
 

  
 

 

 

 

 

  

 

D8.1 Specification of Security and Privacy Handling  

Document ID: D8.1 

Document version: 1.1 

Document status: Final 

Dissemination level: PU 

Deliverable number: D8.1 

Deliverable title: Specification of security and privacy handling 

WP number: WP8 

Lead beneficiary: University of Agder, Norway 

Main author(s): Nils Ulltveit-Moe, Terje Gjøsæter, László Erdődi, 
Stefan Siegl 

Nature of deliverable: R 

Delivery date from Annex 1: 28/02/2015 

Actual delivery date: (of the revised version) 10/07/2015 

Funding scheme / call: STREP-FP7-ICT-2013-11 

Project / GA number: 619560 

Project full title: Scalable Energy Management Infrastructure for 
Aggregation of Households 

Project start date: 01/03/2014 

Project duration: 36 months 

 

 

 

 

Funded by the 

European Union 

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development 
and demonstration under grant agreement no 619560. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 2 of 78 

 

Executive Summary 

This document contains high-level privacy and security requirements for the SEMIAH home energy 
management system. It does an investigation of state of the art and current research including an 
overview of relevant standards. This includes describing the considerations that are necessary to 
achieve security by design, including secure design patterns and design principles. In a similar way 
it describes the necessary considerations for achieving privacy by design based on the seven 
foundational privacy-by-design principles.  

Section 2 of the document elaborates on methods and tools for security and privacy management 
for SEMIAH, including tests and risk metrics for identifying gaps in security and 
privacy/confidentiality, as well as a discussion on possible safeguards and vulnerability 
management processes that can be used to mitigate the identified gap in security. This includes 
mapping the security measures for smart grids identified by the ENISA smart grid task force into 
appropriate security measures in SEMIAH. Example security measures are how to perform risk 
assessment, information leakage detection and controlling security in the home gateway. 

Section 3 describes how security and privacy can be enhanced for SEMIAH when running in a 
cloud-based environment, including considerations of security handling in message oriented 
middleware, as well as service authentication and authorisation and cryptographic methods for 
securing the Demand/Response protocol. The section also describes how software security can be 
achieved using good practices such as secure design patterns and tools and techniques for 
security testing. 

Section 4 goes into detail on how privacy and security assessment and security monitoring of the 
SEMIAH demonstrators will be performed using techniques such as intrusion detection and 
prevention systems, in order to increase the security awareness in the system, as well as having 
the ability to automatically respond to certain threats. The section also describes how vulnerability 
testing and privacy assessments can be performed as well as discussing how the risk assessment 
needs differ between requirements for the SEMIAH Pilots and potential full scale rollout of the 
SEMIAH Demand/Response system. 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 3 of 78 

Abbreviations 

API Application Programming Interface 

CRE Common Remediation Enumeration 

CVE Common Vulnerabilities and Exposures 

CWE Common Weaknesses Enumeration 

D Deliverable 

DER Distributed Energy Resources 

DOS Denial of Service 

DDOS Distributed Denial of Service 

DOW Description of Work 

DSO Distributed System Operator 

EC European Commission 

ENISA European Union Agency for Network and Information Security 

HEMG Home Energy Management Gateway 

HEMS Home Energy Management System 

IaaS Infrastructure as a Service 

IDS Intrusion Detection System 

IEEE Institute for Electrical and Electronics Engineers 

JSON JavaScript Object Notation 

MAC Media Access Control 

NIST National Institute of Standards and Technology 

PaaS Platform as a Service 

PRECYSE Prevention, protection and Reaction to Cyber attackS to critical InfrastructurEs 

SaaS Software as a Service 

SAML Security Assertion Markup Language 

SCADA Supervisory control and data acquisition 

SIEM Security Information and Event Management 

SQL Standard Query Language 

TSO Transmission System Operator 

URL Uniform Resource Locator 

OGEMA Open Gateway Energy Management 

XML Extensible Markup Language 

XACML Extensible Access Control Markup Language 

VPP Virtual Power Plant 

WP Work Package 

WT Work Task 

 

  

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 4 of 78 

 

Contents  

Abbreviations ........................................................................................................................... 3 

Contents .................................................................................................................................. 4 

List of Figures .......................................................................................................................... 6 

List of Tables ............................................................................................................................ 6 

1 Introduction .............................................................................................................................. 7 

1.1 WP8 Objectives ................................................................................................................ 7 

2 State of the art and current research ........................................................................................ 8 

2.1 Overview of Relevant Standards ....................................................................................... 8 

2.2 Consideration of Security by Design ................................................................................. 9 

2.2.1 Secure Design Patterns ............................................................................................... 9 

2.2.2 Secure Design Principles ............................................................................................. 9 

2.2.3 Use an authentication mechanism that cannot be bypassed or tampered with ........... 11 

2.2.4 Authorise after you authenticate ................................................................................. 12 

2.2.5 Strictly separate data and control instructions, and never process control instructions 
received from untrusted sources ............................................................................................ 12 

2.2.6 Define an approach that ensures all data are explicitly validated ................................ 13 

2.2.7 Use cryptography correctly ......................................................................................... 14 

2.2.8 Identify sensitive data and how they should be handled ............................................. 14 

2.2.9 Always consider the users .......................................................................................... 15 

2.2.10 Understanding how integrating external components changes your attack surface .... 16 

2.2.11 Be flexible when considering future changes to objects and actors ............................ 18 

2.2.12 Protection schemes and policies for SEMIAH (T8.2) .................................................. 20 

2.3 Consideration of Privacy by Design ................................................................................ 20 

3 Methods and Tools for Security and Privacy Management for SEMIAH - ............................... 21 

3.1 Risk assessment/gap analysis, safeguards, vulnerability management .......................... 21 

3.1.1 MAGERIT-based Risk Assessment ............................................................................ 21 

3.2 Tests and Metrics for assessing Security & Privacy......................................................... 23 

3.2.1 Automated tests ......................................................................................................... 23 

3.2.2 Manual tests ............................................................................................................... 23 

3.2.3 Examples of relevant Metrics ..................................................................................... 24 

3.3 Anonymisation, pseudonymisation, encryption to reduce identified privacy leakages...... 24 

3.3.1 XACML policy editor ................................................................................................... 26 

3.3.2 Example use case of Reversible Anonymiser ............................................................. 27 

3.3.3 Example use case: Privacy-enhanced intrusion detection systems. ........................... 29 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 5 of 78 

3.3.4 Other possible use cases for the Reversible Anonymiser in SEMIAH ......................... 29 

3.4 Mapping ENISA proposed security measures for smart grids to SEMIAH ....................... 30 

3.4.1 Taxonomy of threats ................................................................................................... 31 

3.4.2 Risk handling ............................................................................................................. 31 

3.4.3 Appropriate security measures ................................................................................... 32 

3.4.4 Important elements for ensuring information security ................................................. 40 

3.4.5 Controlling privacy, confidentiality and information leakage ........................................ 41 

3.4.6 OGEMA security and privacy ...................................................................................... 42 

4 Enhancing the Security and Privacy Support of SEMIAH (T8.3) ............................................. 43 

4.1 Cloud Computing Environment ....................................................................................... 44 

4.1.1 Cloud Service Models ................................................................................................ 44 

4.1.2 Platform as a Service (PaaS) ..................................................................................... 45 

4.2 MOM Confidentiality Handling ......................................................................................... 46 

4.3 User Preferences ............................................................................................................ 46 

4.3.1 Deployment of Gateway ............................................................................................. 47 

4.4 Authentication and Authorisation ..................................................................................... 47 

4.5 Securing the Demand Response Protocol ...................................................................... 47 

4.6 Software Security and Security Testing ........................................................................... 48 

4.6.1 Secure Design Patterns ............................................................................................. 48 

4.6.2 Security Testing .......................................................................................................... 52 

5 Privacy and Security Assessment and Security Monitoring of Demonstrator - ........................ 60 

5.1 Vulnerability testing and privacy assessment .................................................................. 61 

5.1.1 Vulnerability Test Steps .............................................................................................. 61 

5.2 Risk Assessment needs of the Demonstrator vs Full Deployment of SEMIAH ................ 64 

5.3 Security and Privacy monitoring ...................................................................................... 67 

5.3.1 Intrusion Detection System (IDS) ............................................................................... 67 

6 Summary ............................................................................................................................... 67 

7 References ............................................................................................................................ 67 

8 Change History ...................................................................................................................... 69 

9 Appendix A – Security and Privacy Model (from D3.2) ........................................................... 70 

9.1 Principles and Best Practices in Security ........................................................................ 70 

9.2 Coverage ........................................................................................................................ 72 

10 Appendix B – Threat model (from D3.2) ................................................................................. 72 

10.1 ENISA-based Taxonomy of Threats ................................................................................ 74 

11 Appendix C – MAGERIT Countermeasures Catalogue .......................................................... 74 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 6 of 78 

List of Figures 

Figure 1 Overview of reversible anonymisation of XML documents. ............................................. 25 

Figure 2  XACML policy editor. ...................................................................................................... 26 

Figure 3 Example use case: anonymising private information from user. ...................................... 27 

Figure 4 Privacy-enhanced IDS scenario. ..................................................................................... 28 

Figure 5  Privacy-enhanced intrusion detection system................................................................. 29 

Figure 6  Security measure domains. ............................................................................................ 32 

Figure 7  Verinice risk assessment tool. ........................................................................................ 40 

Figure 8  Example information leakage analysis of IDS alarm using privacy leakage calculator. ... 41 

Figure 9: Infrastructure as a Service. ............................................................................................ 44 

Figure 10: Platform as a Service Python example (Amazon Web Services) .................................. 45 

Figure 11: Demand Response using SEP2. .................................................................................. 48 

Figure 12: Example, to find the security requirements for a logical interface. ................................ 49 

Figure 13:  Extracted parts to model the virtual power plant of SEMIAH. ...................................... 50 

Figure 14:  An example of a system model of a virtual power plant, which will be used to derive 
high-level security requirements from the NIST IR 7628. .............................................................. 50 

Figure 15:  Mapping system model of virtual power plant to logical reference model (NIST). ........ 51 

Figure 16:  Home Energy Management System Architecture. ....................................................... 53 

Figure 17:  OGEMA gateway layers. ............................................................................................. 55 

Figure 18:  Sandcat hacker browser.............................................................................................. 58 

Figure 19: Acunetix web vulnerability scanner. ............................................................................. 60 

Figure 20  Vulnerabilities by type [18]. .......................................................................................... 64 

Figure 21: The changing probability of a successful attack in 20 years perspective. ..................... 66 

Figure 22  Model for best practices in security and privacy for system analysis. ........................... 71 

 

List of Tables 

Table 1 Business Requirements for Security and Privacy. .............................................................. 7 

Table 2: Risk assessment needs. ................................................................................................. 64 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 7 of 78 

 

1 Introduction 
WP8 is transversal to the entire work plan of SEMIAH. This means that security and privacy 
functions should be integrated in all parts: 

- Front-end (OGEMA) 
- Mobile user interface 
- Back-end/aggregator function. 

An objective is to implement methodologies, techniques and tools that make the energy 
management gateway and Demand/Response service resilient against cyber-attacks. Attack and 
fraud attempts should be detected and reported and the SEMIAH infrastructure should be safe, 
secure and respect privacy/confidentiality.  

D8.1 is mainly covered by task T8.1, which aims at defining the smart grid security and privacy 
handling for the Demand/Response service. This includes defining security requirements as well 
as supporting the misuse cases and misuse scenarios defined in D3.1.  It also contains a 
functional specification for the privacy and security management methodology as well as 
supporting tools and techniques that may be built into SEMIAH or support the Demand/Response 
service. This is reflected in the main business requirement for Security and Privacy based on 
Description of Work (DoW), which is presented in Table 1 below. 

This specification is at a relatively high abstraction level. A more practical system architecture, 
focusing on the stakeholders, data and interface to other systems will be covered by D8.2. 

 

Table 1 Business Requirements for Security and Privacy. 

AB
6 

The consortium will integrate security and 
privacy functions to prevent that the system 
cannot be compromised.  

AB6.
1 

The project shall integrate security 
functions to prevent that the 
system cannot be compromised. 

AB6.
2 

The project shall integrate privacy 
functions to prevent that the 
privacy and integrity of the system 
users is not compromised. 

1.1 WP8 Objectives 
The objectives of WP8 is to identify necessary privacy and security requirements to ensure safe 
and secure operation with only leakage of necessary personally identifiable information, for 
example for billing purposes. WP8 aims at implementing privacy and security by design, which 
means that privacy and security requirements are being designed into the technical solution from 
the start. 

Another objective is to define a supporting privacy and security management process for mitigating 
privacy and security risks. Finally, WP8 aims at verifying that the implemented privacy and security 
controls work as expected in the system demonstrator. This means being able to detect and 
mitigate system weaknesses and attacks. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 8 of 78 

2 State of the art and current research  
This section gives an overview of relevant standards, and investigates necessary considerations in 
order to implement Security by Design, including secure design patterns and principles, secure 
authentication, data and control segregation and trust, input data validation and finally correct use 
of cryptography. The Privacy by Design principles are also being discussed, as well as 
identification of sensitive information with a focus on the user’s perspective. We also discuss the 
protection scheme which will be based on existing and improved tools and countermeasures for 
attack detection, risk analysis, vulnerability analysis and privacy enforcement. These will amongst 
others be based on and extend tools, methods and  techniques developed for the PRECYSE FP7 
project for ensuring network security, as well as using other relevant security tools and methods for 
verifying software security. 

 

2.1 Overview of Relevant Standards 
ISO/IEC 27001:2013 describes security techniques for information security management systems. 
It amongst others provides a model for establishing, implementing, operating, monitoring, 
reviewing, maintaining and improving an information security management system. It uses a top-
down, risk-based approach which is technology-neutral. 

ISO/IEC 27002:2013 describes security techniques in the form of a code of practice for information 
security management. It establishes guidelines and general principles for initiating, implementing, 
maintaining, and improving information security management within an organization. The standard 
also provides guidelines for the development of effective security management practices to help 
build inter-organizational activities. 

ISO/IEC ISO27019:2013 describes information security management guidelines based on ISO/IEC 
for process control systems specific to the energy utility industry. This standard is of high 
importance for SEMIAH. 

ISO/IEC ISO15408:2209 describes security techniques in the form of evaluation criteria for IT 
security (Common Criteria). ISO 15408 establishes the general concepts and principles of IT 
security evaluation and specifies the general model of evaluation of security properties of IT 
products. Common Criteria contains important concepts to keep it in mind. 

ISA/IEC-62443 covers industrial network and system security. 

ISA/IEC-62443 is a series of standards, technical reports, and related information that define 
procedures for implementing electronically secure Industrial Automation and Control Systems. 

From the Internet Engineering Task Force (IETF) documentations the following documents are 
relevant: 

RFC 2196: Site Security Handbook 

RFC 2818: HTTP over TLS 

 

There are other recommendations that should be considered for the SEMIAH project. The CERT 
Oracle Coding Standards for Java are very important for writing secure applications for the 
OGEMA gateway [1]. 

The US National Institute of Standards and Technology (NIST) has relevant standards. Since they 
are not European standards, they may be considered only as an extension. The 800 series of NIST 
are of general interest to the computer security community. This series reports on ITL's research, 
guidelines, and outreach efforts in computer security. Of particular interest are: 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 9 of 78 

NIST 800-12 An Introduction to Computer Security NIST 800-14 Generally Accepted Principles and 
Practices for Securing Information Technology Systems NIST 800-26 Security Self-Assessment 
Guide for Information Technology Systems. 

IEC 62443 “Industrial Automation and Control Systems Security” and ISO/IEC TR 27019 
“Information security management guidelines based on ISO/IEC 27002 for process control systems 
specific to the energy utility industry” can also be relevant for SEMIAH. 

The Smart Energy Profile 2.0 (SEP2)1 is also very relevant for the SEMIAH demand/response 
protocol. 

The project will benefit from open source Information Security Management tools from the 
PRECYSE project2, which have been adapted to the freely available Spanish MAGERIT risk 
assessment standard [2], [3], as well as being inspired by for several of the above mentioned 
standards, for example the ISO27000 set of standards. 

2.2 Consideration of Security by Design 
The goal of a security by design is to ensure that the security of the system does not break 
because of design flaws. This can be achieved by designing a system that supports and enforces 
the necessary authentication, authorisation, confidentiality, data integrity, accountability, availability 
and non-repudiation requirements, even when the system is under attack [4]. 

 

2.2.1 Secure Design Patterns 

Security needs to be a part of the development lifecycle, to build a secure system in a systematic 
way. Security requirements are identified during requirements analysis. In order to find security 
requirements we can for example identify abuse cases, do conformance test (e.g. ISO27001) or 
perform a threat modelling. In this section we will focus on guidelines from NIST (NIST IR 7628 
[14]) to derive some security requirements for the SEMIAH backend-system. Those security 
requirements serve as input for the design stage. There exist some recurring problems in software 
design, which are solved by using design patterns. A design pattern in general describes a 
reusable solution to common problems in software design. A secure design pattern in particular is a 
description or template of how to solve a security problem. We want to identify those secure design 
patterns that help us to fulfil our collected security requirements. 

We describe more in detail how secure design patterns will be applied in Section 4.6. 

2.2.2 Secure Design Principles 

 

The IEEE Center for Secure Design published a guide on how to avoid the top ten software 
security design flaws in 2014 [4]. This guide proposes a set of ten general security requirements 
for achieving security by design: 

• Earn or give, but never assume trust; 
• Use an authentication mechanism that cannot be bypassed or tampered with; 
• Authorize after you authenticate; 

                                                
1
 SEP2 protocol: http://www.grid2home.com/iot-technologies/smart-energy-2-0 

2
 Prevention and Reaction to Cyber-attacks to Critical Infrastructures (PRECYSE) http://www.precyse.eu 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 10 of 78 

• Strictly separate data and control instructions, and never process control instructions 
received from untrusted sources; 

• Define an approach that ensures all data are explicitly validated; 
• Use cryptography correctly; 
• Identify sensitive data and how they should be handled; 
• Always consider the users; 
• Understand how integrating external components changes your attack surface; 
• Be flexible when considering future changes to objects and actors; 

This document distinguishes between bugs, which are implementation level software problems, 
and flaws, which is a problem at a deeper level. A flaw is the result of a mistake or oversight at 
design level [4].  

The remaining part of Section 3 is based on the security requirements and good practices for 
avoiding the top ten software design flaws [4], adapted to the business case of SEMIAH. 

Software systems consisting of more than one component rely on the composition and cooperation 
of these components to successfully accomplish their purpose. These designs often depend on the 
correct functioning of the existing parts. They will be inherently insecure if any of these parts are 
run in a potentially hostile environment, for example in a mobile device or in cloud-based services 
in SEMIAH’s case.  

Offloading security functions from server to client exposes those functions to a much less 
trustworthy environment, which is one of the most common causes of security failures predicated 
on misplaced trust. 

Designs that place authorisation, access control enforcement of security policy or embedded 
sensitive data in client software, thinking that it will not be discovered, modified or exposed by 
adversaries are inherently weak. Such design will often lead to compromises. For SEMIAH, this for 
example means that we should not trust pure client side access control decisions, for example 
using hard-coded user name and password in the home energy management gateway. The system 
should rather rely on a centrally managed federative access control system, using existing 
standards. The mobile device should also use a centrally managed access control solution for 
accessing the web server. Also calls into your APIs from business partners (e.g. from the market 
side, DSO or TSO) should be considered client software which requires proper access control 
enforcement. 

When untrusted clients send data to your system or perform a computation on its behalf, the data 
sent must be assumed to be compromised until otherwise proven. Such systems are therefore 
unsuitable for performing security sensitive tasks. In the case of SEMIAH, there will be limits for 
how much we can trust the underlying cloud-based platform. We should therefore be very cautious 
on how computations and data that may be sensitive are being treated in this case. We should also 
aim at building the home gateway secure by design, so that it by default can be trusted by the rest 
of the system.  

An important principle is that all data received from an untrusted client are properly validated 
before processing [4]. 

Common pitfalls we should avoid are [4]: 

- Do not make assumption on ordering of API calls (e.g. in our case make REST calls 
idempotent where possible, to make the code independent of server side state.) 

- Do not assume that the user interface is able to restrict what the user can send to the 
server (i.e., perform boundary control checks, use typed SQL clauses instead of strings 
etc.). 

- Avoid building business logic solely on the client side, or attempting to store a secret in the 
client. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 11 of 78 

- Do not assume that intellectual property sent to the client can be protected using technical 
means. If it still is necessary to do this, then use data protection mechanisms to delay the 
leakage of sensitive material, e.g. obfuscation or anti-debugging.  

If private or confidential information must be stored or sent to the client, the system should be 
designed to be able to cope with potential compromise, i.e. the sensitive information should not be 
revealed. In particular aim at avoiding the following pitfalls: 

- The same shared secret should not be used on all the clients, use different shared secrets. 
- Make the validity of what is stored on the client limited in time, for example using time 

limited cryptography or similar techniques to set an expiration date for data stored in the 
client, watermark intellectual property, and verify that computations that are privacy or 
security sensitive are being performed correctly. 

- Design the system to degrade gracefully if one or a set of clients have been compromised. 
- Make sure all data are properly validated before processing. 
- Consider the context where code will be executed, where data will go and where data 

comes from, in order to avoid vulnerabilities due to trusting components that are not 
trustworthy. 

2.2.3 Use an authentication mechanism that cannot b e bypassed or tampered with 

One goal of a secure design is to prevent an entity (user, service etc.) from gaining access without 
first authenticating. Once authenticated, a securely designed system should prevent that the user 
changes identity without re-authentication [4] . 

Authentication techniques require one or more factors, such as: 

- Something you know (e.g. password) 
- Something you are (e.g. biometrics) 
- Or something you have (e.g. a smartphone, or cryptographic key) 

Multifactor authentication is the technique of require multiple distinct factors to prove your identity. 
Authentication using a cookie on a web browser may be sufficient for some noncritical functions. 
For sensitive functions in SEMIAH, stronger two-factor authentication should be used (for example 
a combination of encryption key and password or SMS one time key + password). An example of 
functions that should require two-factor authentication in SEMIAH are functions for: 

- Managing user account (e.g. reset password) 
- System administration and privileged accounts 
- Managing sensitive data or functions 

The SEMIAH system must consider the strength of the authentication when deciding which 
services the user is authorised for. This applies both for human-computer interaction and 
interaction between computer-based services in SEMIAH. 

Authentication must be mandatory for SEMIAH to avoid risking that an authorised entity gets 
access to systems or services it should not have access to. IP and MAC addressees must not be 
used as substitute for authentication, since these can be spoofed. 

When updating passwords, the user must perform a full re-identification using the required 
authentication procedures (e.g. present existing password and other factors that are required for 
authentication). 

Authentication should result in the creation of a token, capability or ticket representing a user or 
service that is used throughout the session between the authorised parties. These credentials must 
be created so that they are not easy to forge, so that an attacker cannot easily bypass this 
authentication mechanism.  Upon successful authentication, the user may be provided with an 
authentication credential, token or ticket which can be provided back to the system, so that the 
user does not need to be re-authenticated for every request or transaction. The credential, token or 
ticket is confidential information that must be protected against disclosure, which means that 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 12 of 78 

services requiring authentication should be encrypted if these services run over an untrusted 
network.  

The authentication system must impose a time limit for how long an authentication session is valid. 
After this time limit, the entities need to re-authenticate. Re-authentication should also be 
performed after a period of inactivity or prior to critical operations. The re-authentication scheme 
must be designed to be practical and usable, meaning that a frequent re-authentication scheme 
should not be necessary for noncritical services that the user frequently uses.  

SEMIAH must ensure that passwords are stored securely, using existing best practices within 
cryptography. SEMIAH should also reuse existing password management systems where possible, 
instead of building new ones. 

SEMIAH should use a single method, component or system responsible for authenticating users or 
services (e.g. a single-sign-on system), instead of relying on device-local authentication. 

Authentication mechanisms are critical to secure design, and may be susceptible to various forms 
of tampering and may be bypassed if not designed correctly [4]. SEMIAH should therefore use a 
single authentication mechanism that requires two authentication factors for critical services, and at 
least one factor for noncritical services. The authentication credentials must be unforgivable and 
stored so that it cannot easily be reverted if the stored form is stolen. 

2.2.4 Authorise after you authenticate 

Authorisation of the user must be performed after successful authentication. Authorisation depends 
not only on the privileges associated with an authorised user, but also on the context of the 
request. This context may also include the time and location of the request. 

The authorisation system must support that authorised personnel can modify or revoke a user’s 
authorisation, in order to avoid vulnerabilities due to out-of-date authorisations (e.g. when 
employee leaves company). 

Sensitive operations may require (re)authentication in order to perform authorisation. Some 
sensitive operations (e.g. critical system configurations or updates) may also require two (or more) 
people or entities to authorise critical transactions. Such operations will require two-factor 
authentication, to ensure that one user cannot impose as both users. SEMIAH should aim at using 
a common infrastructure for performing authorisation checks. 

2.2.5 Strictly separate data and control instructio ns, and never process control 
instructions received from untrusted sources 

Mixing data and control instructions in a single entity, especially a string, can lead to injection 
vulnerabilities [4]. This means that the lack of separation between data and code can lead to 
untrusted data controlling the execution flow of a software system. Examples of such vulnerabilities 
that happen at low level are memory corruption vulnerabilities, e.g. pointer handling in C causing 
buffer overflow vulnerabilities. At higher level, co-mingling of control and data often occurs when 
interpreting domain-specific languages. For example SQL query injection, cross-site JavaScript 
injection and shell command injection.  

SEMIAH should consider control-flow integrity and segregation of control and potentially untrusted 
data as a design goal. This can be done by avoiding to expose methods or endpoints that consume 
strings which embed both control and data. Prefer instead to expose methods or endpoints that 
consume structured types that impose strict segregation between data and control information. 
When using existing APIs, avoid using APIs that mingle data and control information in their 
parameters. For example, use a typed SQL interface passing typed SQL parameters instead of 
merging SQL using concatenated strings based on potentially untrusted data. If data separation is 
not possible, then try to encapsulate injection prone interface through a higher level interface that 
enforces strict segregation between control statements and potentially untrusted data. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 13 of 78 

Designs that rely on the ability to transform data into code should take special care to validate the 
data as fully as possible, and to contain the set of computations that can be performed using data 
as an input language. Specific concerns are for example the eval function, query languages and 
exposed reflection. Code generation is for example safer than using reflection for serialising/de-
serialising objects. 

 

2.2.6 Define an approach that ensures all data are explicitly validated 

Software systems and components commonly make assumptions about data they operate on. It is 
important to explicitly make sure that such assumptions hold. Vulnerabilities frequently arise from 
implicit assumptions about data which can be exploited if an attacker subverts and invalidates 
these assumptions. 

SEMIAH should aim at ensuring that comprehensive data validation takes placed, and that all 
assumptions about data have been validated when they are used. This should be done in a way 
that makes it feasible for WP8 to verify using code reviews. This means designing or using 
centralised validation mechanisms to ensure that all data entering the SEMIAH system are 
appropriately validated. 

Elements that should be considered are: 

- Web applications should use a request filter and interceptor to intercept all incoming 
requests and apply basic input validation to all request parameters.  

- Communication protocols should validate all fields of all received messages before any 
processing takes place. 

- XML parsers should validate the input document. 
- Transform data into a canonical form before performing syntactic and semantic validation, if 

possible. This ensures that validation cannot be bypassed by supplying input in a different 
encoding.  

- Use common libraries for validating primitives (URLs, email addresses etc.). 
- Validation should be based on a whitelisting rather than a blacklisting approach. 
- If the protocol is state-based, make sure the input validation is state-aware. 
- Explicitly revalidate assumptions of nearby code that relies on them, for example, 

SEMIAH’s business logic should explicitly restate and check as preconditions all 
assumptions that it relies on. Liberal use of precondition checks (e.g. assertion clauses) in 
the entry points of software modules and components is highly recommended. This also 
allows for local reasoning about the correctness of a component, since assumptions are 
explicitly checked and stated. 

- Use implementation-language-level types to capture assumptions about data validity, for 
example validate that date and time strings are well-formed etc. 

Failure to address this security design principle can cause the following problems: 

- Injection vulnerabilities if untrusted data are used without validation; 
- File path traversal vulnerabilities, unless path components (path separators) are validated; 
- Externally controlled string within a web document can cause cross-site-scripting 

vulnerabilities; 
- Attempting to validate data not in its canonical form can cause input validation to fail; 
- Lack of input validation for non-type-safe languages like C can cause memory corruption 

vulnerabilities; 
- Accepting input from untrusted sources without an upper data size bound can cause 

resource exhaustion; 
- Invalidated data are potentially more harmful if they can influence control flow. 
- These vulnerabilities may cause state transitions that the programmer did not intend. 

State-dependent input validation goes a long way in reducing the risk of these vulnerabilities. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 14 of 78 

 

2.2.7 Use cryptography correctly 

Cryptography is one of the most important tools for building secure systems [4].| Proper use of 
cryptography can ensure privacy and confidentiality of data, protection from unauthorised 
modification (integrity protection) and for authenticating the source of data. However, getting 
cryptography right is hard. Some common pitfalls that SEMIAH should avoid, if possible, are: 

- Avoid making your own cryptographic algorithms or implementations. Use instead standard 
algorithms and libraries. 

- Avoid misuse of libraries and algorithms. There may for example be specific security 
requirements for an encryption scheme – it may for example protect the confidentiality of 
data, but not against malicious modifications. There may also be security requirements for 
how an initialisation vector should be chosen. 

- Avoid poor key management, for example using hard-coded keys in embedded devices and 
application software, failure to allow key revocation and/or rotation, avoid using weak 
cryptographic keys (too short or predictable) and weak key distribution mechanisms. 

- Avoid using poor pseudo random number generators, since cryptographic operations 
assume that random numbers have strong properties. Avoid re-using the random numbers. 

- Failure to centralise cryptography, for example where different teams implement their own 
cryptographic routines. Try instead to get it right once, and reuse it everywhere. 

- Failure to allow for adaptation and evolution of cryptographic algorithms. Make the design 
instead future-proof by supporting upgrading cryptographic algorithms and tool versions. 

Cryptography is hard to get right. Always work with an expert, or have peer-review by experts on 
chosen solutions. Crypto experts should provide an API abstraction around a strong cryptographic 
library, so that developers are not making decisions on algorithms and cipher modes, and also so 
that algorithms can be changed if necessary. 

 

2.2.8 Identify sensitive data and how they should b e handled 

One of the first tasks that should be done during design of SEMIAH is to identify sensitive data and 
determine how to protect it appropriately. Data sensitivity may depend on many factors, including 
regulatory requirements, company policies of SEMIAH partners, contractual obligations and user 
expectations. Sensitive data may be data from users, sensors, cryptographic material and 
personally identifiable information. Creating a policy that explicitly identifies different levels of 
classification should be done as a first step. 

Regulatory requirements include requirements on data protection from relevant smart-grid 
standards and also general legal requirements like the EU data protection directive and 
communication directive  [5], [6]. 

Different data may require different data protection measures. For some data, confidentiality is 
critical. For SEMIAH this may for example be market sensitive information or personally identifiable 
information. For other data, availability will be critical, for example the required data to ensure that 
the backend aggregation algorithm can operate or data required to maintain grid stability. There will 
also be data where data integrity is most important, for example for communication between the 
SEMIAH backend and frontend, in order to ensure that commands and responses cannot easily be 
forged, spoofed or manipulated. 

Technical controls that can be applied to sensitive data include access control mechanisms 
(including file protection, memory protection and database protection mechanisms), cryptography 
(e.g. the Reversible anonymiser provided by UIA) to protect data confidentiality or integrity and 
redundancy and backups to preserver data availability. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 15 of 78 

SEMIAH needs to identify trust boundaries for data in transit and protect these boundaries with 
appropriate data protection policies. There will for example be trust enclaves in SEMIAH for major 
functional blocks like the frontend, backend and web server. 

Policy requirements and data sensitivity can change over time, which means that a privacy and 
security management process is needed to revisit and revise the data protection policies and their 
design implementations. 

 

2.2.9 Always consider the users 

The SEMIAH demand response system will interact with different types of users and stakeholders, 
ranging from technicians, system administrators, house owners, DSO and TSO managers and 
energy traders. The security stance of SEMIAH is linked to what the users do with it. It is therefore 
important that all security related mechanisms are designed in a way that makes them easy the 
deploy, configure, use and securely update. Security, just like privacy, is not a feature that can be 
easily bolted on to a software system. It is rather a property emerging from how SEMIAH has been 
built and operated. 

SEMIAH needs to consider how the physical abilities, cultural biases, habits and idiosyncrasies of 
the intended users influence its overall security. Some users may for example discover capabilities 
outside the intentions of the system design. Some of these capabilities may have significant 
security implications. Usability and user experience considerations are important factors for 
ensuring that the software operates in a safe and secure manner. The systems should be designed 
with easy to use interfaces with sufficient, but not excessive functionality. Using appropriate 
security controls is crucial. 

SEMIAH should neither assume that the intended user is interested in security nor that the user is 
well meaning. The design should facilitate secure configuration and use by authorised parties and 
prevent or mitigate abuse by adversaries aiming at weakening or compromising the system. 

Failing to address this design principle can lead to: 

- Privilege escalation from failure to implement an authorisation model which is sufficiently 
tied to the authenticated user. It can also happen if higher-privileged functions (e.g. 
root/sysadmin) are not being protected by the authorisation model and where assumptions 
about inaccessibility are incorrect. 

- Failure of appropriate authorisation can allow a breach of authorisation and isolation 
between users, such that one can access others data. 

- Inadvertent disclosure by the user may happen if the authorisation model is difficult to 
understand. 

- Configurations that by default are open (e.g. a default PERMIT firewall policy), e.g. on 
system configuration or first run assume that the user understands the implications of this. 
It is better to have a reasonable level of security even during initial configuration. 

- If the security configuration is difficult or non-intuitive, then it will be difficult to configure the 
product to conform to the required security policy. 

- The system should consider the disk that authenticated and properly authorised users also 
can be attackers, essentially giving authorised users opportunities to misuse the system. 
SEMIAH can for example mitigate this by monitoring and logging system critical operations 
that authorised users may do, in order to detect attacks by insiders. 

- The security of SEMIAH must be reasonable for the intended set of users. If the security 
makes the system too hard to use, then this could cause a risk for the business case of 
SEMIAH, since users may give up using it. This could also cause a risk that the system 
would not be configured properly, if the security functions are not manageable for the 
system administrators or technicians installing or managing the system.  

- Application programmers interfaces must be sufficiently intuitive to use that the intended 
API can be understood and used correctly. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 16 of 78 

- Also consider the risk of collateral damage that can occur from software or data that is 
being included into the SEMIAH system. For example the risk of identifying privacy 
sensitive data on device usage. 

- Make sure a user’s data is considered during setup, use and revocation/termination, both to 
ensure that data is not gathered/stored against the users’ wishes, or that SEMIAH holds on 
to data that should have been removed completely after the user stopped using the service 
and closed the account. It should for example be easy for the user to destroy private data 
when the user decides to stop the service. The user should be in control of his/her own 
data. 

- SEMIAH should consider principles such as universal design, to avoid excluding classes of 
users from using the software or making the software too difficult to use effectively. Security 
functions should be usable also for users with different capabilities.  

In other words: always consider the users and any other stakeholders in the design and evaluation 
of systems. Ensure that SEMIAH has a reasonable compromise between privacy, usability and 
security for home users and other stakeholders that will use SEMIAH. Security relevant decisions 
should only be taken by relevant, authorised stakeholders. Furthermore, it should also be an 
objective that the most common usage scenarios are made secure, using the secure by default 
principle. If users should be allowed to change any of these security settings, then it should be 
easy for them to find this option.  

The security design must consider the risk of user fatigue, i.e. that the user clicks OK every time an 
application needs a specific permission, and try to design a system that avoids user fatigue while 
still providing an acceptable level of security and privacy to the user. 

The objective should be to design SEMIAH as a system that is both secure and usable, a system 
that will be adopted on a wide scale and that is compatible with the values of users and other 
people impacted by them. 

 

2.2.10 Understanding how integrating external compo nents changes your attack 
surface 

SEMAH will be based on several existing pieces of software. One such example, is the open 
source energy management gateway software OGEMA, however SEMIAH will probably be based 
on integrating many existing software systems, libraries, databases etc. Different parts of the 
SEMIAH system may also be produced by different development teams within the consortium.  

It is important to make sure that the software components being integrated into SEMIAH have 
been tried and tested to verify that they stand up to the security requirements of SEMIAH, since the 
system will inherit the security weaknesses, limitations, maintenance responsibility and threat 
model of software or libraries we are including. This may cause a security gap which somehow 
must be solved, mitigated or accounted for before the system can be deployed. 

It is amongst others important to consider the following factors [4]: 

- How does each external component change the threat model of the entire system? 
- Does it add to the attack surface? 
- Does it modify entry points in the system that already has been considered in its own threat 

model? 
- Were new features, capabilities or interfaces added, even though you are not using them? 

Can these features be disabled? 
- Does the external component also include other external components with their own 

security weaknesses? 
- Is the external component obtained from a known, trustworthy source? 
- Does the external component provide security documentation that helps you better 

understand its threat model and the security implications of its configuration? 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 17 of 78 

We should assume that incoming external components are not trustworthy until appropriate 
security controls have been applied, in order to align the component’s attack surface and security 
policy with the ones that meet the requirements of SEMIAH. Examples of potential security issues 
with third-party components include: 

- Using a library with known vulnerabilities identified in the Common Weakness Enumeration 
(CWE) or Common Vulnerabilities and Exposures (CVE) databases by Mitre; 

- Including a library with extra features that entails security risks;  
- Reusing a library that no longer meets current software security standards; 
- Using a third-party service and hoping thereby to pass responsibility of security onto that 

service (in SEMIAH this is in particular relevant for cloud-based services); 
- Configuration mistakes in the security of a library, e.g. using insecure defaults; 
- Libraries making outbound requests to the maker’s site or some partners of theirs; 
- Libraries making inbound requests from some external source; 
- A single external component including other components, causing multiple levels of 

inclusion using recursion (may apply to several Maven based libraries); 
- Including pieces of functionality that offer unknown interfaces into the system, for example 

a command line interface for configuration of an included service, a panel or admin mode 
for a web component, hardcoded credentials for an authentication/authorisation module, 
debugging interface or backdoor or similar. 

At a minimum, consider the following security requirements: 

- Isolate external components as much as your required functionality permits; 
o Use e.g. containers, sandboxes and drop privileges before entering uncontrolled 

mode; 
- When possible, configure external components to enable only the functionality that is 

needed; 
- If functionality that is not needed is included, consider how this changes the security 

posture (attack surface, risks, threats etc.) and therefore increases the security that must 
be implemented to counter the change; 

- If it is not possible to configure the security properties according to the security 
requirements of SEMIAH, attempt to find another library or document that we are willing to 
accept the given risk; 

- Validate the integrity and provenance of external components using cryptographically 
trusted hashes and signature, code signing artefacts and verification of the downloaded 
source. If no integrity mechanism is available, consider maintaining a local mirror of the 
library’s source;  

- Understand the risk of dynamically including components such as JavaScript from external 
sources. If the external host is compromised, you may be including attacker-controllet 
JavaScript; 

- Follow sources that track of publish security related information regarding the external 
components being used, e.g. bug repositories, security focused mailing lists, CVE 
databases etc.; 

- Make sure that the WP8 security team is aware of all external components used, so that 
these can be included in the threat intelligence collection effort; 

- Maintain an up-to-date inventory of consumed external components and verify that it 
matches the versions included in SEMIAH, as well as that those are the latest know-secure 
versions available for each external component; 

- Maintain a healthy distrust of external components: 
o Whenever possible, authenticate the data flow between you system and external 

components; 
o Consider all data coming from an external component to be tainted, unless proven 

valid (see section on data validation); 
o Be sure to understand and verify the default configuration of the external 

component. For example, when including a crypto library, understand what values 
are used by default, understand entropy sources, algorithms and key lengths; 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 18 of 78 

o When using a component like a web server, understand its defaults concerning 
admin modes, ports it will be listening to and assumptions concerning how it 
interfaces with the operating system and with your own software; 

- Document security relevant changes, for example: 
o Why a default is changed; 
o How external components are selected and the verification of it; 
o Security relevant assumptions made about it; 

- This makes it easier to integrate new versions of the component or when considering 
alternative modules. 

- When changing build defaults of external components, configuration options for deployment 
or source code, automate the procedure using the version control system or a patch file, 
then include the automated procedure in your build process, i.e: 

o Bring in the pristine component; 
o Apply your modifications; 
o Apply the self-tests of included tools, if applicable, to verify its configuration; 
o Use it for your build; 

- This helps to maintain consistency between builds. It also makes it easier to know when 
your modifications need adjustments due to a version change in the external component. 

- Design for flexibility. Sometimes an external component becomes too risky, or development 
is abandoned, or functionality is surpassed by another external component. In those cases, 
design the system so that external components easily can be replaced. 

 

2.2.11 Be flexible when considering future changes to objects and actors 

Software security must be designed for change, rather than being fragile, brittle and static [4]. The 
objective of SEMIAH is to fulfil a set of functional and security requirements, as set out in D3.2 and 
D8.1. However, the SEMIAH software and its running environment with related threats and attacks 
will change over time. This means that a security management process is needed, which considers 
the security implications of future changes and threats to the components. 

Change management will amongst others need to consider configuration changes, enabling or 
disabling features and perhaps also dynamic loading of objects. This means that different 
variations of states will need to be tested to maintain the security posture of SEMIAH. There will 
also be changes at deployment when access control, permissions and other security related 
activities and decisions need to take place. SEMIAH will furthermore require continuous integration 
of energy management gateways and possibly other services, which creates a requirement for 
security flexibility.  

The security management process also needs to handle the security erosion which occurs 
because threats change over time and system changes and new features may introduce new 
threats and vulnerabilities. Efficient system and configuration management is very important for 
SEMIAH, since it will need to be able to scale to potentially millions of home energy management 
gateways. This means that secure design must keep flexibility in mind. The following subsections 
elaborate on what this means. 

2.2.11.1 Design for secure updates 

It is easier to upgrade small pieces of a system than huge blocks. Smaller updates also ensure that 
the security implications of the update is better understood and controlled. The integrity and 
provenance of upgraded packages should also be verified. Make use of code signing and signed 
manifests to ensure that the system only considers patches and updates of trusted origin. Finally 
consider the maintenance burden on administrative personnel. As complexity increases, there is an 
increasing likelihood of making mistakes. This can in many cases be controlled by automating the 
installation process, in order to reduce the risk of human error. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 19 of 78 

2.2.11.2 Design for security properties changing ov er time 

Security properties may change over time, for example when code is updated. SEMIAH needs to 
be designed with this in mind, so that the system easily can be adapted to handle new threats, 
vulnerabilities or design changes, for example replacing one security related component (e.g. 
authentication) with another. 

2.2.11.3 Design with the ability to isolate or togg le functionality 

It should be possible to turn off or contain compromised parts of the system, or to turn on 
performance-affecting mitigations, should the need arise (e.g. during a Denial of Service attack or 
flashcrowd). Not every identified vulnerability can be readily mitigated within a safe time period, 
and mission critical systems like SEMIAH cannot be taken offline until their vulnerabilities are 
addressed. 

2.2.11.4 Design for changes to objects intended to be kept secret 

Secrets, such as encryption keys and passwords may get compromised. Keeping secrets safe is a 
hard problem, and one should be prepared to have secrets replaced at any time and at all levels of 
the system. This includes several aspects: 

- A secure way for users to change their own passwords, including disallowing the change 
until all required old authentication factors have been successfully presented by the user. 

- Consider having a password recovery mechanism for forgetful users, where the user can 
reset their password after verification via a parallel mechanism (email, SMS or similar). 
Avoid providing the password in cleartext. 

- Provide a secure and efficient way to replace digital certificates, SSH keys and other keys 
or authentication material that systems use. These events must be logged, without 
compromising the secrets involved. The logging mechanism should be secure and 
forensically verifiable (for example using external log servers and checksums). 

- Make sure that key changes do not affect data at rest, for example data on an encrypted file 
system or database. There must be a way to upgrade the encryption key without losing 
access to the data. 

 

2.2.11.5 Design for changes in the security propert ies of components beyond 
your control 

Cryptographic ciphers may need to be changed, because of weaknesses, flaws, technology 
improvements or security vulnerabilities. External components security properties or related 
characteristics may also change over time, for example if a library being used is no longer being 
actively maintained or when its licence changes, forcing users to abandon it. In these cases it is 
important to design for agility – the capability to change layers and algorithms as needed in the 
system. One good example is Java’s possibility to change crypto providers and Apache’s 
negotiation of acceptable ciphers.  Good design allows for intermediate layers of abstraction 
between code and imported external APIs so that developers can change components providing 
necessary functionality without changing much of the code. 

 

2.2.11.6 Design for changes to entitlements 

SEMIAH must have a way to revoke access to users or roles when a user no longer has access to 
them. Verifying this revocation mechanism should be a necessary part of the auditing procedures 
that are part of SEMIAHs security management process, in order to confirm that changes in access 
rights are being propagated properly, as well as verifying that the access control procedures do not 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 20 of 78 

risk that the organisation shoots itself in the foot by removing all access to a necessary user or 
role, essentially losing control over parts or all of the system. 

 

We should also avoid storing sensitive information in cleartext in the gateway.  

 

2.2.12 Protection schemes and policies for SEMIAH ( T8.2) 

This covers built-in Security and Privacy, defence-in-depth, protection schemes, privacy policies 
and access control policies for SEMIAH components. See also security model (appendix).  

 

2.3 Consideration of Privacy by Design 
 

SEMIAH aims at implementing Privacy by Design, which means adhering to the seven 
foundational privacy by design principles [7]. The objectives of privacy by design is ensuring 
privacy and gaining personal control over one’s information. Privacy by design may also give a 
competitive advantage for SEMIAH by providing better management of users’ private or 
confidential information than other market actors. 

The European Parliament already stated that Europe needs a uniform and strong data protection 
law. The fundamental principles and the architecture of a new data protection reform proposal got 
positive feedback from several Committee. According to the planned new EU privacy directive 
privacy by design will be mandatory. [16] 

 

The seven foundational privacy by design principles are [7]: 

1. Proactive, not reactive; Preventative not remedial. SEMIAH should aim at utilising proactive 
measures for protecting private or confidential information, where the design anticipates 
and prevents privacy-invasive events before they happen. 

2. Privacy as the default setting. SEMIAH should aim at protecting users’ personal data by 
default. This means that if the user does nothing, then their privacy remains intact. 

3. Privacy embedded into design. SEMIAH aims at embedding privacy into the design and 
architecture of the Demand Response system. It will not be bolted on as an add-on after 
the fact. This means that privacy becomes an essential component of the core functionality 
being delivered. Privacy will be integral to SEMIAH, without diminishing functionality. 

4. Full functionality – positive sum, not zero sum. Privacy by design aims at accommodating 
all legitimate interests and objectives in a positive sum – using a “win-win” approach. This 
means that privacy is not being traded off against security, but rather that privacy and 
security functionalities complement and enhance each other. This is not only a theoretical 
statement. We expect that there for example will be direct synergy between functionality 
required to protect confidentiality and privacy, for example in the case of secure logging 
systems providing forensics capabilities of who did what for sensitive system operations. 
The same base technologies can be used for protecting the users’ private data [8]. This is 
also apparent by comparing the previous section on security by design, which has several 
partly overlapping objectives with privacy by design, for example on how to ensure data 
confidentiality, strong authentication and keeping the user at the centre of focus. 

5. End-to-end security – full lifecycle protection. Privacy by design should apply from private 
or confidential data is being created and until it can be securely destroyed in a timely 
fashion. SEMIAH may need to utilise several cryptographic techniques in order to achieve 
this, including end-to-end link encryption, encryption of sensitive data at rest as well as 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 21 of 78 

methods for secure destroying of such sensitive data, for example by invalidating keys. This 
ensures that also all backup copies of such data are being invalidated. It furthermore 
means that strong, centrally managed access control mechanisms should be used, in order 
to ensure that sensitive data can be destroyed at end of subscription. 

6. Visibility and transparency – keep It open. This ensures that all stakeholders can be 
assured that SEMIAH is operating according to the stated promises and objectives, subject 
to independent verification. Its components and operations remain visible and transparent 
to users and providers. 

7. Respect for user privacy – keep it user-centric. This means that SEMIAH should keep the 
interests of the individual uppermost by offering such measures as strong privacy defaults, 
appropriate notice and empowering user-friendly options. 

3 Methods and Tools for Security and Privacy Manage ment for 
SEMIAH - 

3.1 Risk assessment/gap analysis, safeguards, vulne rability 
management  

 

In ISO31031, risk assessment is said to consist of:  

• Risk identification – finding, recognising and recording risks. 

• Risk analysis – understanding the risk. 

• Risk evaluation – determine the significance of the level and type of risk. 

Risk assessment for SEMIAH will primarily be based on MAGERIT version 3.0, as described in the 
following. This is a freely available standard which has been adapted to use in critical 
infrastructures in the PRECYSE FP7 project. 

3.1.1 MAGERIT-based Risk Assessment 

MAGERIT is a methodology developed by the Spanish Council for Electronic Administration. It 
consists of two main parts; risk analysis, and risk management. 

Risk analysis helps to identify risks before they can have a negative impact on the organisation. 
Main elements to be analysed are:  

• Assets that give value to the organisation. 

• Threats that can cause damage to the assets and therefore also to the organisation. 

• Safeguards or countermeasures they can be deployed to mitigate the threats and minimise 
damage to assets. 

Based on this, impact (severity of the risk or damage potential) and risk (expected annual impact) 
can be estimated. 

Risk management concerns establishing a thorough defence in order to prepare for emergencies, 
survive incidents and keep the organisation operational. 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 22 of 78 

3.1.1.1 Assets 

Important assets to take into account include: 

• Data 

• Services 

• Computer applications 

• Computer equipment 

• Data storage 

• Auxiliary equipment 

• Communication networks 

• Facilities that house the equipment 

• People that operate the elements above 

 

It is important to note that assets are not independent entities but has dependencies that mean that 
if an asset is affected by a risk, its dependent assets as well as assets that depend on it may also 
be affected. To simplify the dependencies, groups of assets may be structured into layers where 
higher layers depend on the lower ones. 

• Layer 1: The environment. including equipment, power, communication lines, personnel, 
buildings. 

• Layer 2: The information system. Including hardware, applications, communications, 
information media. 

• Layer 3: Information. Data and meta-data. 

• Layer 4: The essential functions of the organisation. Objectives, goods and services 
produced. 

• Layer 5: Other assets: credibility, knowledge, privacy and confidentiality. 

 

Important dimensions to an asset are: availability, authenticity, confidentiality, integrity, 
accountability. What damage would be caused if these attributes are affected by a threat? 

Based on an understanding of an asset and the importance of its dimensions, it is possible to 
estimate its value by determining the total cost of an incident that destroys the asset. Note that 
assets lower in a dependency tree can accumulate the value of assets that depends on them. 
Valuation can be done qualitatively or quantitatively, and although requiring a great effort, a 
quantitative approach has many advantages. If the value is expressed monetarily, it is possible to 
analyse e.g. investments in safeguards and insurance. 

3.1.1.2 Threats 

Threats may come in many different forms, ranging from natural disasters, industrial accidents, or 
intentional attacks. 

Threats that may affect and cause damage to each type of asset are to be identified and valuated. 
It is important to determine which dimensions of an asset are affected, and in particular the 
valuation depends on two factors: the degradation to the asset, and the frequency of the threat. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 23 of 78 

3.1.1.3 Impact 

Accumulated impact is calculated for an asset taking into account the accumulated value of the 
asset, and the threats that it is exposed to and degradation caused, for each evaluation dimension. 

3.1.1.4 Risk 

Risk is a measurement of probable damage to the system, given the impact of the threats to the 
assets. Accumulated risk is calculated by taking into account the accumulated impact on an asset 
from a threat, and the frequency of the threats. The accumulated risk is calculated for each asset, 
threat and dimension. 

3.1.1.5 Safeguards and Countermeasures 

The impacts and risks are calculated without safeguards and countermeasures in place, thereby 
calculating the impacts and risks to the unprotected assets. Safeguards and countermeasures are 
procedures and mechanisms that reduce the risk. They may be proactive (reducing the frequency 
of the threat, preventing it from damaging the asset) or retroactive, reducing the impact of the 
threat and degradation of the asset. 

Appendix C presents the complete set of safeguards and countermeasures described by 
MAGERIT V3 Book II, in English translation from the original Spanish. 

With perfect safeguards and countermeasures, there will be no more impact or risk. However, it is 
usually not possible to implement 100% effective safeguards and countermeasures. With 
safeguards and countermeasures in place, residual impact and residual risk can be calculated. 
Residual impact takes into account the reduced degradation based on safeguards in place. 
Residual risk is based on residual impact and the reduced frequency of occurrence. 

 

3.1.1.6 Risk Management 

When impacts and risks are calculated, risk management include analysing the impacts and risks 
and the identification of appropriate safeguards and countermeasures as well as setting up 
appropriate policies, standards and procedures to ensure that each threat has a suitable response. 

 

3.2 Tests and Metrics for assessing Security & Priv acy 
In addition to risk analysis, there are several tests and metrics that are relevant for assessing the 
Security and Privacy of the SEMIAH system.  

3.2.1 Automated tests 

Automated tests can be expressed in the XML-based Open Vulnerability Assessment Language 
(OVAL) [9]. OVAL provides an approach for determining if a vulnerability, software application, 
patch or configuration exists in a given system, and reporting the results of an assessment. There 
exist libraries of OVAL tests for different platforms that can be used as a basis for selecting an 
appropriate set for a given system. We can when necessary create customised OVAL tests for 
checking vulnerabilities of our own software components in SEMIAH. 

3.2.2 Manual tests 

The XML-based Open Checklist Interactive Language (OCIL) [10] can express compliance checks 
that require manual user interaction. It has tool support for presenting the questionnaire to the user, 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 24 of 78 

receiving the responses and reporting the results. A questionnaire of relevant compliance tests will 
be developed for SEMIAH and used as part of the security and privacy evaluation for the system. 

3.2.3 Examples of relevant Metrics 

Important metrics for evaluating resilience include measures of availability and reliability. Mean 
Time to Failure (MTTF) and Mean Time to Repair (MTTR) are obvious candidates. 

The Entropy-based Privacy Leakage Metric estimates leakage of sensitive information in IDS 
alarms [11]. 

 

3.3 Anonymisation, pseudonymisation, encryption to reduce identified 
privacy leakages 

The Reversible anonymiser for XML documents is a tool that supports anonymisation of XML 
documents and messages using an eXtensible Access Control Markup Language (XACML) 
anonymisation and authorisation policy [12]. This is is one of the core technologies that will be 
used for enhancing privacy, enforcing confidentiality and supporting access control in SEMIAH. 
The reversible anonymiser is available at http://launchpad.net/reversible. 

The reversible anonymiser supports transport layer security using HTTPS and the XACML policies 
ensure that only authorised users or services can reverse the anonymisation for private or 
confidential information. It furthermore supports multilevel security, meaning that information at 
different security levels or belonging to different stakeholders can be protected by encryption, so 
that only authorised stakeholders can access this information. The anonymiser furthermore 
supports location-based anonymisation or authorisation policies based on the GeoXACML 
framework [13]. The anonymiser currently supports anonymising Intrusion Detection System (IDS) 
alarms in the Intrusion Detection Message Exchange Format, which is an XML format for IDS 
alarms defined by IETF [14].  

Future work that will need to be done in order to use the anonymiser with SEMIAH is: 

- Support anonymisation for other relevant XML protocols that SEMIAH needs. This is 
typically protocols for transporting private or confidential information. 

- Add support for anonymising JSON messages may be necessary. 

Support for anonymising JSON messages can be implemented by adding support for defining 
anonymisation rules in JsonPath instead of XPath which currently is being used. In addition, some 
minor adaptations are needed, to generalise the handling of where the specification on how to 
reverse anonymisation will be inserted.  

The reversible anonymiser will be used for implementing privacy-enhanced intrusion detection 
services, in order to detect attacks on the SEMIAH infrastructure. It may also be used to 
anonymise private or confidential information from the OGEMA front-end being stored in the back-
end cloud as well as for implementing other necessary services, for example secure logging. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 25 of 78 

 

Figure 1 Overview of reversible anonymisation of XML documents. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 26 of 78 

3.3.1 XACML policy editor 

 

 

Figure 2  XACML policy editor. 

The XACML policy editor ViSPE is a related project which has defined an easy to use policy editor 
for XACML authorisation and anonymisation policies [15]. The policy editor is implemented using 
the Pharo Smalltalk engine and is based on the programming language Scratch 
(http://scratch.mit.edu). The policy editor provides graphical policy language that is easy to use for 
policymakers, and removes much of the complexity in managing the complex XML-based XACML 
policies. This policy editor will be used by SEMIAH to manage privacy and authorisation policies in 
XACML. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 27 of 78 

3.3.2 Example use case of Reversible Anonymiser 

 

 

Figure 3 Example use case: anonymising private information from user. 

 

Figure 3 shows an example use case of the reversible anonymiser. It is here assumed that the 
home gateway may produce some information that may be sensitive, for example usage patterns 
of electrical devices. This information may be both sensitive from a security perspective (usage 
patterns can for example be used for planning burglary of the home) and sensitive from a privacy 
perspective (giving private information about how electrical devices are being used). It is assumed 
that the home gateway can use secure services for sending this information to the cloud-based 
services, which are being controlled by an Enterprise Service Bus (ESB) or Message Oriented 
Middleware (MOM) which allows anonymisation and deanonymisation proxies to be connected 
when services that can contain private or confidential information are being used.  

The anonymiser can then anonymise the given services, and store the sensitive information inside 
the messages, so that only authorised personnel later can undo this anonymisation by providing 
access to a private key that gives access to the given information sensitive information. This allows 
the user to get access to his/her own private information via the mobile user interface, for example 
information about service usage, billing information etc., at the same time as sensitive part of  this 
information can be restricted for other parties. This means that service providers can get 
sufficiently detailed information to run the services, but not details at the level which violates 
privacy. The privacy policies may furthermore support that system administrators or others can 
investigate the detailed information, for example for debugging or troubleshooting, but such access 
to private or confidential information would be required to be logged, in order to provide 
transparency on access to private or confidential information. The log server would need to support 
secure logging, so that the log data cannot easily be manipulated or tampered with by the service 
provider, in order to provide transparency on access to sensitive data. 

The mobile user interface would in a similar way support privacy enhanced operation, so that 
sensitive information, for example user preferences, could be protected so that only the user and 
services which need the given information can access it. 

Cloud-based services

Back-endAnonymiser

Web
server Deanonymiser

ESB
Smart
meter

Water
boiler

Underfloor
heating

Heat
pump

Solar
panels

Auxiliary services:

Alarm

Internet and
pay TV

Secure
connection

Home gateway

User interface:
- Mobile app
- Control, configure,
- Add/remove etc.



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 28 of 78 

 

Figure 4 Privacy-enhanced IDS scenario. 

Figure 4 illustrates how privacy-enhanced Security Information and Event Management systems 
(SIEM) can be implemented. IDS alarms from a set of IDS sensors can when necessary be sent 
through the anonymiser proxy, which anonymises the alarms according to an XACML privacy 
policy. A privacy impact assessment can be used for defining the privacy policy deciding which 
alarms from which IDS sensors that need to be anonymised. The anonymised alarms can if 
necessary be sent through an alarm correlation system, which may be trusted to do data mining of 
some of the anonymised parameters. The alarm correlation system can do this using its secret key. 
Alarms triggered by the alarm correlation system can subsequently be anonymised when 
necessary, and stored anonymised in an alert database, as well as presented to the security 
operator via a Security Incident and Event Mangement (SIEM) system running in the Security 
Operations Centre (SOC). The security analyst or other authorised stakeholders (e.g. a CERT 
team) may use their respective private keys for on-demand deanonymisation of information they 
are authorised to see in the IDS alarms. Figure 5 shows how IDS alarms in IDMEF format appear 
in the SIEM tool (Prelude-IDS), after being anonymised by the reversible anonymiser. Future work 
that needs to be implemented is adding support for on-demand deanonymisation of IDS alarms 
together with secure logging of such events in order to provide transparency on access to sensitive 
information. This can for example be implemented by storing the IDS alarms in an XML database 
and adding a query interface for retrieving and deanonymising these alarms and subsequently 
presenting them in the SIEM interface. There are also some other improvements that need to be 
implemented, for example the subscribe part of the publish/subscribe interface, so that the SIEM 
can subscribe to IDS alarms. 

 

Proxy/
anonymiser

Trusted
deanonymiserIDSIDS

IDS

Higher order
IDS

(correlation)

Proxy/
anonymiser

SIEM tool
(SOC)

Trusted higher order IDS

Alert
database

Deanony-
miser



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 29 of 78 

3.3.3 Example use case: Privacy-enhanced intrusion detection systems. 

 

 

Figure 5  Privacy-enhanced intrusion detection system. 

 

3.3.4 Other possible use cases for the Reversible A nonymiser in SEMIAH 

The Reversible Anonymiser may also be useful for other purposes in SEMIAH. One example is 
implementing secure configuration and policy management. Such functionality could utilise key 
shares in the anonymiser to implement separation of duties constraints where several stakeholders 
must agree to deploy a critical system configuration. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 30 of 78 

Another example is implementing a trustworthy policy administration point for XACML policies 
where a service would be able to deploy anonymised privacy and security policies, so that only 
authorised stakeholders or services can deanonymise and instantiate policies they have access to. 
This approach would keep sensitive parts of the authorisation policies secret, tamper-resistant and 
unreadable by any non-authorised stakeholder, at the same time as it would allow for parallelising 
the authorisation process by being able to run a distributed set of XACML authorisation engines. 

It is also possible to cryptographically bind a system configuration to a workflow, so that only tested 
and approved system configurations can be deployed on the running system. This reduces the risk 
that faulty or malicious system configurations destabilises the Demand/Response system.  

Another use case is to use the Reversible Anonymiser as a building block for implementing secure 
logging services. This can if necessary be combined with time-based data expiry, so that stored 
cryptographic data after a given time period becomes worthless by invalidating the encryption key 
[8]. A secure logging service is useful for SEMIAH for several reasons: 

- Protect private or confidential information in the system logs; 
- Support non-repudiation of actions and transactions in the system log. This means that a 

stakeholder cannot deny having accessed certain private or confidential information, since 
the system logs provides transparency on who did what; 

- Provide forensics-grade logging services that cannot easily be manipulated. An insider 
wanting to manipulate the logs will not be able to get access and will not know which part of 
the log to modify. 

The Reversible Anonymiser can also be used as a building block to implement a privacy-enhanced 
XML database. 

 

3.4 Mapping ENISA proposed security measures for sm art grids to 
SEMIAH 

The ENISA smart grid task force has delivered a proposal for a list of security measures for smart 
grids [16]. This document provides European smart grid asset owners with a catalogue of 45 
available security measures grouped in 11 domains, which might help them in improving the level 
of cyber-security in their installations. Data privacy is considered out of scope of this document, 
although the document stresses that smart grids should both operate securely and respect users’ 
privacy. 

The objectives of this activity are: 

- Aligning the varying levels of security and resilience of the asset owners with a consistent 
minimum framework; 

- Providing an indication of a minimum level of security and resilience in the Member States 
with regards to the smart grids, thereby avoiding the creation of the “weakest link”; 

- Ensuring a minimum level of harmonisation on security and resilience requirements for 
smart grids across Member States, and thus reducing compliance and operational costs; 
and 

- Setting the basis for a minimum auditable framework of controls across Europe. 

The asset owners should then perform a risk assessment in order to define appropriate security 
measures from this catalogue. A risk assessment should be performed throughout the life cycle of 
a smart grid infrastructure, in particular during requirements definition, procurement, control 
definition and configuration, system operations and end of system lifetime. 

After the risk assessment, the asset owner should take reasoned decisions on which elements of 
the catalogue that are appropriate. This will depend on the impact on assets from materialised 
threats, their vulnerabilities and the threat exposure. The document furthermore maps between 
security measures (security controls), assets and threats. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 31 of 78 

The WP8 team has gone through the security controls in this document and proposed how 
SEMIAH can implement the proposed general security measures. This does not include the 
elements of secure software design, which has been covered earlier in this document. 

 

3.4.1 Taxonomy of threats 

ENISA has proposed a taxonomy of threats for smart grid services, which includes: 

- Natural disaster (fire, flood, thunder, environmental disaster, etc.). 
- Damage, loss of IT assets (damage by 3rd party, test corruption, loss of information integrity, 

loss or destruction of devices, media, documents, media, information leakage) 
- Outages (loss of Internet, network, support services, energy, lack of resources, personnel, 

strike). 
- Nefarious activity, abuse/cyber-attacks (ID theft, spam, DoS, malicious code/activity, social 

engineering, abuse information leakage, rogue certificates, HW/SW manipulation, 
manipulate information, misuse of audit tools, falsification of records, misuse of information, 
information systems, unauthorised: access, administration, software installation, software 
use, compromising confidential information, abuse authorisations hoax, badware, remote 
activity, targeted attacks). 

- Deliberate physical attacks (bomb attack/threat, sabotage, vandalism, theft, information 
leakage, sharing, and unauthorised physical access). 

- Unintentional damage (Erroneous: information sharing/leakage, use or administration of 
systems/devices, use of unreliable information, unintentional alteration of data, inadequate 
design, planning/adaptation). 

- Failures/malfunction (Device/system failures, disruption of communication links, power 
supply failure, service provider failure, malfunction). 

- Eavesdropping, interception, hijacking (wardriving, intercepting information, man in the 
middle session hijacking, repudiation of actions, reconnaissance/information gathering, 
replaying messages). 

- Legal (Unauthorised use of copyrighted material, failure to meet contractual obligations, 
violations of laws). 

3.4.2 Risk handling 

Risks should be detected, and when detected, one of three risk mitigation strategies must be 
chosen: 

- Risk reduction (preventative) 

- Risk mitigation (after the fact) or 

- Risk acceptance 

Risk detection, in order to identify the risk can be done using sensors and tools like the OpenVAS 
vulnerability scanner, but also network management systems (e.g. OpenNMS or Nagios) as well as 
using intrusion detection systems. 

Risk reduction (preventative) means reducing the impact and/or expected frequency of risks before 
they occur. Methods for risk reduction include adding safeguards or countermeasures against the 
risk, such as: redundancy, ensuring geographical diversity, active response against 
attacks/intrusion prevention, contingency planning, emergency plan, exercises, insurance, 
condition-based maintenance, testing/fuzzing to detect software flaws, software code inspection 
etc. 

Risk mitigation (after the fact) includes restore the system using a working backup or virtual 
machine snapshots, perform attack containment for example by reconfiguring firewalls to isolate 
the attacked system or taking affected systems offline for forensics investigation. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 32 of 78 

Risk acceptance means that if the risk is considered tolerable, then one might decide to live with 
the risk without doing any risk mitigation. 

3.4.3 Appropriate security measures 

ENISA proposes security a set of security domains, which are appropriate security measures for 
smart grid installations. The next subsections go though each security domain and proposes how 
SEMIAH can implement technical security controls for these.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Security measure domains. 

 

3.4.3.1 Domain 1: Security governance & risk manage ment 

Security governance and risk management consists of the following elements: 

Information security policy 
 
This involves writing and maintaining a high-level written policy 
 
Organisation of information security 
 
This includes managing security roles and responsibilities. Technical enforcement can be 
authentication mechanisms (e.g. the Security Assertion Markup Language (SAML) or OpenID) and 
authorisation mechanisms (e.g. XACML). The Reversible Anonymiser might be a useful 
component here [8], as a policy enforcement point. 
 
Information security procedures 
 

Security governance & risk management 

Management of third parties 

Secure lifecycle process 

Personnel security, awareness & training 

Incident response & information sharing 

Audit and accountability 

Continuity of operations 

Physical security 

Information systems security 

Network security 

Resilient & design of critical infrastructure 

Security measures 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 33 of 78 

These are procedures (manual or automated) that support the information security policy. For 
example: XACML privacy policies or authorisation policies, firewall rules, IDS rules, configuration 
management system configuration, written procedures etc. 
 
Risk management framework 
 
The risk management framework manages assets, vulnerabilities, threats and threat frequency and 
risk. It will be integrates with vulnerability assessment systems and asset scanning systems. 
Aggregated risks must be supported, for example using an attack tree or attack graph based 
approach. 
 
It must support existing security management standards, for example the ISO27000 set of security 
management standards, the German BSI Grundschütz or the open Spanish standard MAGERIT. 
Verinice (http://www.verinice.org) is an open source risk assessment framework that supports most 
of these features. The PRECYSE project has created a MAGERIT catalogue of countermeasures 
that could be used as a baseline. This catalogue is free as opposed to the ISO27000 and BSI 
Grundschütz catalogues for Verinice. 
 
Verinice can be integrated with the open source vulnerability scanning tool OpenVAS 
(http://www.openvas.org), so that the results of vulnerability scans can be imported into the risk 
assessment tool. OpenVAS can furthermore be integrated with vulnerability tests written in the 
Open Vulnerability Assessment Language (OVAL). This allows for performing passive vulnerability 
tests on hosts instead of using active vulnerability tests, explicitly testing for vulnerabilities. The 
latter may be problematic to perform on a critical infrastructure in operation. However nonintrusive 
OVAL tests can also be performed on systems in operation. 
 
Risk assessment should be performed at regular inte rvals 
 
This includes performing vulnerability scanning, then reassessing identified risks and other risks 
using a risk management tool to detect the gap in security. 
 
Risk treatment plan 
 
The risk treatment plan explains how to mitigate the identified risk. It can either be written 
manually, or be generated automatically for commonly occurring risks. Automatic management can 
for example be done based on reports in the Common Remediation Enumeration (CRE) format. 
Risk mitigation techniques are also often conveyed in vulnerability reports from the Common 
Vulnerabilities and Exposures (CVE) database. The risk can be considered as mitigated when a 
suitable security control has been activated to counteract the risk, so that any residual risk is 
considered acceptable. 

3.4.3.2 Domain 2: Management of third parties 

Third party agreements are needed 
 
They should ensure that availability, integrity and confidentiality is preserved. The agreement 
should furthermore be incentive compatible, if possible, meaning that the third party does not 
benefit from cheating or doing its duties poorly. 
 
Monitor compliance of contractual obligations 
 
Using key performance indicators and clear acceptance criteria. Monitoring techniques can for 
example be auditing using interactive tests in the Open Checklist Initiative Language (OCIL). 
Technical means should be implemented in order to make the third party operation auditable, for 
example using secure logging services which guarantee non-repudiation, so that the third party 
cannot deny having done a certain operation. The secure logging scheme should also ensure 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 34 of 78 

transparency, so that SEMIAH systems can verify that the operation is being performed according 
to the contract. In other words, trust, but verify. 
 
The Reversible Anonymiser (http://launchpad.net/reversible) could be a useful building block for 
implementing secure logging services. 

3.4.3.3 Domain 3: Secure lifecycle process 

Perform security requirements analysis and specific ation 
 
The security requirements analysis ends up in a requirements specification document (e.g. D3.2 
and this document). 
 
Create an inventory of smart grid components/system s 
 
The risk assessment system Verinice will be used for managing an inventory of assets. OpenVAS 
can be integrated with the passive realtime asset detection system (PRADS), in order to populate 
or perform consistency checks on the catalogue of IP assets in the risk assessment framework. 
OpenVAS can furthermore be integrated with Verinice. 
 
Secure configuration management 
 
This involves ensuring secure deployment of system configurations, for example using digitally 
signed system configurations. The integrity of deployed system configurations can if necessary be 
verified using tools supporting file integrity checks (for example OSSEC, http://www.ossec.net). 
 
Multi party authorisation based on key shares can be used to implement separation of duties 
constraints, for example to ensure that more than one stakeholder must agree to deploy a given 
configuration, or to enforce that a standard workflow has been followed where configurations have 
been verified in testing before they are being deployed. Secure configuration management also 
includes the possibility to roll back to the last known good configuration. 
 
RFC 6241 NetConf could be a possible candidate standard for handling configuration management 
in SEMIAH. The Reversible Anonymiser could also be useful for enforcing multi party authorisation 
and configuration deployments (in particular deployment of privacy/authorisation policies). 
 
Secure documentation of configurations  
 
The documentation of system configurations should be considered sensitive information that can 
be abused if it falls in the wrong hands. Such information should therefore be handled as 
confidential information, for example by enforcing access control on who can read this information, 
secure logging of who have read the information as well as secure archiving when the information 
is at rest. 
 
The Reversible Anonymiser can be used as building block for implementing secure documentation 
of configurations. 
 
Maintenance of smart-grid components 
 
The configuration management system should enforce installation of only digitally signed software, 
firmware, patches and configurations. 
 
Disposal of smart-grid components/systems 
 
Ensure that procedures exist for wiping or destroying components that may contain sensitive 
information, to avoid information leakage when equipment is being decommissioned. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 35 of 78 

 
Change management 
 
Ensure that only authorised and tested configuration changes can be deployed. This can for 
example be done by using a cryptographically enforced workflow for deploying configuration 
changes. There must be a possibility to roll back to the last known good configuration. 
 
Security testing of smart grid components/systems  
 
This can be used using vulnerability scanning tools like OpenVAS and OVAL tests, as described 
earlier. 

3.4.3.4 Personnel security, awareness and training 

Personnel screening 
 
The HR department needs to perform background checks and security vetting of personnel that 
may have access to private or confidential information and also personnel that are allowed to make 
any changes to the system. This must be reflected in the security levels that a user can access. 
 
The Reversible Anonymiser can be used as a tool for enforcing access to information at different 
security levels. 
 
Personnel changes 
 
There must be routines and technical systems that can create, modify or revoke user accounts 
(only personal accounts are allowed). 
 
SEMIAH can use of existing federative access control systems here, for example Shibboleth 
(http://shibboleth.net) or OpenID (http://openid.net). These are scalable federated identify solutions 
that amongst others supports authentication and authorisation of users. 
 
Security training and certification 
 
It is important to establish and maintain security awareness in the organisation. This means that a 
training programme, exercises etc. are needed. 

3.4.3.5 Domain 5: Incident response & information k nowledge sharing 

It is important that the organisation has incident response capabilities 
 
For example a 24x7 managed security service detecting attacks This includes having intrusion 
detection and prevention systems installed. Attack response procedures and digital forensics 
capabilities are also needed. SEMIAH can make use of several existing technologies for this, for 
example Snort (http://www.snort.org) or Suricata (http://www.suricata-ids.org) for network-based 
intrusion detection, Prelude-IDS (http://www.prelude-ids.org) or similar for implementing a Security 
Incident and Event Management System (SIEM). There will probably need to be a separate 
intrusion detection system for OGEMA in order to detect attacks and abuse of the home energy 
management gateway. This will probably be a new software module, unless it can be installed as 
an operating system service below OGEMA. This can also be used for detecting system faults. 
 
Routines are required in order to quickly fix a problem and restore services to normal operation. 
Efficient backup routines and/or virtual machine snapshots can be used to restore core services 
quickly after an attack. 
 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 36 of 78 

Private or confidential information can be protected by utilising the Reversible Anonymiser. There 
will probably also need to be a centralised alarm correlation system, in order to reason on and 
reduce the total number of alarms. Prelude-IDS is one tool that can be used as a building block for 
this. 
 
Vulnerability assessments 
 
Software vulnerabilities in existing software modules can be detected using vulnerability scanning 
tools like OpenVAS together with OVAL tests. Vulnerabilities in own software can be detected using 
software code inspections and fuzzing test tools (e.g. fuzzdb) that tries to impose random, but 
plausible input within given bounds to a given software module, in order to detect crashes or 
abnormalities due to poor input validation. 
 
Vulnerability treatment 
 
This includes configuration management and patching routines, as has been discussed earlier. 
Information on how to detect and mitigate vulnerabilities should be shared with peer organisations 
and security organisations if possible: 

- For example by registering CVE vulnerabilities in the Mitre database; 
- Informing national Computer Emergency Response Teams about attacks; 
- Exchanging threat information with peer organisations using the Structured Threat 

Information eXchange (STIX) and Trusted Automated Exchange of Indicator Information 
protocols may also be considered. 

3.4.3.6 Domain 6: Audit and accountability 

SEMIAH should include the following mechanisms in order to ensure auditability and 
accountability: 

Auditing capabilities 
 
A central component for ensuring auditability and accountability is using a secure logging scheme. 
This means using techniques like remote logging as well as storing the logs in a tamper resistant 
manner, so that only authorised stakeholders can access log information on a needs basis. The 
SEMIAH tools will need to implement logging operations at appropriate points in the source code, 
in order to log when sensitive operations are being performed. These points will need to be 
identified during system design.  
 
Monitoring of smart grid information systems  
 
In addition to logging critical operations in own source code, several other tools and techniques 
can be used by SEMIAH. For example: 

- Intrusion detection systems for logging attacks and security policy violations; 
- Network monitoring (e.g. OpenNMS) for monitoring service operation; 
- Integrity checking tools for monitoring file access (e.g. OSSEC). 

 
Protection of audit information  
 
The secure logging system should also support nonrepudiation, so that access to sensitive 
commands or information cannot be denied, in order to provide transparency. It may need to 
implement a time-based encryption scheme, where data automatically is invalidated after a given 
time period, for example to support data retention mechanisms, or to comply to data protection 
requirements. This ensures that sensitive material in backup copies cannot be accessed after the 
legal data retention period has expired. This can be done using key expiry time cryptographically 
bound to the encryption key. The time expiring encryption key is derived from a master key using 
key derivation function [17], [18]. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 37 of 78 

 
Encryption is a key technology for keeping confidential audit log information secure. The 
Reversible Anonymiser can be used as a building block for implementing secure logging services 
and similar services, like privacy-enhanced IDS operation. 

3.4.3.7 Domain 7: Continuity of operations 

Continuity of operations entails the following: 

Maintain essential functions after disruption 
 
Detect disruption using network management tools (e.g. OpenNMS), alternatively using intrusion 
detection systems or information provided by the users. Then restore operation according to 
defined and tested procedures as fast as possible, for example using backup media or virtual 
machine snapshots for cloud-based services.  
 
If operation is being disrupted due to a Denial of Service attack or lack of resources, then one way 
to mitigate the attack might be to scale up the service, assuming that critical parts are implemented 
using a cloud provider platform that allows for elastic scalability according to need (i.e. using 
Platform as a Service). 
 
Compliance tests can be used to verify that the service continuity procedures work as expected. 
OCIL tests can be used to implement such procedures. Guidance is needed to be able to 
understand what have happened, how to prevent it in the future and how to restore 
 
Emergency communication services 
 
Verify that emergency procedures and communication services work. OCIL tests can be used to 
check compliance for this. 

3.4.3.8 Domain 8: Physical security 

Important factors of physical security are: 

Maintain physical security 
 
OCIL compliance tests can be used for verifying procedures. 
 
Log and monitor physical access 
 
Physical alarms could be configured to send alarms to the IDS, so that the 24x7 operations centre 
could detect and handle such alarms. Privacy-enhanced operation should be preferred, for 
example based on the Reversible Anonymiser. 
Physical protection of remote equipment 
 
For example trigger an IDS alarm if smart grid equipment is being opened or tampered with. 

3.4.3.9 Domain 9: Information systems security 

Information systems security is a broad area that amongst others covers: 

Policy for classification/disclosure of sensitive/s ecret information 
 
The XACML privacy policy for the Reversible Anonymiser can be used for this. 
 
Data security 
 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 38 of 78 

Data at rest can be protected using disk encryption, database encryption or the Reversible 
Anonymiser. Data in transit can be protected using HTTPS/TLS or a VPN solution. Data integrity 
can be protected by using digital signatures, or checksums for less critical data. Tools like OSSEC 
can be used to verify file integrity. Data availability can be ensured using backup or redundant 
storage media, database servers etc. 
 
Account management 
 
Single sign-on and directory services/LDAP can be implemented using for example Shibboleth or 
OpenID. Logical access control should support two factor authentication and XACML authorisation. 
 
Secure remote access 
 
Using virtual private networks (VPN) e.g. IPsec. 
 
Information security  
 

- SEMIAH back-end: 
o Cloud-based systems can run heavy information security tools, for example IDS 

tools (Suricata/Snort), SIEM tools (e.g. Prelude-IDS), host-based IDS (e.g. OSSEC), 
anti-virus (e.g. ClamAV), anti-spam (e.g. SpamAssassin). 

- SEMIAH front-end: 
o The OGEMA front-end also needs protection, but less heavy solutions are needed, 

due to limited resources. For example a tailor-made host-based IDS solution based 
on log analysis. A network based light weight IDS with regex matching capability 
would also be useful  

o Firewall functionality can if needed also be built in to the front-end, since the 
underlying Linux operating system supports this. 

�  
- Media handling; 

o Secure procedures are needed for access, storage, distribution and destruction of 
storage media. Sensitive data must be protected during the entire lifecycle. 

o This can be done using techniques like the Reversible Anonymiser, encryption or 
similar. 

3.4.3.10 Domain 10: Network security 

Requirements for achieving network security: 

Functional and secure network segregation 
 
The Domain/Enclave model can be used for segregating the network, where the Domain protects 
the network and the Enclave is the network being protected. This is the model used for network 
segregation in the PRECYSE project. Concerted firewall rules define the allowed traffic within an 
enclave, and denying everything else by default. IDS whitelist which monitors allowed traffic may 
be considered. Traffic that is not allowed will then cause IDS alarms. This should only be 
implemented in the case where the allowed information that crosses the IDS is very well defined, 
otherwise this may affect manageability. 
  
Secure network communications 
 
Encrypted links (e.g. HTTPS/TLS/IPsec) should be used where needed. Trust between services 
can be achieved by using digital certificates and requiring authentication by these certificates 
during link setup. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 39 of 78 

3.4.3.11  Domain 11: Resilient and robust design of  critical infrastructure 

Minimum threat exposure 
 
This may be achieved using IDS whitelisting considering the possible solutions, restrictive firewall 
rules only allowing traffic that is explicitly permitted, vulnerability scanning tools (OpenVAS and 
OVAL) to detect known vulnerabilities, patching and upgrading with subsequent testing to remove 
vulnerabilities. 
 
Resiliency 
 
Resiliency can be achieved using tested crisis procedures, redundancy, graceful degradation 
during fault or attack and quick recovery after a crisis. 
 
Safe continuity after interruption of services 
 
To ensure safe continuity after interruption of services, several issues have to be considered. The 
geographical location of components should be considered, ensuring that “all eggs are not in the 
same basket”. Ensure that the service is resumed in a sensible state after interruption, or if it needs 
to be restored from a virtual machine snapshot or backup. Also ensure graceful degradation, for 
example so that the service still can be managed and kept working if part of the grid or 
communication networks fall out. Avoid that the critical parts of the infrastructure has hard 
dependencies to (i.e., it cannot function without) less critical parts. 

3.4.3.12 Survey of security control mapping 

Based on the smart-grid security measures defined in the ENISA proposed security measures for 
smart grids, we have proposed an initial mapping from security domains to technical security 
controls, as shown in the table below. 

 

 Security domain Technical security controls 

1 Security governance & risk management Reversible, Verinice, OpenVAS, CRE 

2 Management of third parties Reversible, OCIL 

3 Secure lifecycle process Reversible, IDS/SIEM, OCIL, OVAL 

4 Personnel security, awareness and 
training 

Reversible, Shibboleth/OpenID 

5 Incident response and information 
exchange 

Reversible, IDS/SIEM, OpenVAS, OVAL, fuzzdb, 
CVE 

6 Audit and accountability Reversible, IDS/SIEM, OpenNMS, crypto 

7 Continuation of operation Reversible, IDS/SIEM, OpenNMS, OCIL, cloud 
services 

8 Physical security Reversible, IDS/SIEM, OCIL 

9 Information security Reversible, IDS/SIEM, OpenVAS, 
Shibboleth/OpenID, OVAL, crypto, VPN, Anti-virus, 
spamfilter, PRECYSE tools 

10 Network security Reversible, IDS/SIEM, crypto, firewall, PRECYSE 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 40 of 78 

tools 

11 Resilient and robust Reversible, IDS/SIEM, OpenVAS, firewall, 
PRECYSE tools, OVAL, cloud services 

 

 

3.4.4 Important elements for ensuring information s ecurity 

 

 

Figure 7  Verinice risk assessment tool. 

SEMIAH needs a risk assessment tool and methodology. This need is also described in section 4 
of D6.1, where both product and project risks must be considered in a risk management plan.  

 Our plan is to use the open source risk assessment tool Verinice (http://www.verinice.org/). This is 
a risk assessment tool that supports an attack tree based method for evaluating an overall 
aggregated risk for a given asset. It supports several security management standards, amongst 
others the ISO27000 set of standards, the German BSI Grundschütz standard. Support for both of 
these standards must be purchased, however the tool also supports the freely available Spanish 
standard MAGERIT. This catalogue of countermeasures is available as open source from the 
PRECYSE project. SEMIAH can use and adapt this catalogue according to the ENISA security 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 41 of 78 

measures for smart grid. Verinice can be used both for handling product product and project risks. 
Security and privacy risks will be a subset of these general risks. The risk management plan 
should include the risks on low voltage stability that are identified in Table 3 of D7.1, so that these 
risks are mapped down to regression test cases on grid constraints and similar, ensuring that the 
SEMIAH scheduler does not aggrevate stability problems in the grid, for example by shifting load 
too quickly.. 

Verinice supports an asset inventory, which allows for estimating the expected impact of 
materialised threats in order to calculate the risk. It also supports keeping record of identified 
vulnerabilities of assets, and can import vulnerability scan reports from the open source 
vulnerability testing tool OpenVAS (http://www.openvas.org). This allows for integrating 
vulnerability testing of SEMIAH with the risk analysis framework. 

OpenVAS can also be used for identifying Internet Protocol (IP) based assets, by interfacing it with 
other tools, such as the passive realtime asset detection system (PRADS). This allows for 
providing an initial population of the asset directory in Verinice, if necessary, and it allows for 
consistency checking, in order to identify new assets, assets or services that should not be 
enabled etc. 

3.4.5 Controlling privacy, confidentiality and info rmation leakage 

 

Figure 8  Example information leakage analysis of IDS alarm using privacy leakage 
calculator. 

Data privacy controls are not being covered by the security controls proposed in the ENISA 
security measures for smart grids [16]. SEMIAH will therefore use the PhD work of Nils Ulltveit-

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 42 of 78 

Moe as a methodology for controlling privacy leakage [19]. This methodology uses entropy-based 
privacy leakage risk metrics for: 

- Information leakage detection; 
- Privacy policy verification; 
- Privacy risk gap analysis. 

An example of a privacy leakage analysis for a Snort IDS rule (SID 1:1437 Windows Multimedia 
Download) is shown in Figure 7. The privacy leakage calculator initially performs a clustering into 
different attack vectors, and then plots the privacy leakage as the entropy standard deviation for 
each identified attack vector. This approach is tailored for detecting leakage in intrusion detection 
systems, but will also work for general anonymisation policy compliance verification. The 
Reversible Anonymiser is used as the main privacy enforcement mechanism in this methodology. 
The privacy leakage metrics can then be used to verify that a privacy policy is working as 
expected. 

These entropy-based metrics may also be used in SEMIAH for detecting certain types of attacks, 
most notably Denial of Service attacks and perhaps also for detecting pre-boot attacks on the 
home energy management gateway and cloud-based servers. This shows that the privacy leakage 
metrics also may be useful from a security perspective, illustrating the “win-win” approach that 
Privacy by Design should aim at achieving. 

 

3.4.6 OGEMA security and privacy 

The OGEMA framework allows assigning permissions to users accessing the system via the 
graphical user interface, applications running on the gateway and to users that send external 
requests to the framework’s own REST interface. These permissions can be pre-configured or 
assigned/modified during runtime via the administrator web interface. 

Access to applications’ web interfaces is performed via a browser and is https-encrypted. The login 
is performed with username/password. After a successful login, a user can access the user pages 
of those applications that he has been granted access to. When a user can access the GUI of an 
application, all further operations initiated via the GUI should be considered as being performed 
with the respective application’s rights (see below). This implies that only administrative users may 
be granted access to the framework administration applications. Access to web-interfaces provided 
by applications is also performed with the permission to access the applications’ GUIs. An 
alternative way to remote-access the gateway is the REST interface defined in OGEMA. This 
interface allows read, write and structure-modification access to the current state of the system 
(the resource graph) as well as read-access historical data. Communication of the REST 
messages is performed via https; authentication is via username and password. The access 
permission can be configured via a set of rules consisting of allow/deny on either data models or 
specific data nodes, as well as a set of operations that are allowed or denied: reading, writing, 
creating/deleting, adding sub-nodes and activation/de-activation (the latter is an OGEMA 
mechanism for making nodes visible to the applications and hiding them from them, respectively). 

The REST interface can be used by applications not running on the gateway themselves, such as 
smartphone applications, or for remote m2m access to the gateway. A special role is played by 
Javascript-applications that are contained in an application installed on the gateway but run inside 
the browser of the end-device that the user uses to connect. Such applications can use a one-time 
combination of a username and a password that is embedded into the html code delivered by the 
browser and grants data access permissions equal to that of the application. The one-time 
username/password expires with the user’s session. 

Applications running on the gateway can have the same data access permissions as users 
accessing the gateway via the REST interface (see above). Additionally, the applications can be 
granted any of the defined Java and OSGi permissions, such as access to the hard drive or access 
to other OSGi services (usually, applications should be granted neither of these two example 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 43 of 78 

permissions, since they are not needed for normal operation and potentially harmful). The check of 
these permissions is done via the normal Java and OSGi mechanisms, respectively. Applications 
must define their maximum set of permissions in a permissions.perm file that is contained in every 
application. Additional constraints may be set during installation or during run-time of the 
application – the resulting effective set of permissions is the intersection of these two sets. For 
applications that automatically start with the first gateway start-up, a static configuration file allows 
to set their initial permissions. In the scope of the SEMIAH project, all applications can be assumed 
to be pre-installed. So the static configuration of their permissions will be the way to go. 

For normal operation mode, there may be no need to access the gateway from outside the 
building’s local network. All relevant information exchange between the gateway and the back-end 
can be initiated by the gateway. For the user’s access to the gateway, it is not clear if a remote 
access is required or if the user can be constrained to be connected to the local network for access 
to the gateway (implying the user has to be at home). An additional layer of security might be 
achieved by configuring the local router or Wifi access point such that external access requests to 
the gateway are denied. 

Future work:  

Authentication seems to be only local user/password. This is an area that may need improvement, 
since SEMIAH should have centrally managed access control ideally supporting multifactor 
authentication. For user interfaced based on cloud-based services, then existing multifactor 
authentication solutions of the cloud provider can be utilised. 

UIA plans to implement a host-based intrusion detection system for OGEMA which can be used to 
detect abnormalities and attacks on the home energy management gateway or Demand/Response 
service. This system will be based on log file analysis from OGEMAs system logs, and will 
probably run as an OSGi process. This IDS module can probably be utilised also for other 
purposes, for example as a burglar alarm or fire alarm by monitoring smart plugs and perhaps in 
the future also custom sensors. This may be used to create auxiliary services around the 
Demand/Response service, which may improve the business case. 

4 Enhancing the Security and Privacy Support of SEM IAH 
(T8.3) 

 

This section does a high-level description of how the security and privacy of SEMIAH can be 
enhanced. It first analyses different cloud-based service models for implementing a virtual power 
plant for SEMIAH. The objective would be that SEMIAH in post project exploitation could be 
industrialised as a Software as a Service virtual power plant environment. This would allow for 
dynamically scaling up or down the service according to need in order to improve scalability and 
resilience as well as reducing costs compared to running such services in-house. We therefore aim 
at designing security and privacy features compatible with cloud-based best practices where 
possible. 

The section also discusses handling of confidential information in the message oriented 
middleware that will be utilised by SEMIAH, and also handling of private or confidential information 
in user preferences. Furthermore, authentication and authorisation models are being analysed, as 
well as a more general analysis on how to secure the Demand/Response protocol. 

Software security and security testing is also being discussed, including how secure design 
patterns can help us to secure the architecture of SEMIAH. The section finally contains an 
introduction to the security testing that will be performed in order to detect and report security 
weaknesses in the SEMIAH products to the other relevant workpackages which can mitigate these 
in the implementation. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 44 of 78 

4.1 Cloud Computing Environment 
One of the objectives of SEMIAH is being able to run the virtual power plant as a cloud-based 
service. This has several implications both from a security and privacy perspective which will be 
investigated in this section.  The section discusses SEMIAH from a SAAS, PAAS and IAAS 
perspective, including related to scalability/elasticity authorisation, deployment etc. It also 
discusses which authorisation models that are supported by cloud providers, especially to support 
two-factor authentication. 

The cloud is a metaphor for the Internet (or a part of it). The NIST definition of cloud computing, 
according to NIST SP800-145 is [20]: 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources (e.g. networks, servers, storage, applications and 
services) that can be rapidly provisioned and 
released with minimal management effort or 
service provider interaction.” 

Essential characteristics of cloud-based 
services, is that it is an on-demand self-
service with broad network access, so that 
different thin or thick clients, phones, laptops, 
workstations, servers, etc. can connect to 
these services. Cloud-based services provide 
resource pooling, so that hardware resources 
can be shared using virtual machines and 
dynamically assigned on-demand. Such 
services also provide rapid elasticity, so that 
the service can scale rapidly up or down on 
demand. It is also a measured service, so that you typically can have a “pay-as-you-go” 
subscription, where you only pay for the computing resources that are being utilised. 

4.1.1 Cloud Service Models 

The next three subsections investigate the three basic service models of cloud-based  services: 
Infrastructure as a Service, Platform as a Service and Software as a Service. 

4.1.1.1 Infrastructure as a Service (IaaS) 

Infrastructure as a Service, as shown in Figure 9, is the most basic cloud-based service model. 
This essentially means that you can manage processing, storage, networks as well as run arbitrary 
software (operating systems or applications) on top of the cloud-based infrastructure. 

It is possible to define and control your own virtual infrastructure using IaaS, but you do not control 
the underlying cloud infrastructure (i.e. the Virtual Machine Monitors - VMM). This also has security 
implications for SEMIAH, because it means that the virtual power plant operator only can put 
limited trust in the cloud platform, and will need to protect business sensitive or confidential 
information that is being stored in the cloud. Also, a vulnerability in the VMM provides a threat to 
the entire cloud environment. 

Microsoft Azure is a third large IAAS player, and provides both Windows and Linux based virtual 
servers. It uses authentication based on Active Directory/LDAP. It also now supports OpenID 
authentication and OAuth 2.0 authorisation. 

OpenStack (http://www.openstack.org) is a free and open source cloud computing platform initially 
made to be API compatible with Amazon Web Services. It is being managed by the OpenStack 
foundation, and was started by Rackspace hosting and NASA. Several large companies have 
since joined the foundation, including Ericsson, Oracle, several Linux vendors, VMWare and IBM. 
The objective is to create a standardised IAAS execution environment. 

Figure 9: Infrastructure as a Service. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 45 of 78 

One challenge a Norwegian or Swiss VPP providers 
might experience with cloud services, is that cloud 
providers within EU might not send harddisks containing 
copies of sensitive data to non-EU countries for legal 
reasons. This happened when the Norwegian company 
Geodata sent harddisks to Amazon Web Services 
(AWS) in Ireland in order to copy large amounts of data 
into the servers. AWS subsequently denied sending the 
disks back, because Norway was outside EU [21]. 
Similar scenarios could happen if virtual power plant 
companies need to back up large amount of cloud 
stored data in order to have local copies of them. This 
shows that one must remember that there may be legal 
issues with cloud-based services, as well as 
remembering that there actually is some real hardware 
running in the cloud. It may matter where this hardware 
is running, especially for critical infrastructures like the 
Smartgrid, and it may not be trivial to copy or back up 
large amounts of data via cloud-based services. This is 
not an issue for the SEMIAH demonstrators, but it could 
be a risk to consider when the service grows large. 

A limitation with using IaaS, is that SEMIAH will need to manage the cloud infrastructure itself. 
There is no easy way to scale the virtual services up beyond the capacity of a single underlying 
hardware server. It is possible to add a software layer on top of these virtual services that handle 
redundancy and adds scalability by adding virtual servers, however if this is necessary, then it 
might be better to consider the next service model: Platform as a Service (PaaS), which inherently 
supports such scalability. 

4.1.2 Platform as a Service (PaaS) 

Platform as a Service (PaaS) means that you deploy your own or purchased applications using the 
cloud providers application programming interface (API). Examples of such interfaces are Amazon 
Web Services or Google Appengine. Figure 10 illustrates a hello world example for the Amazon 
Web Services platform using the Python programming language.  

An advantage with PaaS is that the platform does all the heavy lifting of abstracting the cloud 
programming interface from the underlying hardware. The cloud service provider also typically 
provides some guarantees for the basic security of the underlying platform in the form of a service 
level agreement (for example detecting and patching software vulnerabilities, detecting attacks on 
the infrastructure etc.). This means that you program towards virtual cloud resources that are 
elastic and can dynamically scale up or down according to need. This solves much of the technical 
problems on how to deploy systems and how to handle scalability that otherwise must be explicitly 
considered if Infrastructure as a Service is being used. For SEMIAH, PaaS would allow the virtual 
power plant to scale up or down according to need, without having to consider limitations in the 
underlying hardware. Designing the VPP scheduling as a PAAS service could for example be one 
way to ensure that the scheduling scales sufficiently well.  

A potential downside is however the pay-as-you-go model, which may be expensive, depending on 
the business scenario, especially for data-heavy applications sending many messages. 

A drawback with PaaS, is that the platforms are not yet standardised, which means that you 
typically will be locked in to the API of the cloud service provider [22]. This may make it a challenge 
to move the service to another and possibly cheaper cloud provider, which is not desirable for 
SEMIAH. A risk could also be that the PaaS provider went out of business. What do you do then? 
Another challenge with PaaS, is that you then depend on the security model of the cloud provider, 
which may not be sufficient to the needs of SEMIAH. This means that security controls, for 
example encryption, will need to be added on top of the virtual power plant application. This means 

Figure 10: Platform as a Service 
Python example (Amazon Web 
Services) 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 46 of 78 

that the application is responsible for its own security, and must take necessary precautions since it 
runs in an environment that may not be sufficiently trustworthy. It may then be better to use existing 
solutions or software on Infrastructure level which has a proven security track record, provided that 
one is willing to take the additional cost of properly managing the security of the different virtual 
machines. 

Amazon Web Services provides its own message queuing service called Simple Queuing Service 
(SQS). A challenge with this solution is however that it can be quite expensive to run, since it 
charges money per message, and can also be relatively slow. It supports authentication using 
access key ID and request signature, or via an X.509 certificate. It does not support basic security, 
meaning that the messages will need to be encrypted before they are placed in the queue. Users 
of SQS seem to be plagued both by the cost of the service, as well as it being relatively slow, and 
not being able to providing any service guarantees, like for example message ordering. There are 
therefore several guides on the Internet on how to replace SQS using RabbitMQ, which supports 
the AMQP protocol, which both supports basic security as well as being able to give service quality 
guarantees on the messaging service. Furthermore each SQS message is limited to 8k of data, 
which may be a problem. Google App Engine provides a different Task queue interface. 

One advantage with PaaS is that it usually ensures some level of data integrity and data 
persistency, ensuring that data is being backed up several places. Transaction support ensures the 
possibility to roll back to a previous state. This means that SEMIAH may not need to explicitly 
manage backups with a PaaS solution, given that the PaaS provider is considered sufficiently 
trustworthy. It is still possible to back up the entire datastore, if a local backup is desirable. Objects 
in the datastore (an object-oriented nosql database) will however need to be explicitly encrypted 
when confidentiality protection is required. 

Google cloud SQL is a fully managed MySQL service which encrypts user data at rest and 
supports encryption of external connections using SSL. 

SEMIAH will consist of a mix of SEMIAH specific components, proprietary software modules from 
Misurio and Fraunhofer as well as hardware units running OGEMA. This means that SEMIAH will 
not be able to run a pure cloud-based service model. The service model will need to be a hybrid 
between cloud and own managed devices, as well as potentially a hybrid between own cloud 
infrastructure and platform-as-a-service, if we decide to use this. 

 

4.2 MOM Confidentiality Handling 
The SEMIAH Message Oriented Middleware, for example Rabbitmq, supports both link encryption 
using Transport Layer Security (TLS) as well as strong authentication. It must however be noted 
that the MOM itself terminates the TLS links, which means that the MOM can read the messages 
in cleartext. Furthermore, the MOM will run in the cloud, which means that it cannot be trusted to 
handle private or confidential information. 

This means that private or confidential information will need to be encrypted before it is being sent 
to the MOM. One way of doing this, is to utilise the Reversible Anonymiser for anonymising and 
encrypting such sensitive information, given that it is in XML format. The anonymiser does not yet 
support JSON format, however this may be considered added for SEMIAH if necessary. 

 

4.3 User Preferences 
One feature that should support privacy controls is user preferences for SEMIAH. The user should 
be in control of these preferences, and should be able to update them, and delete them if the user 
so wishes. The SEMIAH terms of use should also state what a service provider can do with the 
data, for example whether the service provider can use user preference data or data from the 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 47 of 78 

demand/response service in targeted advertising or third party services or not. It is important that 
the user is in control of data the user owns, and that informed consent is given by the user to 
access data that may be potentially sensitive from a privacy perspective.  

 

4.3.1 Deployment of Gateway 

It is important that the home energy management gateway is easy to deploy, so that a minimum 
amount of hassle is required, but also that the procedure also so that updating is sufficiently 
secure, preferably using autoconfiguration. One way to achieve a reasonable level of security is to 
let the gateway automatically download and install signed and tested software updates from a 
predefined SEMIAH repository, preferably over a mutually authenticated secure link. Pushing out 
new updates should be done gradually, possibly via groups of gateways, to avoid unforeseen 
problems that have not been identified during testing. New updates must furthermore be well 
tested before they are deployed, and should possibly require co-signing by at least two 
stakeholders to reduce the risk of faulty deployments of the software. 

4.4 Authentication and Authorisation 
As mentioned in sections 2.2.3 and 2.2.4, secure authentication and authorisation is essential. 
When possible, two-factor authentication should be used. Passwords must be stored securely. 
Secure password involves the enforcement of strong password selection and also the salting of the 
password hashes. 

An important point is that SEMIAH should use a single method, component or system responsible 
for authenticating and authorising users or services (e.g. a single-sign-on system), instead of 
relying on device-local authentication. As far as possible, existing standards should be used. A 
suitable standard for exchange of authentication and authorisation data that supports single sign-
on is the Security Assertion Markup Language (SAML) [23]. SAML requires TLS for transport layer 
security, and communicates over SOAP 1.1 on the back end. Another standard, which is more 
relevant in a cloud scenario, is OpenID (http://openid.net).  

Both SAML and OpenID can interact with the access control policy language XACML [12], and 
using the ViSPE XACML policy editor [15] described in Section 3.3.1 will allow us to define access 
policies for SEMIAH in a user-friendly manner. 

 

4.5  Securing the Demand Response Protocol 
For the demand and response task, the Smart Energy Profile 2.0 (SEP2) should be used. SEP2 is 
an international standard for an IP based application protocol specification providing Smart Grid 
services for home and business energy devices [17].  

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 48 of 78 

 

Figure 11: Demand Response using SEP2. 

 

SEP2 has wide range of functionality including pricing, metering, messaging, billing and demand-
response load control. It also supports several standards and implementation specific platforms.  
SEP2 can be used with different interfaces such as Ethernet, Wi-Fi, ZigBee. It uses standard 
http/https communication methods. SEP2 puts high emphasis on security by using an elliptic 
cryptography (ECC) based cipher suite.  

4.6 Software Security and Security Testing 
This section describes how software security can be achieved in the SEMIAH project using good 
practices such as secure design patterns and security testing. Security testing will be coordinated 
with regression testing activities in WP6, so that introduction of new features, or upgrading of 
software packages, will ensure that also security tests such as vulnerability scanning will be re-run 
according to the testing procedures in D6.1. Vulnerability scanning results can be imported into the 
Verinice risk assessment system based on standardised risk models based on the Common 
Vulnerability Scoring System (CVSS). This allows for cross-referencing security test results to 
risks, as described in section 9 of D6.1. 

4.6.1 Secure Design Patterns 

This section describes more in detail how secure design patterns will be applied in the SEMIAH 
project. The first volume of NIST IR 7628 describes an approach to identify high-level security 
requirements. It represents a high-level architecture, followed by a logical reference model. This 
logical reference model is used to identify and define 22 logical interface categories. For these 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 49 of 78 

logical interface categories, so called high-level security requirements are described. All logical 
interfaces are grouped into these logical interface categories. Logical interfaces in the same 
interface category have similar security requirements. 

Figure 9 shows an example of how to find security requirements for a logical interface within the 
logical reference model of NIST IR 7628. For example, the interface U72 models the connection 
from the energy management system to the market. This interface U72 is within the interface 
category 9. This interface category has the listed requirements. 

 

 

Figure 12: Example, to find the security requirements for a logical interface. 

 

A system in the form of SEMIAH does not exist in the logical reference model of NIST IR 7628. 
Regarding of the example of a virtual power plant in Figure 10, we can extract three parts to model 
the system. The three parts are [14]: 

- Energy Management System : is a system of computer-aided tools used by operators of 
electric utility grids to monitor, control and optimize the performance of the generation 
and/or transmission system. The monitor and control functions are known as Supervisory 
Control and Data Acquisition (SCADA); the optimization packages are often referred to as 
"advanced applications."  
 

- Distribution Management Systems : is a suite of application software that supports 
electric system operations. Example applications include topology processor, online three-
phase unbalanced distribution power flow, contingency analysis, study mode analysis, 
switch order management, short-circuit analysis, volt/VAR management, and loss analysis. 
These applications provide operations staff and engineering personnel additional 
information and tools to help accomplish their objectives.  

 
- Load Management Systems/Demand Response Management System (DRMS): LMS issues 

load management commands to appliances or equipment at customer locations in order to 
decrease load during peak or emergency situations. The DRMS issues pricing or other 
signals to appliances and equipment at customer locations in order to request customers 
(or their preprogrammed systems) to decrease or increase their loads in response to the 
signals.  



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 50 of 78 

 

Figure 13:  Extracted parts to model the virtual power plant of SEMIAH. 

 

To find the relevant security requirements for the SEMIAH backend-system, we have investigated a 
general example of a system model of a virtual power plant. This example is shown in Figure 11. 
There exist some definitions about a virtual power plant. Some key points have the following in 
common: 

- A virtual power plant aggregates the capacity of many diverse DERs like generation, load 
and storage 

- The power plants are connected with the virtual power plant as central energy management 
system via different communication networks 

- The virtual power plant creates a single operating profile based on different strategies. The 
strategy can be based on energy markets, network stability or sales. 

- Various data can be involved in order to support the creation of the operating profile. For 
example different types of prediction are involved. 

 

Figure 14:  An example of a system model of a virtual power plant, which will be used to 
derive high-level security requirements from the NIST IR 7628. 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 51 of 78 

 

Figure 15:  Mapping system model of virtual power plant to logical reference model (NIST). 

 

An attempt to model the virtual power plant and its connected components with respect to NISTIR 
7628 is shown in Figure 11. Four different interface categories were identified: 

- Interface 6: Interface between control systems in different organizations 

o Connection to the power plants (if it exists) 

- Interface 9: Interface between B2B connections between systems usually involving financial 
or market transaction 

o Connection to Market (if it exists) 

- Interface 10: Interface between control system and non-control corporate systems 

o Connection to households 

- Interface 19: Interface between operations decision support systems 

o Connection to prediction provider (if it exists) 

For each interface different high level security requirements exist. For example IA-4 means user 
identification and authentication. These identifiers can be found in the NIST IR. The collected 
security requirements were summarized and mapped to secure design patterns: 

 

Security Requirement Secure Design Pattern 

Authentication (IA-04) Patterns for Authentication 

Access Control (SC-26,SC-09) Patterns for Access Control 

DoS-Protection (SC-05) 

 

Patterns for Networks (IDS and Firewall), 
elastic service 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 52 of 78 

Secure-Channel (SC-09,SC-26) 

 

Patterns for Network, Web Services and/or 
Middleware Security 

Monitoring (SI-07) Security Logger and Auditor 

 

For each category of a secure design pattern, different solutions exist as well as how they can be 
achieved. Explaining all variants would beyond the scope of this document. Those variations which 
might fit best for SEMIAH are selected and are shown in the next table: 

 

Security Requirement Secure Design Pattern 

Authentication (IA-04) Credential 

Access Control (SC-26,SC-09) Attribute-based Access Control, Role based 
Access Control, Mandatory Access Control 

DoS-Protection (SC-05) 

 

IDS (SNORT, OSSEC, SURICATA) and 
established firewalls 

Secure-Channel (SC-09,SC-26) 

 

TLS 

Monitoring (SI-07) Established solutions in the respective 
programming environment. 

 

4.6.2 Security Testing 

Security testing will involve the testing of the Home Energy Management System gateway, the 
communication between the HEMS gateway and the home devices (e.g. fridge, heating) and the 
communication between the HEMS gateway and the external server. Smart metering gateway and 
the Virtual Power Plant (VPP) may also be involved during the security testing. Figure 13 shows 
possible attack points of the SEMIAH system. 

 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 53 of 78 

 

Figure 16:  Home Energy Management System Architecture. 

 

The identified attack points of the system are defined according to Figure 13: 

1: Home Energy Management LAN  

2: Home Energy Management Gateway 

3: Smart Meter Gateway 

4: External network (Internet) for the communication between the HEMS gateway and the server 

5: Mobile app 

6: Virtual Power Plant 

 

In order to understand the possible ways of breaking into the system, related to the abuser stories 
in D3.2, different attack motivations have to be considered such as: 

• Fraud by the user of the Home Energy Management system to reduce the energy bill 

• Attack by external person on the HEMS with the purpose of information gathering, for 
example getting info about user customs, sensitive information (which tv program the user 
watches), time periods when nobody is in the house (robbery), etc. 

• Attack by an external person in order to cause damage or annoy the user (e.g. turn of the 
fridge, increase energy consumption, etc.) 

• Attack by an external person on the HEMS gateway to install malware for further combined 
attacks 

• Attack on the Virtual Power Plant to gain information on the users or administrators 

• Attack on the Virtual Power Plant to cause relevant impact on the energy supply 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 54 of 78 

4.6.2.1 Test Strategies for Security Testing 

Different test concepts for security testing are: 

Black box security testing concept:  testing method in which the internal 
structure/design/implementation of the item being tested is not known to the tester.  

Gray box security testing concept:  testing method in which the tester has some information of the 
internal structure/design/implementation of the system. The tester itself can be a normal user of a 
system, or can have some documentation about the system.  

White box security testing concept:  testing method in which the tester has all the information on 
the internal structure/design/implementation of the system. He can be a privileged user of a system 
and/or can have complete documentation about the system.  

4.6.2.2 Type of Attacks 

Home Energy Management LAN: HEMS LAN provides connection between the HEMS gateway 
and the devices in the house. As the communication is wireless the attacker can influence the 
system even from outside the house using the following techniques. 

• Blocking traffic 
The attacker keeps sending e.g. deauthentication frames to interrupt the communication 
between the HEMS gateway and a device. Traffic blocking can also be physical or based 
on disturbing signals. 

• Sniffing the network 
The attacker captures all network data crossing the network from low level packets. If the 
communication is not encrypted, the attack will able the interpret the communication and 
collect valuable data. 

• Replay attack 
If the attacker manages to capture some network traffic between the HEMS and a device, 
even if he is not able to obtain any information from that (because of encryption), he will be 
able to replay the packets, so that the receiver could think, that it originated e.g. by the the 
gateway. Example: the attacker records the communication when the heating is turned on, 
later when nobody in the house he replays the scenario from the outside to the turn on the 
heating again. 

• Flooding the device (e.g. heating) 
During the flooding attack the attacker sends an extremely high number of messages to a 
device so that the device will not be able the process it. Due to this the regular messages 
will not be processed either.  

• Brute forcing attack against the device 
If the attacker has some information on the expected packets he can brute-force the system 
with different tries. During the brute-forcing the attacker tries several possible passwords for 
one item e.g. guessing the admin password from a dictionary. 

• Weak cryptography attack 
If some encrypted network traffic is captured, the attacker can decrypt the message if the 
applied cryptography has some significant weaknesses or the attacker has the key for the 
decryption. 

• Fuzzing the communication protocol 
During the fuzzing test the attacker knows the exact format of the messages and tries to 
send some invalid data to divert the receiver from normal functioning (e.g causing DOS, or 
applying some type of buffer overflow). 
 
 
 
 
 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 55 of 78 

Home Energy Management gateway: 

 

Figure 17:  OGEMA gateway layers. 

Figure 17 shows the layered representation of the OGEMA home energy management system 
gateway. The OGEMA gateway is written in Java as a maven project. It is based on the OSGI-
framework. OGEMA has a management web interface, where normal as well as admin users can 
sign in to carry out different tasks. Using OGEMA, users are able to write and apply OGEMA apps, 
which can carry out different specific tasks with energy management functions. For a connected 
device OGEMA drivers are necessary to ensure the applicability of the devices by the OGEMA 
apps. Because of the layered architecture the OGEMA gateway has several dangerous points to 
test: 

Operating system vulnerability  

As the gateway software is installed on a traditional operating system (OS), an OS vulnerability can 
alter the gateway functionality. E.g. if the attacker has system level access to the OS he can write 
into the OGEMA gateway software process. OS vulnerability can be very simple such as an 
unnecessary service with factory defaults, or it can be a technically complicated error e.g. in the 
operating system library. If a new variant of malware infects the system it may even be able to 
accept commands from a remote command and control server continuously during the attack.  

 

JVM vulnerability (e.g. CVE-2012-0507, etc.) 

Using the Java Virtual Environment (JVE) usually ensures secure functioning. As Java is a 
managed programming language it is more difficult to commit a coding error comparing to native 
coding. JVE interprets the intermediate code just in time, so it is able the filter dangerous memory 
corruption errors such as buffer overflows or memory allocation/free errors. However a new zero-
day vulnerability in the JVE may be a threat to the gateway as well.  

 

OSGI component vulnerability 

OSGI (Open System Gateway Initiative) is a modular service platform for java programming 
language. Components for OSGI can be remotely installed. OSGI can also contain vulnerabilities 
itself. 

OGEMA-framework vulnerability 

One of the key components of the SEMIAH project is the OGEMA framework, which means that 
and OGEMA apps and drivers security is important. The OGEMA framework is a Java application 
which provides a web interface for users to carry out its tasks. Therefore the OGEMA system is 
vulnerable to attacks from a browser using web hacking techniques. The security test of the web 
interface involves the following types of tests among many others: 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 56 of 78 

brute-forcing of forms and web-server directories, checking of client side and server side 
validations, checking of configuration errors, checking of information disclosure errors, checking of 
parameter and session manipulations, etc. 

 

OGEMA app or driver vulnerability 

OGEMA apps and drivers can be written for the system. If the programmer lacks appropriate 
secure coding knowledge he can introduce security vulnerabilities into the system. The security 
testing will analyse this source of dangers. 

External network: the external network is responsible for transmitting the messages between the 
HEMS gateway and the server. The same type of attacks can be tried here as in the case of HEMS 
LAN. In the case of HEMS LAN the communication is based on wireless transmission. For the 
external network the Internet traffic has to be considered. The attacker can be anywhere between 
the gateway and the server. 

• Blocking traffic 
• Sniffing the network 
• Replay attack 
• Flooding the device (e.g. heating) 
• Brute forcing attack against the device 
• Weak cryptography attack 
• Fuzzing the communication protocol 

 

Mobile client: Smart phones are used for configuring the HEMS settings or carry out necessary 
functions remotely (e.g. turn on the heating remotely half hour prior to the arrival). Smart phones 
are the main focus of malicious hackers nowadays, so all types of attacks can be considered which 
provides access to the HEMS gateway through the smart phone for the attacker. Some examples 
of possible attacks are: 

 

Social engineering attacks 

Social engineering can be all kind of hoax to abuse the user using email or web. Social 
engineering attack can be even shoulder surfing.    

 

Fake app 

Fake app is a kind of social engineering attack, when the user downloads an app from an unofficial 
store. The app can contain malicious side-effects. In the case of HEMS this type of attack can be a 
very useful and multifunctional HEMS app which has hidden malicious activity (e.g. stealing the 
users credentials).  

   

Configuration errors 

Smart phone apps are typically separated from each other in a sandbox environment to avoid 
information leakages. However with the configuration files the user can ensure availability to some 
sensitive data such as the phone book or text messages.   

  

Malware 

Malware on smart phones cause more and more trouble to users. This type of attack is important, 
because it can steal user credentials from the HEMS gateway 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 57 of 78 

 

Virtual Power Plant 

The most important part of security defence is the protection of the Virtual Power Plant (VPP). 
Attacking the VPP would impact on several households, and might even affect grid stability. The 
HEMS gateway communicates with the VPP through the internet, therefore the attacker can try to 
penetrate into the system from any external place. During the attack several techniques can be 
used: 

- Flooding the VPP with huge amount of traffic to carry out Denial of Services (DOS) 

- Sending specially crafted packages to cause DOS 

- Brute force the system to check mitigation or gain access 

- Tampering input parameters to escalate privilege  

- Bypass client side validation to gain access 

- Manipulating sessions to escalate privileges 

- Bypassing server side validation to gain information 

- Forcing the system to commit error and obtain information 

 

4.6.2.3 Security Testing Tools 

Wireshark  

Wireshark is a network analysing tool. It is able to show all traffic that crosses the network card 
even in promiscuous mode. It presents each layer of the OSI model with all of the necessary data 
to show. Wireshark has an efficient filtering functionality so that the user can be able to select 
important data. During the SEMIAH project Wireshark will be used to sniff the network and to 
control out-coming packets during an attack. 

 

Ettercap 

Ettercap is a free and open-source network tool for Man in the middle (MITM) attacks on LAN. With 
Ettercap the attacker can hijack the traffic so that he can capture data or even to modify the data 
during the communication of two devices. 

 

Aircrack-ng 

Aircrack-ng is a network software suite consisting of a detector, packet sniffer, WEP and 
WPA/WPA2-PSK cracker and analysis tool for 802.11 wireless LANs. Air-crack ng will be used to 
crack wireless communication during the project.  

 

Peachfuzzer 

Is an interactive fuzzing software used for finding vulnerabilities in communication protocols and 
software. Peach fuzzer uses a description file to general input data. If the software crashes using a 
specific input data then more analysis will be provided to find out the vulnerability 

 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 58 of 78 

Olydbg/Immunity debugger 

Ollydbg and Immunity debugger is a win32 user level debugging tool to analyses memory 
processes. Both of them are dynamic analysers. During the SEMIAH project the software 
components will be analysed dynamically by these. 

 

Fdgb 

Fdbg is a 64 bit debugger for dynamic analysis. 

 

IDA 

Interactive Disassembler (IDA) is a disassembler for computer software which generates assembly 
language source code. IDA is able to identify memory segments, exported and imported functions, 
local variables, calling conventions. With IDA the control flow of the program can be easily 
analysed.  

 

John the ripper 

John the Ripper is a free password cracking software tool. It is able to use several type of 
password cracking method such as brute force attack, dictionary attack, hybrid attacks. John is 
programmable and able to use the GPU for brute forcing hashes.  

 

Directory bruteforcer (dirb) 

 

DirBuster (dirb) is a multi-threaded java application designed to brute force directories and files 
names on web/application servers. Dirbuster has dictionaries for different type of web servers.  

 

Syhant Sandcat browser 

Figure 18:  Sandcat hacker browser. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 59 of 78 

 

Sandcat is a penetration testing oriented multi-tabbed portable browser. It is well applicable for 
parameter tampering, simple web-application fuzzing and client side data manipulation.  

 

Browser add-ons (Tamper for Firefox, Web developer extension for Firefox) 

Special browser add-ons are good for client side data manipulation during a web application attack. 

 

THC- Hydra (The hackers's choice) 

THC Hydra is a fast and flexible Network Login Hacking Tool. It uses a dictionary attack to try 
various password/login combinations against an Internet service to determine a valid set of login 
credentials. Hydra will be used to brute-force passwords on web services such as the gateway's 
login page. 

 

Nmap 

Nmap is network security scanner used to discover hosts and services. Nmap is able to determine 
service versions as well as simple vulnerabilities. 

 

Nikto  

Nikto Web Scanner is a Web server scanner that tests Web servers for dangerous files/CGIs, 
outdated server software and other problems  

 

Sqlmap 

Sqlmap is an open source penetration testing tool that automates the process of detecting and 
exploiting SQL injection flaws and taking over of database servers. It comes with a powerful 
detection engine, many features for the ultimate penetration tester and a broad range of switches 
lasting from database fingerprinting, over data fetching from the database, to accessing the 
underlying file system and executing commands on the operating system via out-of-band 
connections. Sqlmap will be used for database testing in the SEMIAH project. 

 

OpenVAS 

OpenVAS is a framework of several services and tools offering a comprehensive and powerful 
vulnerability scanning and vulnerability management solution. OpenVAS discover vulnerabilities 
and categorize them based on its seriousness.  

 

 

Acunetix 

Acunetix, shown in Figure 19, is a popular web vulnerability scanner that contains huge database 
on web based vulnerabilities. Acunetix is able to discover several type of web vulnerabilities such 
as XSS, CSRF, SQL injection, hidden directories, session handling problems, encryption errors, 
information disclosures. 

 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 60 of 78 

 

 

Figure 19: Acunetix web vulnerability scanner. 

 

 

The security testing will be done periodically during the development and before the deployment of 
the system. This will be coordinated with other testing activities in WP6. 

The documentation of the security test result will contain the following: 

• The detailed description of each attack 
• Screen shots from the attacks 
• List of the experienced vulnerabilities 
• Significance of each vulnerability 
• Recommendation for fixing the vulnerability 

5 Privacy and Security Assessment and Security Moni toring 
of Demonstrator - 

The security and privacy management for the Demonstrator will be based on the standards, 
methodologies and tools described in Section 3. The privacy and security testing will be 
coordinated with the test plan in D6.1. Vulnerability testing can for example be used as part of the 
regression tests to verify whether software vulnerabilities have been patched up or not. Security 
and Privacy monitoring and management  

For risk assessment of the front-end and back-end systems, a MAGERIT-based approach will be 
taken, as described in Section 3.1.1. The approach will be adapted to the computational power and 
bandwidth of the respective systems, and in particular, care has to be taken in the front-end system 
to avoid degrading the performance of the HEMS and its attached devices.  

In particular, we may sample different information and metrics from a selection of different HEMS 
instances to get a representative picture of the state of the front-end systems in cases where the 
tools and data collection methods are too heavy for implementation on all HEMS. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 61 of 78 

In general, information from the back-end system and a selection of front-end systems will be 
collected using tools such as OpenNMS, OpenVAS, suitable Intrusion Detection Systems (IDS) 
and results from relevant OVAL and OCIL tests. 

Verinice will then be used to analyse the collected information for risk analysis support. 

 

5.1 Vulnerability testing and privacy assessment 
Vulnerability testing of the implemented system can take place before the release of the system 
and it can be repeated periodically during the normal operation. It is very important to repeat the 
analysis regularly, because new vulnerabilities can change the security level of the system 
drastically. In some cases it may be necessary to modify the system very quickly, e.g. if it turns out 
that there is a zero day vulnerability in the system, which mean that the system can be 
compromised. In these cases a new security patch has to be installed or some configuration has to 
be changed. If a new security hole has not emerged, then the regular vulnerability analysis will 
focus on new threats that are appeared since the last test. 

The vulnerability test can be categorized according to the information or authority the tester has. 
Similarly to the security testing described in section 4.4, the penetration tester can carry out the 
test using black box, gray box or white box methodologies. In case of black box testing the tester 
has no previous information from the system. Using gray box testing the tester has some useful 
information, e.g. he is a normal user of the system with minimal privileges. In white box testing the 
tester has administrative rights to carry out his activities.  

  

5.1.1 Vulnerability Test Steps 

A vulnerability test consist of the following steps: 

 

1. Information gathering 

Information gathering involves all kind of reconnaissance activities when the attacker tries to gain 
as much information from the target system as it is possible. Information gathering can be passive 
or active. Passive information gathering involves acquiring information without directly interacting 
with the target, for example searching for general information using search engines or social 
networks. In case of active information gathering the tester interacts with the target e.g. by visiting 
the web interface to gain public information. Information gathering can also be categorized 
according to the information that the attacker obtains. The information can be general or technical. 
Technical information for example is the type of services that the target system uses (service 
obtaining can only based on normal use of the system without e.g port scanners), general 
information can be anything useful without any technical characteristics (e.g. when was the system 
developed and who were the developers).  

In case of the SEMIAH system this phase involves all of the information gathering activities 
connecting to SEMIAH such as the project publications, the OGEMA gateway history and general 
characteristics, user manuals of the system, etc. 

  

2. Network/Software reconnaissance  

During the network reconnaissance phase the tester maps the target network. This activity involves 
the scanning of the network using layer2, layer3 or layer4 protocols. In layer 2 level the available 
MAC addresses are scanned. Layer 3 level uses the internet protocol, the available devices can be 
scanned using ICMP messages. In layer 4 level several ways of TCP and UDP scanning can be 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 62 of 78 

used. Network reconnaissance also consists of extracting information from the scans and drawing 
network topology and information flow diagrams of the system.  

Software reconnaissance consist of the mapping of the software functionality including input data 
characteristics and output data characteristics. Every input parameter has to be analyzed later on, 
so all kind of input and output data has to be listed with its type and intervals.  

In case of the SEMIAH system this task involves the scanning of the Home Energy Management 
System's internal network and also the scan of the services of the virtual power plant. It also 
involves the OGEMA gateway software mapping. 

  

3. Gaining access/ compromising the system  

Gaining access refers to the phase when the attacker finds a vulnerable point where he can 
penetrate into the system at some level. The attacker can gain access at the operating system 
level, application level or network level. After the tester has successfully gained access, the next 
task is to escalate the privileges to obtain complete control of the system. 

The penetration can be the result of a weak password, a configuration error or some kind of other 
weakness. In case of a software the penetration is often available due to memory corruption such 
as buffer overflow. 

System compromising can be any kind of sensitive information gaining or data modification or 
system availability breaking (DOS). In case of system compromising one or more items from the 
three information security principals (confidentiality, integrity, availability)  are affected.      

In case of SEMIAH system compromising, the task is to gain access to the OGEMA gateway or the 
VPP. Denial of service attacks and modification of the energy bill has to be considered as well.   

  

4. Maintaining access 

Maintaining access refers to the action when the attacker tries to retain his ownership of the 
system. During the maintaining access phase the vulnerability analysis tester checks if a malicious 
attacker can be hidden in the system after compromising it. Attackers can upload, download or 
manipulate data, application or configuration. In order to access the system later on, the attacker 
can open channels, create new user, install a backdoor, etc.  Attackers can then use the 
compromised system to launch further attacks. 

In the case of SEMIAH system the task is to analyze if an attacker can open hidden channels for 
the OGEMA gateway or to the VPP.  

  

5. Covering tracks 

Covering tracks is the activity carried out by the attacker to hide malicious acts. It consists of  
overwriting of system or server data e.g. the log files. 

In the case of the SEMIAH system vulnerability testing, the task in this phase is to test if the 
malicious activity can be detected after a well performed attack. 

Vulnerability testing can point out different type of vulnerabilities. A vulnerability can be less serious 
e.g. information disclosure or even very dangerous e.g. remote code execution. Different type of 
vulnerabilities are registered in the official vulnerability database (CVE). 

Vulnerabilities are classified according to the following groups: 

Denial of service: The availability of the system is broken. The system cannot provide its normal 
operation, so nobody can interact with the system. This can be the result of a very well performed 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 63 of 78 

attack with unique input data (e.g tear drop), or simple the consequence of the too many requests 
that is arriving to the system. 

Code execution: The attacker is able to execute his own attacking code by the system. This code 
can be a server side script executed by the server, a client side script executed by the browser or 
in some cases the code can be executed by the operating system of the vulnerable software using 
the compromised process.    

Overflow: Overflow vulnerability is a result of the lack of the input validation in case of arrays or 
strings. If a data is copied to another data which size is smaller and there is no size checking, the 
second data will overrun. Using this technique the attacker can overwrite important data and 
modify the behaviour of the target system.  

Memory corruption: The memory corruption takes place in the virtual memory where the software 
code and data are loaded. If the attacker is able to modify a data in the virtual memory, he can 
modify the program flow for example overwriting the method return address or inflict some 
exception handling for data. 

Sql injection: Sql injection is a database query handling vulnerability. The attacker is able to send 
own database queries to the system and is able to evaluate them. With sql injection the attacker 
can acquire the whole database or even system files. In some cases it is also possible to execute 
own code using the sql injection vulnerability. 

Cross site scripting: XSS is a client side vulnerability which affects the client's browser. If a browser 
input data is not properly validated, then the attacker can send client side scripts (javascript) to the 
browser. Using client side scripting the attacker can steal session variables or redirect the user to 
another location. 

Directory traversal: this vulnerability is based on the improper validation of filenames. The attacker 
can place strings in the filenames which leads to directory changing (../attackerfile).  

Http response splitting: The attack consists of making the server using carriage return or new line 
characters in a web response. The result is that the answer is split into two pieces and the second 
piece contains the attacking code. This technique can be used to e.g. web cache poisoning. 

Bypass something: In case of bypass something vulnerabilities some kind of validation is evaded. 
Bypassing something can lead to privilege escalation. 

Gain information: Gain information is the general name of all kind of information disclosure. It can 
be the version number of a service, source code information, or any useful data.  

Cross site request forgery: CSRF is a type of exploitation technique when the user has a valid 
session to a server and transmits an unintended request which is transacted because of the valid 
session. The unintended request is the result of a mystification by the attacker. 

File inclusion: File inclusion is a vulnerability when the attacker is able to include and upload 
malicious attacking file with a normal request which is not validated properly.  

  

The CVE database shows that the number of vulnerabilities keep increasing. Figure 17 shows the 
distribution of different type of vulnerabilities. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 64 of 78 

  

Figure 20  Vulnerabilities by type [18]. 

5.2 Risk Assessment needs of the Demonstrator vs Fu ll Deployment of 
SEMIAH 

The limited scope for the demonstrator means that some compromises have to be made compared 
to the full set of methods described in Section 3. One example is that the hardware is a basic 
ARM9 architecture which lacks support for trusted computing (ARM TrustZone). This ensures that 
the device cost can be kept as low as possible, whilst still being able to run the OGEMA platform. 
This tradeoff means that the device will be vulnerable for local attacks, for example key recovery 
attacks, in order to attack or compromise encrypted services in the virtual power plant. The risk of 
such attacks is considered small in the demonstrators, which will handle a limited amount of 200 
houses. It is believed that monitoring system consistency, for example using file integrity checks 
and host-based intrusion detection will be sufficient to cover the security needs of the 
demonstrators. 

On the other hand, with a full scale rollout of SEMIAH components that may be in place for up to 
20 years, it is important to look forward and take into account the potential for new types of attacks 
as well as more sophisticated test methods and countermeasures. As more advanced hardware 
may be deployed for the HEMGs, there are also more opportunities to add advanced IDS systems 
and vulnerability scanners as well as support for Trusted Computing. 

One of the biggest challenges of securing SEMIAH is to determine the risks and threats and plan 
safeguards and countermeasures up to 20 years in advance. Table 2 summarises the risk 
assessment needs for the pilot and the full scale roll-out. 

 

Table 2: Risk assessment needs. 

 SEMIAH pilot Full scale roll-out 

Assets One virtual power plant, 200 
home gateways and 3-4 

controlled devices per gateway. 
Limited effect on the electricity 
grid (may affect involved feeder 

lines for each demonstrator).  

Many collaborating virtual power 
plants controlling millions (or even 

billions) of home gateways, each with 
3-4 controlled devices (or more). May 

have significant effect on the 
electricity grid for maintaining grid 

stability as well as significant effect on 
the electricity market. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 65 of 78 

Threats All currently known threats as well 
as threats we discover during 

audits for the software and 
hardware used by or controlled 

by SEMIAH. Random threats may 
occasionally hit the demonstrator. 

. 

Additional threats due to 
improvements of attack technologies 

and identification of new 
vulnerabilities. Another risk is targeted 
attacks (Advanced Persistent Threats) 

on the smart grid infrastructure.  

In a 15-20 years perspective, outdated 
hardware and software may be an 

issue. Upgrading to the latest version 
may then not be possible, so other 
means (tightly managed firewalls, 

security monitoring, trusted computing 
etc) should be used in a full scale 

rollout to limit the attack surface as 
much as possible, when patching no 

longer is feasible. 

Impact Very limited impact to the 
electricity grid (some feeders 

only) and no market impact for 
the demonstrators. An attack may 

affect individual households. 

A targeted attack on a widely 
deployed SEMIAH infrastructure may 
have potentially catastrophic impact, 

causing market manipulation, 
blackouts and affecting millions of 

customers. 

Safeguards and 
countermeasures 

IDS, managed firewalls and 
vulnerability analysis. 

Continuous safeguard improvement 
for minimising of the attack surface of 
outdated devices that by their nature 
are vulnerable. Trusted Computing 
may be required to keep the attack 

surface sufficiently low. 

 

 

The assets of the newly established pilot system, considering the requirements of the risk 
assessment – as introduced previously – are now up-to-date, well-defined, and documented. 
However, technology develops rapidly so the tools in the households will become even more 
advanced, and the equipment of information science develops as well. So in the future, there will 
appear new communication protocols together with new applications for the more advanced 
technical tools. 

The possible threats for the pilot system are identified and documented considering all presently 
possible use-cases. The release of new hardware and software in the future will involve new 
threats to consider and these have to be predicted as well as possible at the present time.  

Different threats will have different relevance for the SEMIAH infrastructure. For the current 
system, threats are evaluated according to their relevance, but in the future this impact will change 
as well since new threats may appear with high possible impact. Another factor, which will scale up 
the impact, is a wide deployment of millions of such energy management gateways worldwide. So 
already now there have to be considered threats in different impact levels for the demonstrator and 
for a full deployment of a demand response service. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 66 of 78 

Safeguards and countermeasures are introduced in the present document - like IDS and 
vulnerability analysis for the pilot system. For the future, the best safeguard is to minimize the 
attack surface, as well as introducing improved cryptographic device protection based on trusted 
computing. 

During the threat analysis, one of the primary goals is to determine the acceptable risk level 
considering the current circumstances. These circumstances to be considered are the attack 
surface, the vulnerabilities and the resources. Figure 21 shows the interactions of these 
fundamentals in a 20 years perspective. 

  

Figure 21: The changing probability of a successful attack in 20 years perspective. 

Considering the up to 20 years lifetime of the system, the technology development has to be 
considered as well as the number of the vulnerabilities for the developed system. Another risk is 
that such a long system lifetime goes beyond the maintenance windows of most software 
packages used by SEMIAH. To minimise the risk of a successful exploitation, the attack surface of 
the system has to be kept on a minimum level. Whenever possible, this should be done by 
ensuring that used software packages are maintained and kept patched and secure. However, this 
strategy does not mitigate the risk of  unknown vulnerabilities, so-called zero-day exploits. 

A technology that should be added in future commercial versions of the squid.link gateway to 
further reduce the attack surface is support for Trusted Computing (e.g. ARM TrustZone), so that a 
trusted execution environment can be implemented for supporting security critical functions, such 
as secure memory, encryption, secure boot etc. This would allow for significantly increased device 
security, especially considering that these devices will be installed and maintained as widely 
deployed devices with a lifetime of up to 20 years. 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 67 of 78 

 

 

5.3 Security and Privacy monitoring 
Intrusion detection and prevention and security testing of back-end services and selected front-end 
services are important aspects of protecting the SEMIAH demonstrator. This, together with 
applying privacy and security by design, will ensure that SEMIAH is as secure as possible, and that 
the residual risk after applying necessary countermeasures is considered acceptable. 

 

5.3.1 Intrusion Detection System (IDS) 

For the back-end system, hardware is not constrained, so a traditional full IDS system can be 
used. For this case, privacy-enhanced IDS as described in Section 3.3.3 will be deployed in order 
to protect the VPP as well as to prevent any leakage of sensitive information in order to protect the 
privacy of affected users. 

When it comes to the front-end system, the situation is different. Running a full IDS on the HEMS 
would be detrimental to its performance, and instead we opt for a solution based on local and 
central log analysis. This will be done using e.g. simple OSSEC sensors in the HEMS that will 
collect relevant log entries add trigger alarms when suspicious activity is detected, and in addition 
performing correlation analysis for anomaly detection on collected log information centrally to 
detect suspicious patterns that may e.g. indicate distributed attacks.   

6 Summary 
This deliverable contains the security and privacy specification of SEMIAH. The objective is to use 
privacy and security by design to build a system that as far as possible is secure. The system will 
furthermore handle private or confidential information in an acceptable manner, avoiding 
unintended leakages of sensitive information. Software security will be ensured using design rules 
and good practices, and security testing will be applied to verify that the chosen design does not 
have any unforeseen vulnerabilities. Security monitoring, vulnerability scanning and risk analysis 
will be performed in order to detect and manage any emerging risks during the demonstrators. 
Safe and secure deployment of software updates and countermeasures against vulnerabilities will 
ensure that the system is as resilient and secure as possible within the given project budget. 
Scalability will be ensured by design decisions that make it possible to scale the virtual power 
platform service using cloud-based services. 

 

7 References 
[1] F. Long, D. Mohlndra, R. C. Seacord, D. F. Sutherland, and D. Svoboda, The CERT Oracle 

Secure Coding Standard for Java. Addison Wesley, 2012. 

[2] Cresbo, Gómez, Candau, and Mañas, ‘MAGERIT - version 2 Methodology for Information 
Systems Risk Analysis and Management Book I - The Method’, Ministerio de administraciones 
públicas, Madrid, 2006. 

[3] M. A. A. Gómez, J. Candau, and J. A. Mañas, ‘MAGERIT – versión 3.0 Metodología de Análisis 
y Gestión de Riesgos de los Sistemas de Información, Libro II - Catálogo de Elementos’. 
Ministerio de Hacienda y Administraciones Públicas, 2012. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 68 of 78 

[4] I. Arce, Kathleen Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern, T. Kohno, C. 
Landwehr, G. McGraw, B. Schoenfield, M. Seltzer, D. Spinellis, I. Tarandach, and J. West, 
‘Avoiding the top 10 software security design flaws’. IEEE Computer Society, 2014. 

[5] European Pariament and the council of the European Union, Directive 95/46/EC of the 
European Parliament and of the Council of 24 October 1995 on the protection of individuals 
with regard to the processing of personal data and on the free movement of such data. 1995. 

[6] The council of the European Union, ‘Directive 2002/58 of the European Parliament and of the 
Council of 12 July 2002 concerning the processing of personal data and the protection of 
privacy in the electronic communication sector (Directive on privacy and electronic 
communications)’. 2002. 

[7] A. Cavoukian, S. Taylor, and M. E. Abrams, ‘Privacy by Design - Essential for Organizational 
Accountability and Strong Business Practices’, Identity Inf. Soc., vol. 3, no. 2, pp. 405–413, 
2010. 

[8] N. Ulltveit-Moe and V. Oleshchuk, ‘A novel policy-driven reversible anonymisation scheme for 
XML-based services’, Inf. Syst., 2014. 

[9] J. Baker, M. Hansbury, and D. Haynes, ‘The OVAL Language Specification’. MITRE, 2012. 

[10] M. Casipe and C. Schmidt, ‘The Open Checklist Interactive Language (OCIL)’. Mitre, 2008. 

[11] N. Ulltveit-Moe and V. Oleshchuk, ‘Measuring Privacy Leakage for IDS Rules’, Submitted for 
publication, http://arxiv.org/abs/1308.5421. 

[12] T. (ed) Moses, OASIS eXtensible Access Control Markup Language (XACML) Version 2.0. 
2005. 

[13] A. M. (ed), OGC 07-026r2 Geospatial eXtensible Access Control Markup Language 
(GeoXACML) version 1.0. Open Geospatial Consortium, Inc., 2007. 

[14] B. F. H. Debar, D. Curry, The Intrusion Detection Message Exchange Format (IDMEF). 2007. 

[15] H. Nergaard, N. Ulltveit-Moe, and T. Gjøsæter, ‘A Scratch-based Graphical Policy Editor for 
XACML’, in ICISSP 2015 Proceedings of the 1st International Conference on Information 
Systems Security and Privacy ESEO, Angers, Loire Valley, France, 2015, pp. 182–191. 

[16] ENISA Smart Grid Task Force, ‘Proposal for a list of security measures for smart grids’. ENISA, 
2014. 

[17] S. Köpsell and P. Švenda, ‘Secure Logging of Retained Data for an Anonymity Service’, in 
Privacy and Identity Management for Life, vol. 320, M. Bezzi, P. Duquenoy, S. Fischer-Hübner, 
M. Hansen, and G. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 284–
298. 

[18] N. Ulltveit-Moe and V. Oleshchuk, ‘A novel policy-driven reversible anonymisation scheme for 
XML-based services’, Inf. Syst., 2014. 

[19] N. Ulltveit-Moe, ‘Privacy-enhanced network monitoring’. Universitetet i Agder, 2014. 

[20] P. Mell and T. Grance, ‘NIST SP800-145 The NIST Definition of Cloud Computing’. National 
Institute of Standards and Technology, 2011. 

[21] M. Jørgensrud, ‘Amazon web services - Geodata måtte «smugle» harddisk gjennom Sverige’, 
2014. [Online]. Available: http://www.digi.no/930720/geodata-maatte-smugle-harddisk-
gjennom-sverige. [Accessed: 29-Oct-2014]. 

[22] E. Hossny, S. Khattab, F. Omara, and H. Hassan, ‘A Case Study for Deploying Applications on 
Heterogeneous PaaS Platforms’, in 2013 International Conference on Cloud Computing and 
Big Data (CloudCom-Asia), 2013, pp. 246–253. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 69 of 78 

[23] S. C. et al, Assertions and Protocols for the OASIS Security Assertion Markup Language 
(SAML) V2.0. OASIS Standard. 2005. 

[24] M. Á. A. Gómez, J. Candau, and J. A. Mañas, ‘MAGERIT – versión 3.0 Metodología de Análisis 
y Gestión de Riesgos de los Sistemas de Información Libro I - Método’. Ministerio de Hacienda 
y Administraciones Públicas, 2012. 

[25] G. Stoneburner, A. Goguen, and A. Feringa, ‘NIST Special Publication 800-30 Risk 
Management Guide for Information Technology Systems’. National Institute of Standards and 
Technology, 2002. 

 

8 Change History 

Revision Date Responsible Comment 

0.1 05/09/2014 Terje Gjøsæter UIA 

Nils Ulltveit-Moe UIA 

Initial version 

0.2 25/09/2014 Terje Gjøsæter UIA 

Nils Ulltveit-Moe UIA 

Added sections to be investigated by 
Fraunhofer 

0.3 21/11/2014 Nils Ulltveit-Moe UIA 

Terje Gjøsæter UIA 

Added sections and analyses from 
Grimstad meeting. 

0.4 08/01/2015 Nils Ulltveit-Moe UIA 

Terje Gjøsæter UIA 

Added security testing methodology. 

0.5 12/01/2015 Nils Ulltveit-Moe UIA Added security and privacy 
management methodology. 

0.6 13/02/2015 Nils Ulltveit-Moe 

Terje Gjøsæter 

Restructuring, added content in various 
parts- 

0.7  Laszlo Erdödi UIA 

Nils Ulltveit-Moe UIA 

Stefan Siegl FRAU 

Terje Gjøsæter UIA 

Final touches before second review. 

1.0 28/02/2015 Nils Ulltveit-Moe UIA 

Laszlo Erdödi UIA 

Terje Gjøsæter UIA 

Erland Kolstad DEVO 

Integrated comments after second 
review. 

1.1 09/07/2015 Terje Gjøsæter UIA 

Laszlo Erdödi UIA 

Nils Ulltveit-Moe UIA 

Rune Hylsberg Jakobsen AAU 

Updated according to EU review 
recommendations as well as an 
internal review. This includes: 

 Adding an executive summary in the 
introduction. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 70 of 78 

Mohan Lal Kolhe UIA Elaborated on the privacy-enhanced 
IDS use case in section 3.3.2, since a 
figure was missing. 

Section 3.4.4 describes the relationship 
between the security testing activities 
and risk analysis tools and the system 
and integration test specification in 
D6.1. Also, suggested importing the 
grid stability risks from D7.1 into the 
risk register managed by the Verinice 
tool. 

Sections 4.6 and 5 propose that 
security testing activities are 
coordinated with regression testing in 
D6.1. 

A new section 5.2 was added, 
describing the risk assessment needs 
of the demonstrator compared to a full 
deployment of SEMIAH.  

Version information was renamed to 
Change History, elaborated and moved 
after the references. 

    

 

 

 

9 Appendix A – Security and Privacy Model (from D3. 2) 
This section describes the modelling of security and privacy in a SEMIAH context. 

9.1 Principles and Best Practices in Security 
The different aspect of the best practices in security and privacy are presented from the 5-faceted 
model shown in Figure 18. 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 71 of 78 

 

A brief description of each facet in the model follows in the list below: 

• Security by Design. Security by design, in software engineering, means that the software 
has been designed from the ground up to be secure. Malicious practices are taken for 
granted and care is taken to minimize impact when a security vulnerability is discovered or 
on invalid user input. 

• Privacy by Design. Privacy by Design is an approach to systems engineering which takes 
privacy into account throughout the whole engineering process. The concept is an example 
of value sensitive design, i.e., to take human values into account in a well-defined matter 
throughout the whole process and may have been originally derived from this. The concept 
originates in a joint report on “Privacy-enhancing technologies” by a joint team of the 
Information and Privacy Commissioner of Ontario, Canada, the Dutch Data Protection 
Authority and the Netherlands Organization for Applied Scientific Research in 1995.  

• Defense in Depth. Defense in depth is a concept in which multiple layers of security 
controls are placed throughout an information technology (IT) system. Its intent is to provide 
redundancy in the event a security control fails or a vulnerability is exploited that can cover 
aspects of personnel, procedural, technical and physical for the duration of the system's life 
cycle. 

• Multilevel Security. Multilevel security or multiple levels of security (MLS) is the application 
of a computer system to process information with incompatible classifications (i.e., at 
different security levels), permit access by users with different security clearances and 
needs-to-know, and prevent users from obtaining access to information for which they lack 
authorization.  

• Model-driven security. Model driven security (MDS) is the tool supported process of 
modelling security requirements at a high level of abstraction, and using other information 
sources available about the system (produced by other stakeholders). These inputs, which 
are expressed in Domain Specific Languages (DSL), are then transformed into enforceable 
security rules with as little human intervention as possible. MDS explicitly also includes the 
run-time security management (e.g., entitlements/authorizations), i.e., run-time enforcement 
of the policy on the protected IT systems, dynamic policy updates and the monitoring of 
policy violations. 

 

 

Figure 22  Model for best practices in security and 
privacy for system analysis. 

 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 72 of 78 

9.2 Coverage 
Security should cover all aspects of the system: 

• Information security 

• Software security 

• Physical security 

• Hardware security 

• Network and communication security 

• Cloud services security 

 

Important aspects of information security to cover: 

• Confidentiality 

• Access control 

• Risk management 

• Trust 

• Resilience 

• Integrity 

• Availability 

• Authenticity 

• Non-repudiation 

 

10 Appendix B – Threat model (from D3.2) 
The following are some common approaches to threat modelling: 

• Attacker-centric (attackers’ goals and how to achieve them) 

• System-centric (possible attacks for each element of the system) 

• Asset-centric (which assets are threatened) 

The SEMIAH project will take a multi-faceted approach to threat modelling and start by 
enumerating important factors including system elements, valuables, attacker types and 
motivations, possible attacks, and potential attack points. 

The important factors of the threat models are:  

• System elements / assets 

o HEMG (OGEMA-based Home Energy Management Gateway) 

o HEM User interface for Configuration (web/smart phone) 

o Communication channel in home (ZigBee) 

o Controlled Home Devices 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 73 of 78 

o Communication channel HEMG to Backend server (TCP/IP over broadband) 

o Back-end Server (Restful web services HTTP/HTTPS) 

o VPP 

o Market interface module 

• Valuables to protect 

o Company confidential info (credentials, configurations, etc.)Sensitive Personal 
information for users 

o Deep grid / ICT systems 

o Grid Stability 

o Access to Electricity for customers 

o Electricity Company revenue 

o Marketplace 

• Attacker types 

o Hacker-as-hobby 

o Hacker-for-hire 

o Bad Neighbour 

o Bad Advertiser 

o Bad competing electricity company 

o Fraud 

o Insider 

• Attacker motivations 

o Money (more business for competing company or hacker-for-hire) 

o Free (stolen) electricity 

o “Fun” (hobby-hackers or “script kiddies”) 

o Political reasons (sabotage against opposition, or terrorism) 

o Grudges (bad neighbours) 

• Possible attacks 

o See abuser stories 

• Potential attack points in the system to be protected 

o User (need to be warned about possible social engineering/phishing attacks) 

o HEMG 

o HEMG user interface 

o Local ZigBee communications 

o Local devices 

o Communication channel HEMG – back-end server 

o Communication channel DSO - backend server  



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 74 of 78 

o Communication channel energy supplier - backend server  

o Communication channel forecast provider – backend server 

o Communication channel third parties – backend server 

o Back-end Server 

10.1 ENISA-based Taxonomy of Threats 
The proposed ENISA security measures for smart grids contain a taxonomy of threats for smart 
grid services: 

- Natural disaster (fire, flood, thunder, environmental disaster, etc.). 

- Damage, loss of IT assets (damage by 3rd party, test corruption, loss of information integrity, 
loss or destruction of devices, media, documents, media, information leakage) 

- Outages (loss of Internet, network, support services, energy, lack of resources, personnel, 
strike). 

- Nefarious activity, abuse/cyber-attacks (ID theft, spam, DoS, malicious code/activity, social 
engineering, abuse information leakage, rogue certificates, HW/SW manipulation, 
manipulate information, misuse of audit tools, falsification of records, misuse of information, 
information systems, unauthorised: access, administration, software installation, software 
use, compromising confidential information, abuse authorisations hoax, badware, remote 
activity, targeted attacks). 

- Deliberate physical attacks (bomb attack/threat, sabotage, vandalism, theft, information 
leakage, sharing, and unauthorised physical access). 

- Unintentional damage (Erroneous: information sharing/leakage, use or administration of 
systems/devices, use of unreliable information, unintentional alteration of data, inadequate 
design, planning/adaptation). 

- Failures/malfunction (Device/system failures, disruption of communication links, power 
supply failure, service provider failure, malfunction). 

- Eavesdropping, interception, hijacking (wardriving, intercepting information, man in the 
middle session hijacking, repudiation of actions, reconnaissance/information gathering, 
replaying messages). 

- Legal (Unauthorised use of copyrighted material, failure to meet contractual obligations, 
violations of laws). 

 

 

11 Appendix C – MAGERIT Countermeasures Catalogue 
This section presents the complete set of countermeasures described by MAGERIT V3 Book II 
[24]. This, together with selected elements from the NIST control catalogue [25], can form the basis 
of the set of controls, safeguards and countermeasures that will be used in SEMIAH.  

• General and horizontal safeguards 

• H - General safeguards 

• H.IA - Identification and authentication 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 75 of 78 

• H.AC - Logical access control 

• H.ST - Segregation of duties 

• H.IR - Incident management 

• H.tools - Security tools 

• H.tools.AV - Antivirus tool 

• H.tools.IDS - IDS / IPS: Intrusion detection / prevention system 

• H.tools.CC - Configuration checking tool 

• H.tools.VA - Vulnerabilities analysis tool 

• H.tools.TM - Traffic monitoring tool 

• H.tools.DLP - DLP: Data loss prevention / content monitoring tool 

• H.tools.LA - Log analysis tool 

• H.tools.HP - Net / honey pot 

• H.tools.SFV - Security features verification 

• H.VM - Vulnerability management 

• H.AU - Logging and auditing  

• Safeguards to protect data/information  

• D – Information protection 

• D.A – Backups of data 

• D.I - Integrity assurance 

• D.C - Encryption of information 

• D.DS - Use  of electronic signatures 

• D.TS - Use of electronic dating services (time stamping) 

• Safeguards for cryptographic keys 

• K - Cryptographic keys management 

• K.IC - Cipher key management information 

• K.DS - Digital signatures management 

• K.disk - Key management for cryptographic containers 

• K.comms - Key management for communications 

• K.509 - Certificate management 

• Safeguards to protect services 

• S - Service protection 

• S.A - Ensuring availability 

• S.start - Acceptance and putting into operation 

• S.SC - Apply security profiles 

• S.op - Operation 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 76 of 78 

• S.CM - Management of changes (upgrades and replacements) 

• S.end - Termination 

• S.www - Securing services and web applications 

• S.email - Email protection 

• S.dir - Directory protection 

• S.dns - Protection of the domain name server (DNS) 

• S.TW - Telecommuting 

• S.voip - Voice over IP 

• S.SCADA – SCADA traffic 

• Safeguards to protect applications (software) 

• SW - Protection of computer applications 

• SW.A - Backups 

• SW.start - Put into operation 

• SW.SC - Apply security profiles 

• SW.op - Operation / production 

• SW.CM - Changes (updates and maintenance) 

• SW.end - Termination 

• Safeguards to protect equipment (hardware) 

• HW - Protection of information technology equipment 

• HW.start - Put into operation 

• HW.SC - Apply security profiles 

• HW.A - Ensuring availability 

• HW.op - Operation 

• HW.CM - Changes (updates and maintenance) 

• HW.end - Termination 

• HW.PCD - Mobile computing 

• HW.print - Reproduction of documents 

• HW.pabx - Protection of switchboard (PABX) 

• Safeguards to protect communications  

• COM - Communications Protection 

• COM.start - Entry into service 

• COM.SC - Apply security profiles 

• COM.A - Ensuring availability 

• COM.aut - Channel authentication 

• COM.I - Protecting the integrity of data exchanged 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 77 of 78 

• COM.C - Cryptographic protection of confidentiality of data exchanged 

• COM.op - Operation 

• COM.CM - Changes (updates and maintenance) 

• COM.end - Termination 

• COM.internet - Internet use / access 

• COM.wifi – Wireless security (WiFi) 

• COM.mobile - Mobile phones 

• COM.DS - Segregation of networks into domains 

• Safeguards at the interconnection points with other systems 

• IP - Interconnection points: connections between trusted zones 

• IP.SPP - Perimeter protection system 

• IP.BS - Protect border system 

• Safeguards of information support 

• MP – Information storage protection  

• MP.A - Ensuring availability 

• MP.IC - Cryptographic protection of content 

• MP.clean - Cleaning of content 

• MP.end - Media destruction 

• Safeguards of auxiliary elements 

• AUX - Auxiliary elements 

• AUX.A - Ensuring availability 

• AUX.start - Installation 

• AUX.power - Power supply 

• AUX.AC - Climate 

• AUX.wires - Wiring protection 

• Physical security – securing facilities 

• L - Protection of facilities 

• L.design - Design 

• L.depth - Defense in depth 

• L.AC - Physical access control 

• L.A - Ensuring availability 

• L.end - Termination 

• Safeguards for personnel  

For personnel that are connected to the information system. 

• PS - Personnel management 



STREP-FP7-ICT-2013-SEMIAH-619560         D8.1 

Page 78 of 78 

• PS.AT - Training and awareness 

• PS.A - Ensuring availability 

• Safeguards for organizational type 

For those relating to governance of security. 

• G - Organization 

• G.RM - Risk management 

• G.plan - Planning security 

• G.exam - Safety inspections 

• Continuity of operations 

Prevention and response to disasters. 

• BC - Business Continuity 

• BC.BIA - Business impact analysis (BIA) 

• BC.DRP - Disaster Recovery Plan (DRP) 

• Outsourcing 

The border between the security services provided internally and contracted services to third 
parties is increasingly flexible. In these cases it is important to consider these aspects of 
contractual relationship: 

• E - External Relations 

• E.SLA: service level agreement, if availability is a value 

• E.NDA - confidentially, if confidentiality is a value 

• E.I - Identification and qualification of personnel 

• E.E - Procedures for escalation and troubleshooting 

• E.T - Termination procedure (duration in time of the responsibilities assumed) 

• E.R - Assumption of responsibilities and penalties for breach 

• E.1 - Agreements for exchange of information and software 

• E.2 - External access 

• E.3 - Services provided by other organizations 

• E.4 - Personal outsourced 

• Acquisition and development 

• NEW - Acquisition / development 

• NEW.S - Services: acquisition or development 

• NEW.SW - Applications: acquisition or development 

• NEW.HW - Equipment: acquisition or development 

• NEW.COM - Communications: acquisition or contracting 

• NEW.MP - Information storage systems: acquisition 

• NEW.C - Products certified or accredited 


