LTE "BSG" (Biologische Stickstoff-Gewinnung/Biological Nitrogen Fixation)

Responsible: Prof. Dr. Bernd Honermeier (till 2021), Yavar Vaziritabar (Justus Liebig University Gießen, Institute of Agronomy and Plant Breeding I, Chair of Agronomy & Crop Physiology)

Experimental Station "Weilburger Grenze" Gießen, Address: Weilburger Grenze 25, 35398 Gießen, Technician: Markus Kolmer, email: markus.kolmer@agrar.uni-giessen.de

Site description

The long-term experiment "Biological Nitrogen Fixation" (BNF) is an ongoing trial, which was established in 1982 in the experimental station "Weilburger Grenze" Giessen (50° 36' 12" N, 8° 39' 16" E, 158 m a.s.l.) at the Justus Liebig University Giessen. The total area of the experiment covers 7200 m² including the paths and edges.

The **soil** is classified as Eutric Fluvic Gleyic Cambisol (IUSS Working Group WRB 2015) which is characterized (0-30 cm) by silty clay texture (39-49% clay, 40-58% silk, 4-12% sand). The usable field capacity (0-100 cm) of the soil is about of 123 mm. In the topsoil (0-30 cm) the SOC varies from 0.7 to 1.6%; with a soil density of 1.2-1.3 g cm⁻³ and a pH value of 6.0-6.4. The K, P and Mg from 2015 to 2018, can be characterized as following: potassium (KCAL) level of 4-15 (mg/100 g soil), phosphorous (PCAL) level of 4-18 (mg/100 g soil) and magnesium level of 9-28 (mg/100 g soil).

The **climate** (within the period 1982-2020) is characterized by a mean air temperature of 9.8 °C and a mean precipitation sum of 672 mm per year.

BSG - experimental design and treatments

The field experiment includes two main factors (A) pre-crop/land use and (B) mineral fertilization (N, P, K) arranged as a randomized block design with four field replications. The four years rotational crop sequence is as follows: <u>first year</u>: five different pre-crops/land uses arranged parallel to each other in the same field including crimson clover (CC) (*Trifolium incarnatum* used as green mulch, field bean (FB) (*Vicia faba*), summer oat (O) (*Avena sativa*), maize (M) (*Zea maize*) and fallow (F).

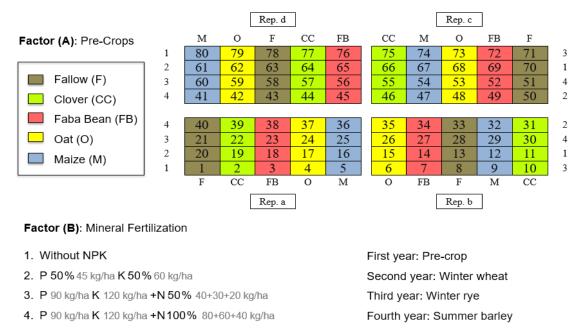

Crop rotation: <u>First year</u>: Crimson clover as green mulch and straw residues of fava bean, oat and maize were incorporated into the soil three weeks after harvesting. <u>Second year</u>: cultivation of winter wheat as the first subsequent crop after all pre-crops, <u>Third year</u>: cultivation of winter rye as the second subsequent crop. <u>Fourth year</u>: cultivation of summer barley as the third and last subsequent crop within the rotational crop sequence.

Table: Cultivation systems in the LTE "BNF" in Giessen since 1982, tenth rotational crop sequence in 2018-2021.

Cropping system	CS. 1	CS. 2	CS. 3	CS. 4	CS. 5
Cereals	75%	75%	75%	100%	75%

Legumes	0%	25%	25%	0%	0%		
Fallow	25%	0%	0%	0%	0%		
Maize	0%	0%	0%	0%	25%		
Rotational crop sequence							
1 st year	Fallow	Green mulch	Fava bean	Oat	Maize		
2 nd year	Wheat	Wheat	Wheat	Wheat	Wheat		
3 rd year	Rye	Rye	Rye	Rye	Rye		
4 th year	Barley	Barley	Barley	Barley	Barley		

Mineral fertilization to winter wheat, winter rye and summer barley includes four subtreatments: (1) zero NPK, (2) only PK 50%, (3) PK 100%+N 50% dosage (90, 60 and 60 kg N/ha for wheat, rye and barley, respectively) and (4) PK+N 100% dosage (180, 120 and 90 kg N/ha for wheat, rye and barley, respectively). The plots cover a gross size at sowing of 80 m² and at harvesting a net plot size of 42 m². The LTE includes 20 treatments (5 pre-crops x 4 NPK fertilisations) and 80 plots.

Figure: Experimental design and treatments distribution of biological nitrogen fixation trial (1982) "BNF"– experimental station "Weilburger Grenze" University Giessen.

References

- Hobley, E.U., Amelung, W., Gocke, M., Dorn, A., Honermeier, B., Kögel-Knabner, I. (2018):
 Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization.
 Agriculture, Ecosystems and Environment 265: 363-373; DOI: 10.1016/j.agee.2018.06.021
- Vaziritabar, Y., Vaziritabar, Y., Leschhorn, B., Yan, Y., Kolmer, M., Honermeier, B. (2019): Long-term effect of crop rotation on soil properties (NO3-N and Nt) and yield performance of wheat, rye and barley under different mineral fertilization - LTE "BSG" Giessen. The 62th anniversary of the Society for Crop Science (62. Jahrestagung der Gesellschaft für Pflanzenbauwissenschaften), Berlin, Germany (GPW), 10-12 September 2019, Vol., 31, 186-187.
- Vaziritabar, Y., Vaziritabar, Y., Leschhorn, B., Yan, Y., Kolmer, M., Honermeier, B. (2019): Long-term effects of different previous crops and NPK fertilization on soil parameters and biomass yields of subsequent crops in the LTE "BSG" Giessen. DOK Monte Verita 6-10 October 2019, 86.