

Mechanisms of fungicide resistance and actions to reduce risk

Neil Paveley, ADAS

Frank van den Bosch & Bart Fraaije, Rothamsted

Acknowledgements

VELCOURT

ADAS

Phases of resistance evolution

Phases of resistance evolution

Fungicide resistance mechanisms:

- Target site mutations (MOA specific)
- Over-expression (MOA specific)
- Non-target site (MOA specific)
- Enhanced efflux (single-site MOA)

Zymoseptoria tritici

Resistance mechanism and genotype

Zymoseptoria tritici CYP51 target site variants

Wild-type **Y137F** Y137F & S524T L50S, V136A & Y461H L50S, I381V & Y461H L50S, S188N, I381V, Δ & N513K L50S, S188N, A379G, I381V, Δ & N513K L50S, S188N, I381V, Δ & N513K + CYP51 over-expression L50S, V136A, Y461S & S524T V136C, I381V, Y461H & S524T L50S, D134G, V136A, Y461S & S524T L50S, D134G, V136A, I381V & Y461H L50S, V136A, I381V, Y461H & S524T L50S, V136C, S188N, I381V, Y461H, S524T L50S, S188N, A379G, I381V, Δ, N513K & S524T L50S, S188N, H303Y, A379G, I381V, Δ & N513K L50S, D134G, V136A, I381V, Y461H & S524T L50S, V136A, S188N, A379G, I381V, Δ & S524T L50S, V136C, S188N, A379G, I381V, Δ & S524T L50S, V136A, S188N, A379G, I381V, Δ, N513K & S524T L50S, S188N, I381V, Δ & N513K + CYP51 over-expression + efflux

Data courtesy Bart Fraaije, Rothamsted

Prothioconazole field efficacy Zymoseptoria tritici

Blake et al. (2017) Pest Management Science; van den Bosch et al. (2018) Plant Pathology

Resistance mechanism and genotype

Fitness phenotype

Zymoseptoria tritici CYP51 target site variants

Wild-type **Y137F** Y137F & S524T L50S, V136A & Y461H L50S, I381V & Y461H L50S, S188N, I381V, Δ & N513K L50S, S188N, A379G, I381V, Δ & N513K L50S, S188N, I381V, Δ & N513K + CYP51 over-expression L50S, V136A, Y461S & S524T V136C, I381V, Y461H & S524T L50S, D134G, V136A, Y461S & S524T L50S, D134G, V136A, I381V & Y461H L50S, V136A, I381V, Y461H & S524T L50S, V136C, S188N, I381V, Y461H, S524T L50S, S188N, A379G, I381V, Δ, N513K & S524T L50S, S188N, H303Y, A379G, I381V, Δ & N513K L50S, D134G, V136A, I381V, Y461H & S524T L50S, V136A, S188N, A379G, I381V, Δ & S524T L50S, V136C, S188N, A379G, I381V, Δ & S524T L50S, V136A, S188N, A379G, I381V, Δ, N513K & S524T L50S, S188N, I381V, Δ & N513K + CYP51 over-expression + efflux

Per capita rate of increase (*r*)

Data courtesy Bart Fraaije, Rothamsted

Van den Bosch et al. 2011 Plant Pathology 60, 597-606

Selection rate = Difference in *per capita* rate of increase of resistant and sensitive strains

- Strategy 1: Reduce growth rates of resistant and sensitive strains
- Strategy 2: Reduce growth rate of resistant strain relative to sensitive strain
- Strategy 3: Reduce time pathogen exposed to fungicide

Milgroon & Fry, 1988; van den Bosch et al., 2014

© Annual Review of Phytopathology.

Systems providing experimental evidence:

Pathogen	Сгор	Modes of action	
Blumeria graminis f.sp. hordei	Barley	DMI, amines, QoI, pyrimidine	
Zymoseptoria tritici	Wheat	DMI, Qol	
Blumeria graminis f.sp. tritici	Wheat	DMI, amines	
Venturia inequalis	Apple	DMI, MBC, Qol	
Polyscytalum pustulans	Potato	MBC	
Pythium aphanidermatum	Ryegrass	Phenylamide	
Plasmopara viticola	Grapevine	Qol, phenylamide, cyanoacetamide	
Botrytis cinerea	Strawberry, grapevine, geranium	Dicarboxamide, AP, hydroxyanilides	
Podosphaera xanthii	Cucurbit	DMI, MBC	
Phytophthora infestans	Potato, tomato	Phenylamide	
Rhynchosporium secalis	Barley	DMI	
Erwinia amylovora	Pepper	Glucopyranosyl antibiotic	
Xanthomonas vesicatoria	Pepper	Glucopyranosyl antibiotic	
Cercospora beticola	Sugar beet	MBC	
Tapesia spp.	Wheat	MBC	
Colletotrichum gleosporioides	Euonymus	MBC	
Parastagonospora nodorum	Wheat	DMI, MBC	
Pseudoperonospora cubensis	Cucumber	CAA	
Helminthosprium solani	Potato	MBC	

	Increase selection	No effect	Decrease selection
Increase dose	16	1	2
Increase spray number	6	0	0
Split the dose	10	0	1
Add mixture partner	1	6	46
Alternate (replace sprays)	1	2	9
Adjust timing	3	1	2

van den Bosch et al. 2014 Governing principles can guide resistance management tactics Annual Review Phytopathology

Possible exceptions:

- Monocyclic pathogens
 - MOA mixtures may not slow selection
- Small sensitivity differences between strains
 may change effect of dose on selection
- Experimental evidence based on measuring selection against <u>one</u> MOA

Two single-site acting modes of action (MOA):

Mixtures provide good resistance management:

Mutual protection of both MOA

Restricting number of treatments of a MOA provides good resistance management:

• Reduces exposure, which reduces selection

BUT: restricting number of treatments restricts use of mixtures

- protects one MOA
- leaves other MOA at higher risk

Moderately SDHI insensitive strains

Based on Rothamsted/AHDB monitoring of FP and other sites (illustrative as high variability between sites)

Effect of SDHI fungicide programs on selection

(3 UK trials, 2017) Sampled after treatment. Non-SDHI treatments applied at T0 and T3 SDH mutant strains: T79N, W80S, N86S, and H152R

SDHI dose and & azole mixture effect (2016)

(Detection threshold approx. 4% per mutation)

SDHIs must not be used solo or at more than the maximum permitted dose

One application Mean of three field trials, England and Wales, 2016

Selection for tebuconazole insensitive *Z. tritici* (field experiments 2012-2013)

Effective septoria control & slow resistance: build mixtures from the foundation up

Minimum SDHI dose & number of treatments for effective control

- I imit number of azole
- Robust azole doses at T1/T2 when mixing with SDHIs
 - Use multi-sites throughout spray programme

Maximum permitted 2 applications of SDHI containing products

Resistance management guidance: https://cereals.ahdb.org.uk/frag

Conclusions

Use IPM e.g. disease resistance in wheat varieties:

- Reduces per capita epidemic growth rates (strategy 1)
- Reduces economic optimum fungicide input (strategy 3)
- Improves economics of disease forecasting (strategy 3)

Managing selection of resistant strains:

- Determined by fitness phenotype and our treatment decisions
- Implement resistance management at introduction of new MOA
- Time fungicide applications when can judge need for treatment and for maximum efficacy
- Balance fungicide programmes according to risk of resistance against each MOA

"Don't be too keen to be clean" (John Lucas)