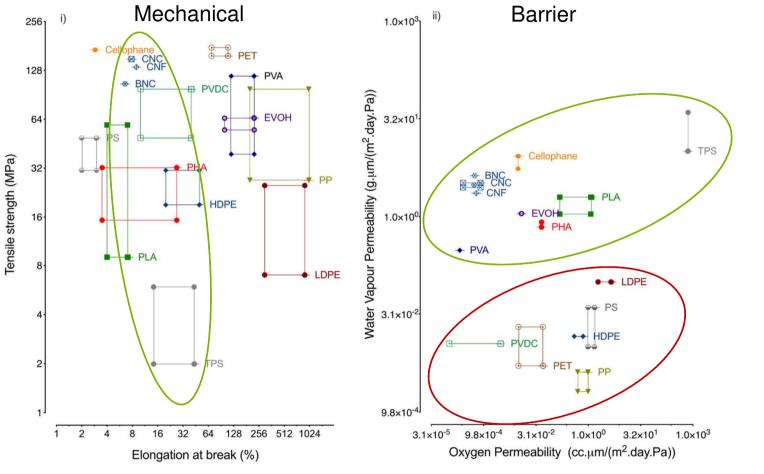
CATOLICA FACULTY OF BIOTECHNOLOGY

Food packaging

Plastics dominating the industry!!



Lightweight


- Low production cost
- Good mechanical properties
- Good barrier properties

Petroleum based material X

- Low recycling rate X
 - 79% of the plastic in X landfills/waterways
- Microplastics in the air, soil and water X
- Non degradable X

Synthetic vs Bio-based

Nanocomposite technology

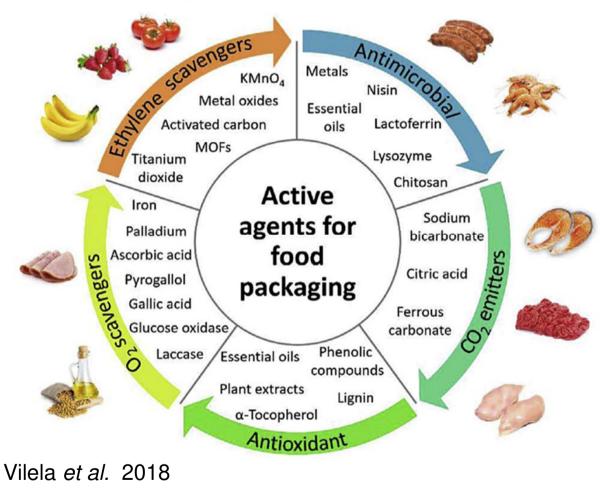
- ✓ Mechanical properties
- ✓ Barrier properties
- x High production cost
- x Low production capacity

7

2. Active & Intelligent Food packaging

- > System that interacts with food to extend shelf life, preserve freshness and enhance safety
- Active system that absorbs or releases substances
 - Antimicrobial & Antioxidant
 - > Oxygen and ethylene scavengers
 - \succ CO₂ emitters
- Intelligent monitors the condition of packaged food
 - Information on freshness of the food

Nanocomposite technology


Active agents

Seminar ADVANCES^A IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD PACKAGING 22 to 23 May 2023

8

Active Packaging

Incorporated by blending, coating...

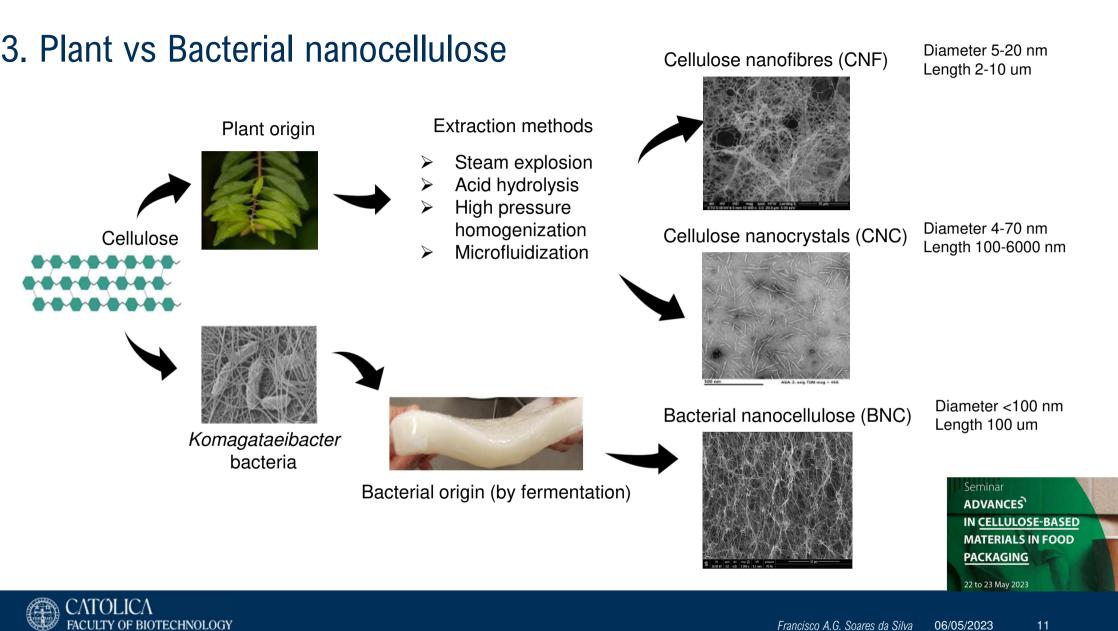
Commercial active packaging

- Biomaster
- Foodtouch

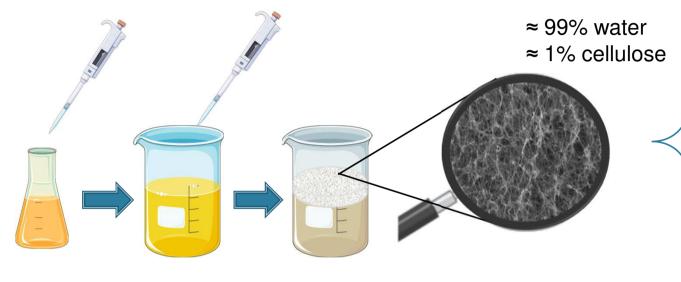
• ...

Based on silver, glucose oxidase, natamycin,...

CATOLICA


Active Packaging

Nanocellulose as a support in active packaging


Nanocellulose	Active agent	Activity	Reference
	Feruloylated arabinoxylo- oligosaccharides	UV-barrier Antioxidant Antimicrobial	Moreirinha et al., 2020
Cellulose nano fibres	Tannins	Antioxidant	Missio et al., 2018
	Bromothymol Blue/methyl red	Freshness indicator (pH sensor)	Lu et al., 2020
Cellulose nanocrystals	Titanium dioxide NPs	Antimicrobial	Wakil et al., 2015
	Lactoferrin	Antimicrobial	Padrão et al., 2016
	Sorbic acid	Antimicrobial	Jipa et al., 2012
	Methyl red	Freshness indicator (pH sensor)	Kuswandi et al., 2013
Bacterial nanocellulose	Silver NPs	Antimicrobial	Wang et al., 2020
Dacterial hanocenulose	Silymarin-zein NPs	Antioxidant; Antimicrobial	Tsai et al., 2018
	Zinc oxide NPs	Antimicrobial	Dinca et al., 2020 Pirsa et al., 2018 Mocanu et al., 2019 Wahid et al., 2019

Seminar ADVANCES IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD <u>PACKAGING</u> 22 to 23 May 2023

BNC Production & Characterization

Cellulose membrane forming from surface to bottom

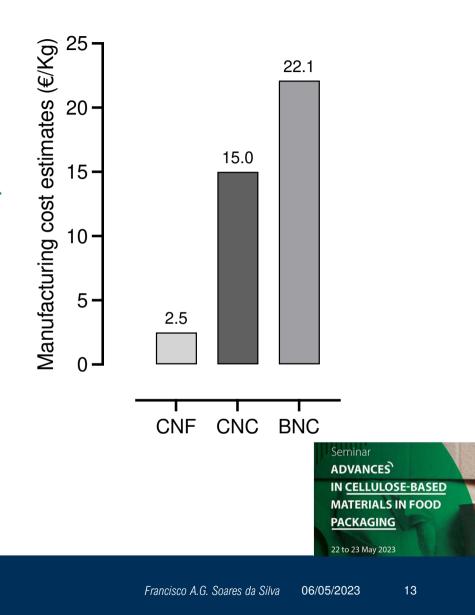
Strains for BNC synthesis: *Komagataeibacter xylinum, K. hansenii; K. rhaeticus* Culture media: Hestrin-Schram; modified HS... (depend on the strain)

Conditions: \approx 30°C, 7-30 days of incubation (depend on the surface area to volume ratio)

Main properties of BNC

- High degree of polymerization
- High crystallinity
- High purity
- Biodegradability
- Biocompatibility
- High water holding capacity

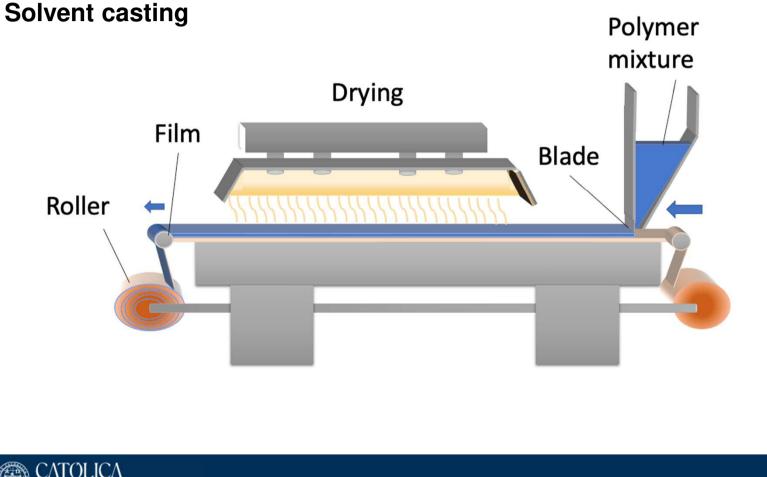
Feature for absorbing and release of active substances



BNC Production & Characterization

Setbacks

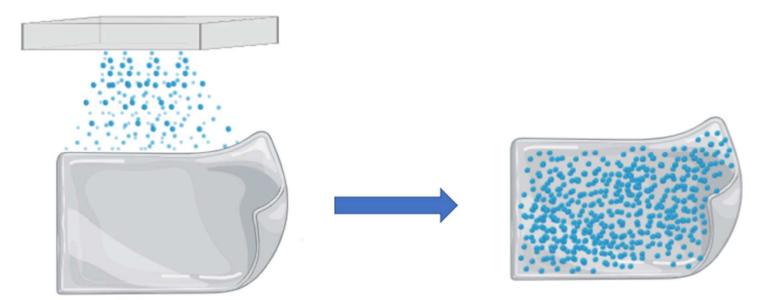
- Low yields of BNC (max 10 g.L⁻¹)
- High manufacturing cost
 - Strategies to lower the manufacturing



PORTO

ATOLICA

4. Nanocellulose composite processing

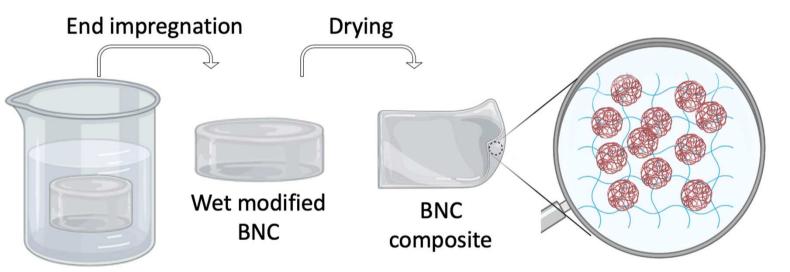


- ✓ Simple method
- ✓ Easy upscaling
- X Dispersibility
 - X Mechanical
 - X Lower activity

Seminar ADVANCES IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD <u>PACKAGING</u> 22 to 23 May 2023

4. Nanocellulose composite processing

Coating


- ✓ Easy upscaling
- ✓ Barrier performance
- ✓ Good dispersibility (on the surface)
- **X** Mechanical
- X Rapid release

Nanocellulose composite processing

Impregnation

- ✓ Direct absorption
- ✓ Mechanical
- ✓ Homogenous distribution
- ✓ Delayed release
- X Nano-sized compounds
- X Limited scalability

5. Safety of NCs based composites

•

Authorised by EFSA

- Cellulose
- Cellulose acetate
 butyrate
- Hydroxyalkyl celluloses
- Nitrocellulose
- Lignocellulose

Nanocellulose(includingBNC)not yetauthorised for foodcontactapplications

Plastic materials on active food packaging

COMMISSION REGULATION (EU) No 10/2011

of 14 January 2011 on plastic materials and articles intended to come into contact with food (Text with EEA relevance)

"Nanoparticles interaction (...) may be different from conventional particle size scale, leading to <u>different exposure</u> and <u>different</u> <u>toxicological properties"</u>.

- NC toxicity through inhalation (Inconsistent results)
 - Variability of biological systems/conditions
 - NCs characteristics (dimension, shape..)
- NC toxicity in the gastrointestinal tract no evidence (?)
 - CNCs (not CNF or BNC) may generate ROS
 - NC long term effects (absorbance of micronutrients)

Seminar ADVANCES^S IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD <u>PACKAGING</u> 22 to 23 May 2023

Safety of NCs based composites

Assessment of the gastrointestinal fate of bacterial nanocellulose and its toxicological effects after repeated-dose oral administration[†]


Ana Cristina Rodrigues,^{‡ab} Lígia Costa,^{‡ab} Ricardo Silva-Carvalho, ^D^{ab} Renato Mota,^{ab} Sara Duarte-Silva,^{cd} Andreia Teixeira-Castro,^{cd} Nuno Lamas,^{cde} Gonçalo N. P. Oliveira, ^D^f Yizao Wan,^{gh} Fernando Dourado^{ab} and Miguel Gama ^D*^{ab}

BNC administred dayly for 21 days

BIOTECHNOLOGY

- Not absorbed at the intestine
 - No hazardous effects

Promising for BNC!

NCs composite migration

Migration rate depending on:

- Physico-chemical interactions between NCs and actives substance
- Amount, properties and mobility of migrating substance
- Temperature and time of contact
- Type of food (acidic, alcholic or fatty);

NCs composite migration

List of food simulants

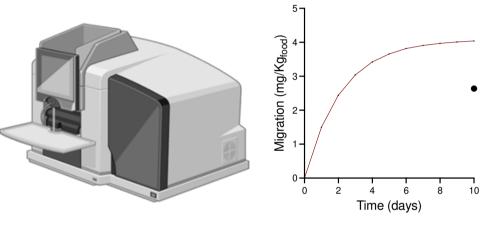
Food simulant		
Ethanol 10 % (v/v)	Food simulant A	
Acetic acid 3 % (w/v)	Food simulant B	-
Ethanol 20 % (v/v)	Food simulant C	_
Ethanol 50 % (v/v)	Food simulant D1	
Vegetable oil (*)	Food simulant D2	
poly(2,6-diphenyl-p-phenylene oxide), particle size 60-80 mesh, pore size 200 nm	Food simulant E	

AND

Real food model

• e.g. Pork, Chicken

- Foods with hydrophilic character;
- Acidic foods (pH<4.5);


Dry foods

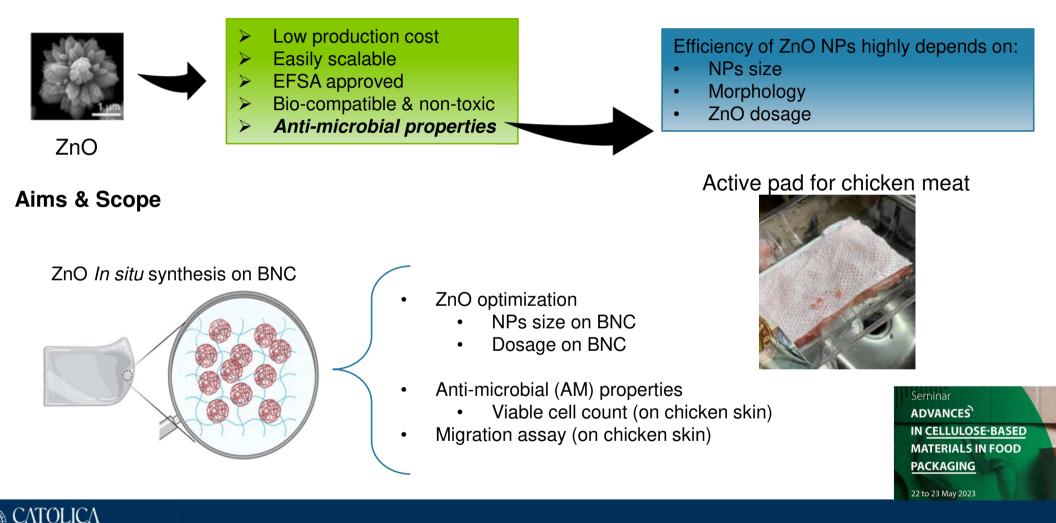
- Alcoholic foods; lipophilic character;
- Alcoholic foods; oil in water emulsions;
- Foods with free fats at the surface;

Seminar ADVANCES IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD <u>PACKAGING</u> 22 to 23 May 2023

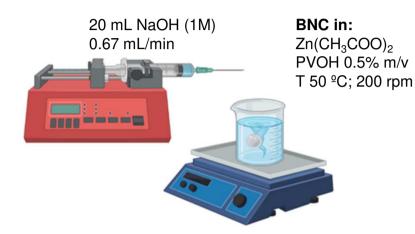
NCs composite migration

Specific migration

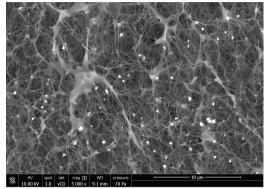
BNC as support may decrease migration rate!

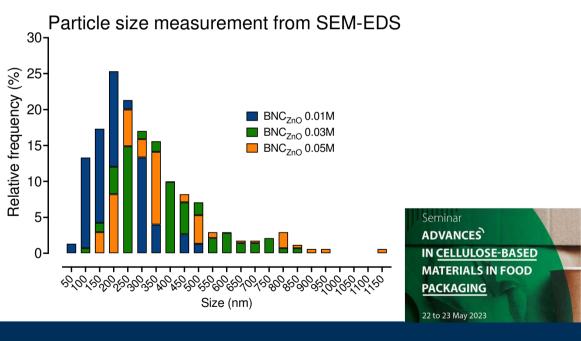

Substances incorporation using impregnation method!

Most active substances authorised by EFSA

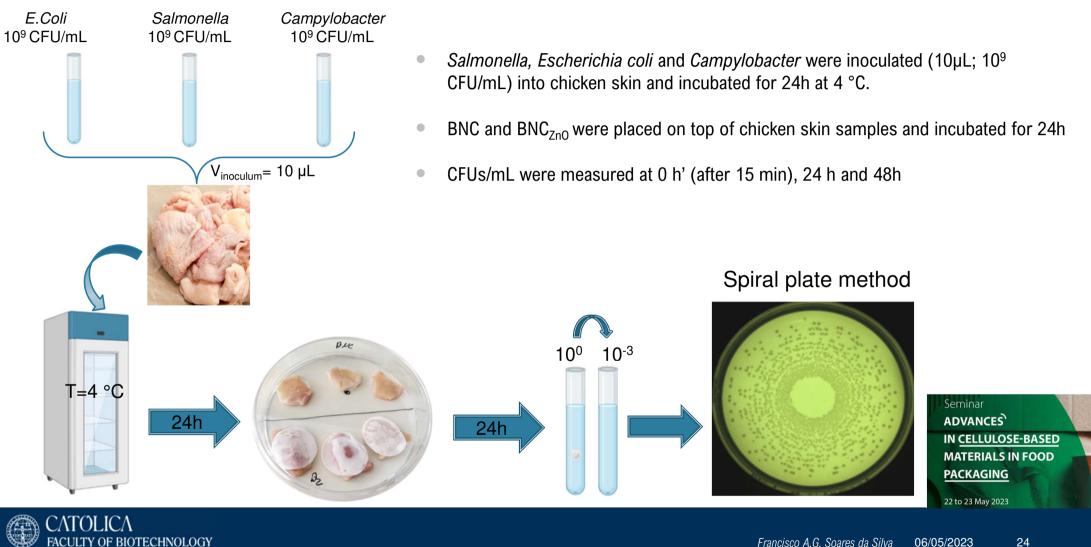

- Specific migration limit (SML) (mg_{substance}.Kg⁻¹ food)
- Substances without SML 60.0 mg.Kg⁻¹

6. Case study

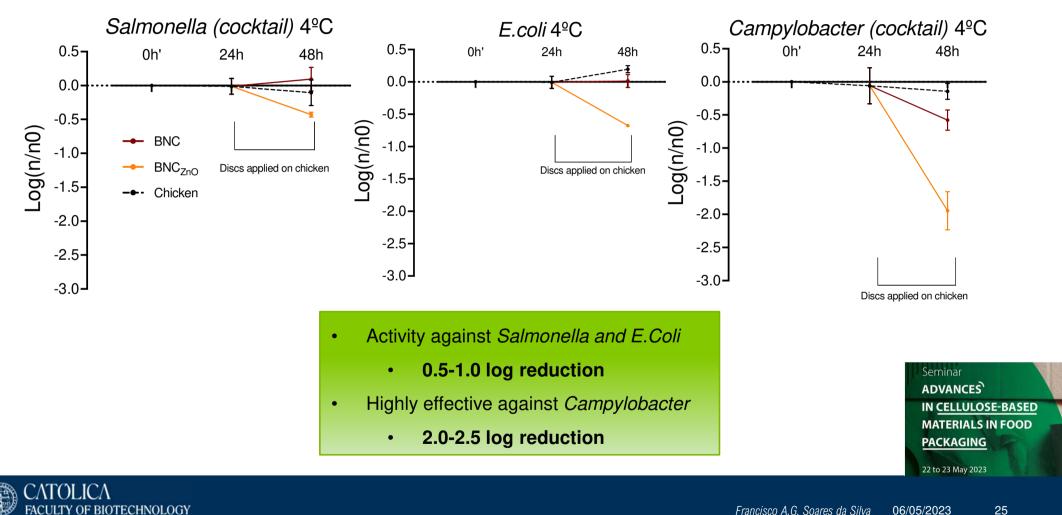

Results – BNC_{ZnO} production & characterization



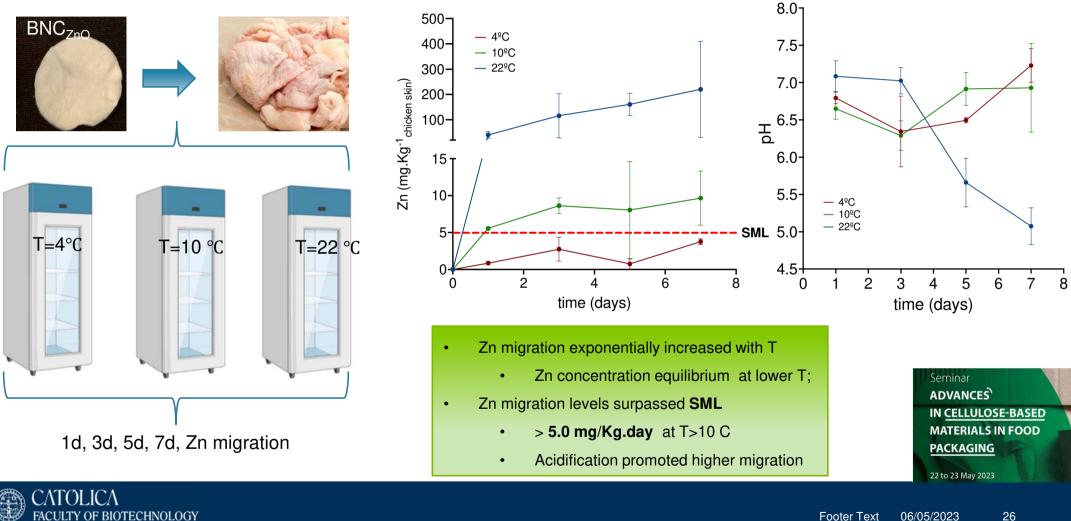
Quantification of Zn by Atomic absorption spectrometer


Zn(CH ₃ COO) ₂ (M)	Theorical ZnO (mg)	Zn % (m/m _{BNCZnO}) (AAS)
0.01	0.68	11.05
0.03	0.96	21.12
0.05	1.48	27.10

Morphology of BNC_{ZnO}



Chicken skin as food model



Chicken skin as food model

Francisco A.G. Soares da Silva 25 06/05/2023

Zn migration on chicken skin

Conclusions of the case study

Antimicrobial activity of BNC_{ZnO}

- Chicken skin as food model
 - BNC_{ZnO} effective on *Escherichia coli* and *Salmonella* (0.5-1.0 log reduction) and even more effective on *Campylobacter species* (2.0 log reduction);

Zn Migration into chicken skin

- Zn migration was temperature and pH dependent;
 - Increased with temperature increase
- Zn migration surpassed SML, at T higher than 10°C;
 - Acidic pH increased Zn solubility

Acknowledgements

- BIOPROTECT Development of Biodegradable Packaging Material with Active Properties for Food Preservation POCI-01-0247-FEDER-069858;
- Portuguese Foundation for Science and Technology (FCT) through the project UID/BIO/04469/2013;
- COMPETE 2020 (POCI-01-0145-FEDER-006684);
- BioTecNorte operations (NORTE-01-0145-FEDER-000004);
- Financial support of Cost action CA19124 through the grant given to Francisco A.G.S. Silva;
- Financial support of the FCT (ESF) through the grant given to Francisco A.G.S. Silva (SFRH/BD/146375/2019);

22 to 23 May 2023

ADVANCES IN CELLULOSE-BASED MATERIALS IN FOOD PACKAGING

Seminar

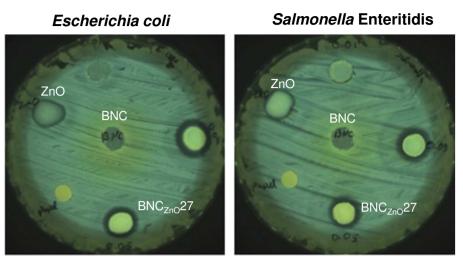
VTT Technical Research Centre of Finland In collaboration with: **Aarhus University**

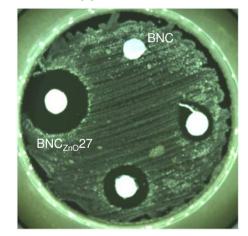
Seminar under the scope of COST Action CIRCUL-A-BILITY CA19124, supported by COST (European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

3. Plant vs Bacterial nanocellulose

Yearly cellulose yield (per ha) of different sources


Biotech unit 100m³/day


6. – Agar diffusion assay

	Inibition of bacterial growth of ZnO on BNC		
	_ Bacterial strains	BNC	BNC _{ZnO} 27%m/m
Gram- Gram-	Salmonella Enteritidis	X	\checkmark
	Escherichia coli	X	\checkmark
	Yersinia enterocolitica	X	\checkmark
	Pseudomonas aeruginosa	X	\checkmark
	Campylobacter coli	X	$\checkmark\checkmark$
	Staphylococcus aureus	X	\checkmark
	Bacillus cereus*	X	$\sqrt{}$

- ZnO on BNC had antibacterial activity
- BNC_{ZnO} effective
 - All Gram- bacteria
 - Gram+
 - Staphylococcus aureus
 - Bacillus cereus

Campylobacter coli

Seminar ADVANCES[®] IN <u>CELLULOSE-BASED</u> MATERIALS IN FOOD <u>PACKAGING</u> 22 to 23 May 2023

CATOLICA FACULTY OF BIOTECHNOLOGY

6. Zn migration – using food simulants 6-5 - SML _____ • EtOH10% Zn (mg.Kg_{EtOH}⁻¹) 4 - EtOH20% → EtOH50% 3 2. Seminar ADVANCES IN CELLULOSE-BASED **MATERIALS IN FOOD** 04 0 2 4 6 8 10 24 PACKAGING 72 216 120 168 264 312 360 22 to 23 May 2023 time (h) CATOLICA BIOTECHNOLOGY Footer Text 32 06/05/2023 PORTO