
INTRODUCTION TO PYTHON

DENNIS TROLLE & ANDERS NIELSEN



AIM OF THIS COURSE

This is an online course, which you may follow in your own pace, 
and seeks to:

• Introduce the basic concepts of the Python language

• Provide you with enough knowledge of Python to use it as an 
alternative to other data-processing alternatives – e.g. Excel

• Through examples get hands-on experience with Python, and lay 
a foundation that enables you to conduct further data analysis



LEARNING GOALS

After the course, the participant is expected to be able to: 

• Prepare and import data into Python (e.g. pandas dataframes).
• Conduct basic processing of data.
• Sort, slice and select in data for analysis.
• Apply basic data visualizations.
• Apply basic statistical analysis.
• Export data to record format (e.g. text or excel).



WHAT IS PYTHON?

• Python is a high-level general-purpose programming language

• It is a scripting language (it is interpreted – as opposed to a compiled 
language like Fortran), and Python is similar to f.x. perl and matlab

• It was originally created by Guido van Rossum (first released in 1991)

• Python is open source and community driven

• Python is platform independent (runs on Windows, Mac, Linux)

• Python comes with “batteries included” - a standard distribution includes 
many different libraries for analysis, plotting etc.



WHY USE PYTHON?
• As a scientist, consultant or manager, you deal with data/observations and you 

often need a tool to help with data manipulation, analysis and plotting 
– Python is a powerful, open source (and free) option

• Basically, you use Python to “get the job done”

• Python is “easy to learn”, as it was developed with emphasis on code readability, 
and therefore used at many universities when introducing programming

• Good documentation – massive online support

• It is very versatile and include f.x. many common data manipulations, scientific 
computing and machine learning, statistics, many plotting features, web 
frameworks, data base connectivity, interfaces to GIS, text and image processing



WORKING WITH PYTHON

• Interactively:
• Through a terminal (Python shell)
• Through an IDE (Integrated Development Environment), f.x.:

• Spyder
• IPython, Jupyter
• + many more

• As scripts (*.py):
• Run from a terminal
• Developed and run via an IDE with a GUI (Graphical User Interfase)

• In this course, we will use the “Spyder IDE”, which comes with 
the Anaconda distribution (with Python 3)

• Spyder is an open source cross-platform IDE for Python

Can be done:



CODE SAMPLES FROM SPYDER

x = 34 - 23 # A comment.

y = "Hello" # Another one.

z = 3.45

if z == 3.45 or y == "Hello":

x = x + 1

y = y + " World" # String concatenate.

print(x)

print(y)



INSTALLATION

https://www.anaconda.com/products/individual

Download and 
install for your
chosen platform 
(e.g. Windows)

Use free version –
no need to sign up

https://www.anaconda.com/products/individual


LAUNCH SPYDER WHEN INSTALLED



”Console”
Here, your Python code
will be executed, and output 
will be printed.

”Variable explorer”
Here, you may see the value
of variables in your datasets”Editor”

Here, you can write
your Python code







Try to write:
print(”I love Python”)

Then highlight/select the line and click

Note:
Python is ”case-sensitive” and knows the difference 
between small and capital letters 
(remember to write ”print” with small letters)



The code is executed in the console
and the output is printed



UNDERSTANDING 
PYTHON CODE

DENNIS TROLLE & ANDERS NIELSEN



1 SLIDE ON PYTHON CODE BASICS

• Indentation matters to the meaning of the code
• Block structure indicated by indentation

• The first assignment to a variable creates it
• Python is a dynamically-typed language: no type declarations are needed. Names do 

not have types, objects do, and Python will figure out the type when a variable is 
assigned a value the first time

• Assignment uses = and comparison uses ==
• For numbers + - * / % are as expected

• Use of + for string concatenation

• Use of % for string formatting

• Logical operators are words (and,or,not), not symbols (&&, ||, !)
• The basic printing command is print()



INDENTATION MATTERS
TRY IT…



BASIC DATA TYPES
Integers (default for numbers):
z = 5 / 2 # Answer = 2 if z is integer (integer division)

Floats:
x = 3.456

Strings:
• Can use “…” or ’…’ to specify, ”foo” == ‘foo’
• Unmatched can occur within the string 
“John’s” or ‘John said “foo!”.’

• Use triple double-quotes for multi-line strings or strings than 
contain both ‘ and “ inside of them:  “““a‘b“c”””



DATA TYPES
TRY IT…



PYTHON DATA CONTAINERS 
(DATA STRUCTURES)

Lists (mutable sets of strings)
• var = [] # create list using square brackets
• var = [‘one’, 2, ‘three’, ‘banana’]

Tuples (immutable sets)
• var = (‘one’, 2, ‘three’, ‘banana’)

Dictionaries (associative arrays or ‘hashes’)
• Dictionaries are sets of key & value pairs
• var = {} # create dictionary using use curly brackets
• var = {‘lat’: 40.20547, ‘lon’: -74.76322}
• var[‘lat’] = 40.2054

Pandas DataFrame (two-dimensional arrays – like a spreadsheet with column and row labels)
• makes manipulating data easy, from selecting or replacing columns and indices to reshaping your data
• df = pandas.DataFrame(columns=[‘X', ‘Y’, ‘Z’])

Each data structure has its own set of methods



DATA CONTAINERS
TRY IT…



PYTHON CONTROL FLOW STATEMENTS

https://docs.python.org/3/tutorial/controlflow

A program’s control flow is the order in 
which the program’s code executes. The 
control flow of a Python program is 
regulated by conditional statements, loops, 
and function calls. 

https://docs.python.org/3/tutorial/controlflow


EXAMPLE OF CONTROL FLOW STATEMENTS

Example of if statement
a = 250
b = 38
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")
else:

print("a is greater than b")

Conditionals
• if name == “Kurt Cobain”:

<do_something>
• else:

<do_something_else>

Loops
• for item in list:

<do_something>
• while n < 1000:

<do_something> 



PYTHON FUNCTIONS

• Good for code re-use

• General structure:

def <name>(parameters):
<block_of_python_code>

• Note: indentation of code block
• Parameters can be empty – but you must include ()
• Remember the :



FUNCTIONS
TRY IT…



Many logical expressions use relational operators:

Logical expressions can be combined with logical operators:

Operator Meaning Example Result
== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

LOGICAL EXPRESSIONS



MODULES AND LIBRARIES



MODULES, PACKAGES AND LIBRARIES
• Modules are additional pieces of code that further extend Python’s functionality

• A module typically has a specific function, f.x.:

• additional math functions, plot, databases, network…

• Python comes with many useful modules

• A Python package is a collection of modules. A Python library is a collection of packages.

• Python libraries, such as SciPy, can therefore include multiple packages and modules. 
Oftentimes, developers create Python libraries to share reusable code with the community.

Modules are accessed using import

 import pandas # imports pandas

 Import pandas as pd # imports pandas as pd

 Subsets of modules can be imported, e.g. import pandas.plot

Modules are then addressed by modulename.function()

 pd.read_excel(filename)



PYTHON LIBRARIES FOR DATA SCIENCE

NumPy:

 introduces objects for multidimensional arrays and matrices, as well as functions that 
allow to easily perform advanced mathematical and statistical operations on those 
objects

 provides vectorization of mathematical operations on arrays and matrices which 
significantly improves the performance

many other python libraries are built on NumPy

Link: http://www.numpy.org/

http://www.numpy.org/


PYTHON LIBRARIES FOR DATA SCIENCE

SciPy:

 collection of algorithms for linear algebra, differential equations, numerical integration, 
optimization, statistics and more

 part of SciPy Stack

 built on NumPy

Link: https://www.scipy.org/scipylib/

https://www.scipy.org/scipylib/


PYTHON LIBRARIES FOR DATA SCIENCE

Pandas:

 adds data structures and tools designed to work with table-like data (similar to Series 
and Data Frames in R)

 provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation 
etc.

 allows handling missing data

Link: http://pandas.pydata.org/

http://pandas.pydata.org/


matplotlib:

 python 2D plotting library which produces publication quality figures in a variety of 
hardcopy formats

 a set of functionalities similar to those of MATLAB

 line plots, scatter plots, barcharts, histograms, pie charts etc.

 relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

PYTHON LIBRARIES FOR DATA SCIENCE

https://matplotlib.org/


Seaborn:

 based on matplotlib

 provides high level interface for drawing attractive statistical graphics

 Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

PYTHON LIBRARIES FOR DATA SCIENCE

https://seaborn.pydata.org/


THE ANACONDA INSTALLATION INCLUDES
THESE LIBRARIES BY DEFAULT

https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual

	Introduction to python���dennis trolle & anders nielsen
	Aim of this course
	Learning goals
	What is python?
	Why use python?
	Working with python
	Code samples from spyder
	installation
	Launch spyder when installed
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	understanding �python code��dennis trolle & anders nielsen
	1 slide on Python Code basics
	Slide Number 17
	Basic Data types
	Slide Number 19
	Python data containers �(data structures)
	Slide Number 21
	Python control flow statements
	Example of control flow statements
	Python Functions
	Slide Number 25
	Logical expressions
	Modules and libraries
	Modules, packages and libraries
	Python Libraries for Data Science
	Python Libraries for Data Science
	Python Libraries for Data Science
	Python Libraries for Data Science
	Python Libraries for Data Science
	The anaconda installation includes these libraries by default

