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Abstract: Soils are home to more than 25% of the earth’s total biodiversity and supports life on land and
water, nutrient cycling and retention, food production, pollution remediation, and climate regulation.
Accumulating evidence demonstrates that multiple sustainability goals can be simultaneously
addressed when soil biota are put at the center of land management assessments; this is because the
activity and interactions of soil organisms are intimately tied to multiple processes that ecosystems
and society rely on. With soil biodiversity at the center of multiple globally relevant sustainability
programs, we will be able to more efficiently and holistically achieve the Sustainable Development
Goals and Aichi Biodiversity Targets. Here we review scenarios where soil biota can clearly support
global sustainability targets, global changes and pressures that threaten soil biodiversity, and actions
to conserve soil biodiversity and advance sustainability goals. This synthesis shows how the latest
empirical evidence from soil biological research can shape tangible actions around the world for a
sustainable future.

Keywords: belowground; diversity; microbes; worm; mite; insect; Sustainable Development Goals;
Aichi Targets; land-use; climate change

1. Introduction

As the world’s human population continues to rise and is expected to reach 8.6 billion by 2030
(UN 2017), it is paramount to respect and protect natural resources, including soil, water, air, minerals,
and biodiversity that support life on Earth, including humanity. Current rates of consumption and
inadequate management of resources are putting unprecedented pressure on global systems and
it is estimated that one to six billion hectares (up to 30%) of land has been degraded globally [1].
Land degradation negatively affects 3.2 billion people, threatens sustained human well-being and is a
major contributor to climate change and biodiversity loss [2]. Global initiatives to meet these challenges
include the UN 2030 Agenda for Sustainable Development (Figure 1) and the UN Convention on
Biodiversity’s Strategic Plan for 2020 (Table 1). Broadly, these agendas address areas to improve
human life and environmental sustainability, rely on the participation of all countries and stakeholders,
and will require innovative, timely, and interdisciplinary approaches [3].
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Figure 1. The UN 2030 Agenda for Sustainable Development centers around 17 Sustainable 
Development Goals (SDGs). These goals broadly address areas to improve human life and 
environmental sustainability and include 169 specific targets supported by member nations. 

Table 1. The Aichi Biodiversity Targets are central to the UN Convention on Biodiversity’s Strategic 
Plan for 2020 and result from years of discussion and consensus building among more than 190 
member nations. The targets are divided into strategic goals to be implemented by 2020. 

Strategic Goal Targets 
Address the underlying causes of biodiversity loss by mainstreaming biodiversity across 

government and society. 
1, 2, 3, 4 

Reduce the direct pressures on biodiversity and promote sustainable use. 5, 6, 7, 8, 9, 10 
Improve the status of biodiversity by safeguarding ecosystems, species, and genetic 

diversity. 
11, 12, 13 

Enhance the benefits to all from biodiversity and ecosystem services. 14, 15, 16 
Enhance implementation through participatory planning, knowledge management, and 

capacity building. 
17, 18, 19, 20 

  

Soils are central to supporting natural systems and human well-being [4] (Figure 2), yet to date 
soil biodiversity—the diversity of life in soil which drives ecosystems, sustains life aboveground, and 
maintains healthy landscapes—has remained largely overlooked in global agendas. For example, the 
term ‘soil biodiversity’ does not appear in any UN documentation while forests, wetlands, rivers, and 
drylands have received specific attention to their benefit. Soil-dwelling organisms, including bacteria, 
fungi, nematodes, earthworms, moles, and even plant roots, contribute the majority of living biomass 
on Earth [5] and represent more than 25% of all described species [6,7], not to mention the genetic 
diversity represented within these species. The activity and complex interactions of soil organisms 
provides the backbone for many ecosystem functions, including nutrient cycling, pathogen control, 
water infiltration, foundations to food webs, and supporting agroecosystems (Figure 2). Our 
understanding of the critical connections between soil biodiversity and sustainability are rapidly 
progressing [8–10]. The time has come to incorporate this knowledge to bolster global actions and 
create a more holistic sustainability agenda that can simultaneously address biodiversity loss, climate 
change, and land degradation.  

Figure 1. The UN 2030 Agenda for Sustainable Development centers around 17 Sustainable
Development Goals (SDGs). These goals broadly address areas to improve human life and environmental
sustainability and include 169 specific targets supported by member nations.

Table 1. The Aichi Biodiversity Targets are central to the UN Convention on Biodiversity’s Strategic
Plan for 2020 and result from years of discussion and consensus building among more than 190 member
nations. The targets are divided into strategic goals to be implemented by 2020.

Strategic Goal Targets

Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society. 1, 2, 3, 4
Reduce the direct pressures on biodiversity and promote sustainable use. 5, 6, 7, 8, 9, 10

Improve the status of biodiversity by safeguarding ecosystems, species, and genetic diversity. 11, 12, 13
Enhance the benefits to all from biodiversity and ecosystem services. 14, 15, 16

Enhance implementation through participatory planning, knowledge management, and capacity building. 17, 18, 19, 20

Soils are central to supporting natural systems and human well-being [4] (Figure 2), yet to date
soil biodiversity—the diversity of life in soil which drives ecosystems, sustains life aboveground,
and maintains healthy landscapes—has remained largely overlooked in global agendas. For example,
the term ‘soil biodiversity’ does not appear in any UN documentation while forests, wetlands, rivers,
and drylands have received specific attention to their benefit. Soil-dwelling organisms, including
bacteria, fungi, nematodes, earthworms, moles, and even plant roots, contribute the majority of living
biomass on Earth [5] and represent more than 25% of all described species [6,7], not to mention the
genetic diversity represented within these species. The activity and complex interactions of soil
organisms provides the backbone for many ecosystem functions, including nutrient cycling, pathogen
control, water infiltration, foundations to food webs, and supporting agroecosystems (Figure 2).
Our understanding of the critical connections between soil biodiversity and sustainability are rapidly
progressing [8–10]. The time has come to incorporate this knowledge to bolster global actions and
create a more holistic sustainability agenda that can simultaneously address biodiversity loss, climate
change, and land degradation.
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Like most of the resources humans rely on, soils and soil biodiversity are under threat by land 
degradation, climate change, pollution, urbanization, and over-use and misuse [11]. Soils are a finite, 
non-renewable resource because they cannot be replenished within a human lifespan [12]. The 
formation of soils relies on a complicated balance between time, climate, topography, the underlying 
parent material, and of course organisms [13]. Therefore, timing—the swiftness in which we act to 
protect soils—is crucial. Several global efforts have recognized the urgency with which we must act. 
For example, the Global Soil Biodiversity Initiative launched in 2011 to bring together researchers 
and policy makers to integrate the knowledge we are gaining with actions for a sustainable future. 

Figure 2. Soil organisms support multiple ecosystem services, which underpin global sustainability
agendas. The colored circles next to each organism type represent which of the four overarching parts of
sustainable development the organism contributes to directly. Image credit: K. Pintauro, E. Bach. Photo
credits (top to bottom): E. Saunders, S. Axford, M. J. I. Briones, D. Robson, K. Markarov, A. Murray,
M. P. Veldhuis, G. Faulkner.

Like most of the resources humans rely on, soils and soil biodiversity are under threat by
land degradation, climate change, pollution, urbanization, and over-use and misuse [11]. Soils are
a finite, non-renewable resource because they cannot be replenished within a human lifespan [12].
The formation of soils relies on a complicated balance between time, climate, topography, the underlying
parent material, and of course organisms [13]. Therefore, timing—the swiftness in which we act to
protect soils—is crucial. Several global efforts have recognized the urgency with which we must act.
For example, the Global Soil Biodiversity Initiative launched in 2011 to bring together researchers
and policy makers to integrate the knowledge we are gaining with actions for a sustainable future.
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Other agencies have also started to include soil biodiversity in their consideration of soils, including the
Global Soil Partnership, UN Food and Agriculture Organization, the Intergovernmental Platform on
Biodiversity and Ecosystem Services (IPBES), and in 2019 the UN Convention on Biological Diversity
requested a global report on soil biodiversity [14].

Prior to these recent efforts, integration of soil for nature and global sustainability largely focused
on soil’s physical and chemical properties with little consideration for biodiversity [15,16]. But, it is
now accepted that including soil biota explicitly alongside soil abiotic factors in land management
assessments can better serve sustainability goals than consideration of soil abiotic properties alone [8,17].
This holistic view of soils has gained traction from landowners, managers, and agencies and makes
clear that diverse stakeholders are eager to protect this critical resource using interdisciplinary and
sustainably focused methods. Despite this energy, more must be done to recognize and integrate the
role of soil biodiversity in building a sustainable future. For example, the majority of soil biodiversity
research examines diversity at a community level, across species and trophic levels; however, diversity
within species is a critical component of biodiversity which has been all but ignored in soil habitats. Here,
in an effort to guide global agendas and identify synergies between multiple sectors (research, users,
public, and policy), we present (1) a synthesis of current research: Covering ways soil biodiversity
can contribute to the global sustainability agenda; (2) global change and pressures that threaten
soil biodiversity; (3) actions that will support conservation of soil biodiversity, while also affecting
sustainability and biodiversity goals and targets; and (4) gaps in knowledge in linking soil biodiversity
to sustainability.

2. Soil Biodiversity Contributes to Sustainability

2.1. Soil Biodiversity Supports Human Well-Being (Sustainable Development Goals (SDGs) 1,2,3,8; Aichi
Targets 13,18,19)

Soils support the livelihood of the entire human population—more than 7.5 billion people—they
are the foundation for numerous ecosystem functions that directly and indirectly support human health
and well-being (Figure 1). This is most obvious when we view soil as the medium on which almost all
food crops and livestock forage, including pastures, directly contribute to Sustainable Development
Goals (SDGs) 2 and 3. It is the living communities—soil biodiversity—within soil that drive the
processes central to plant growth, directly impacting human health and well-being through crop and
livestock forage production [8,18].

Illustrations of the value of soil biota for supporting global food production are abundant and
diverse. For example, soil fauna and microorganisms drive terrestrial nutrient cycling by decomposing
dead plant and animal material and converting it to forms readily used by living organisms [19,20].
Nutrient cycling in soil is central to plant growth, directly impacting human health and well-being
through crop and livestock forage production [8,18]. The value of soil biota is apparent in China where
traditional rice-fish farming leverages rice paddies as fish habitat, where fish feed on microorganisms
decomposing dead rice leaves. Fish feeding behavior loosens soil allowing more oxygen to infiltrate,
further stimulating microbial decomposition of both plant material and fish excrement, which in turn
liberates nutrients that are used by growing rice plants [21]. Similarly, in industrial row-crop systems,
rotating legumes with grain crops leverages nitrogen (N)-fixing bacteria associated with the legumes
to build soil N which grain crops like maize subsequently use.

Beyond supporting plant growth, soils influence human health and well-being as both a source
and regulator of pests and pathogens, and disruptions to the diversity and interactions of soil biota
can inhibit regulation of these diseases [22,23]. Crop and livestock pests and pathogens can have
severe negative impacts on food production, human health, and well-being [24]. For example,
in 2018, Anthrax bacterium (Bacillus anthracis) [25] emerged from soil killing more than 50 cattle
across southeastern France [26], and from thawing permafrost in Siberia killing more than 1500
reindeer [27]. Soils are also home to disease-causing organisms that directly impact humans, such as
helminth parasites (nematode Strongyloides), and brain encephalitis (Naegleria fowleri) [22], as well
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as Coccidioides immitis, the fungus that causes Valley fever [22,28] (SDG 3). While disease causing
organisms can be problematic and even dangerous, diverse soil communities are generally beneficial
for human health, and provide a check on pathogens through competition with and predation of
disease-causing agents for people, livestock, and crops [22,29]. Soil bacteria and fungi are also
valuable sources for antibiotics, including long-established antibiotics like penicillin, produced by
Penicillium chrysogenum, and emerging antibiotics from uncultured bacteria that show promise for
preventing development of antibiotic resistance [30].

In addition to directly supporting food production through farming and ranching, soil provides
access to economic livelihood [31], advancing SDGs 1 and 8 as well as Aichi Targets 13 and 19.
Rural lifestyles and cultures centered around agriculture interface with soil, sometimes directly and
often indirectly [32,33], contributing to Aichi Targets 13 and 18. For women farmers, these economic
opportunities can also advance gender equality (SDG 5). Soil biodiversity contributes to many
aspects of human health and well-being through multiple ecosystem functions [4,34]. Prioritizing soil
biodiversity in policy and action also prioritizes this suite of benefits to human health and well-being,
providing a coordinated opportunity to advance global sustainability agendas.

2.2. Soil Biodiversity Supports Terrestrial Life and Diversity (SDG 15; Entire Aichi Agenda)

Soil biodiversity supports life on land (SDG 15) and the entire Aichi agenda, including common
and abundant species as well as rare and declining species [35]. Recognizing that soil organisms
are part of global species loss is integral to preventing extinction generally (Aichi Target 12). A key
step in preventing loss of soil-dwelling species is seeing soil as a habitat worthy of protection and
conservation, directly advancing Aichi Target 5 (reduced loss of habitats). Soil organisms can also
protect biodiversity by controlling invasive species (Aichi Target 9). For example, in Brazil the flatworm
Obama ladislavii preys on an invasive snail species [36]. Soil and the life within it are essential to
providing key ecosystems services (Aichi Target 14).

In addition to making up 25% of terrestrial biodiversity, soil organisms support life aboveground
(SDG 15), both directly as a food source and indirectly through processes like decomposition and
nutrient cycling [37] (Figure 2). Vertebrates, including amphibians, birds, mammals, and reptiles, rely on
many soil invertebrates as food sources, and may use soil for shelter. For example, coyotes (Canis latrans)
build dens belowground and feed on soil-dwelling mice, voles, and insects [38]. Evidence even shows
that shore birds may consume large amounts of bacterial biofilms in their diets [39]. Soil organisms are
also critical for plant growth and production, by cycling nutrients [40,41]. For example, the availability
of N for plant uptake is dependent on microbial processes, such as N fixation which transforms
dinitrogen (N2) gas in the atmosphere to a bioavailable form [42]. In addition, an estimated 80% of
all land plants rely on partnerships with mycorrhizal fungi [43] which deliver nutrients directly to
plants. Above–belowground relationships are important drivers in ecosystems, shaping diversity and
functioning [37]. Plants and other aboveground organisms also benefit from pollinators that live in
soil, for some or all their life cycle. In turn, plants feed the soil food web through root exudates [44]
and inputs of dead plant material [45]. Diversity of plant inputs as well as complexity of the habitat
supports high levels of diversity [46], occurring at multiple scales (i.e., molecular, aggregate, horizon,
and landscape) [47].

2.3. Soil Biodiversity in Hydrological Processes (SDG 6,14; Aichi Targets 6,8,11)

As water passes through soil on its way to creeks, streams, rivers, oceans, lakes, and groundwater,
soil, and the life within it, integrates terrestrial and aquatic systems. During filtration water moves
through soil pores, both large and small, which slow down flow rates and enable chemical and
biological interactions. Water that exits soil where these processes function well is cleaner, which
benefits people and aquatic life (Figure 2). Soil mediated water filtration advances SDG 6 (clean water
and sanitation), SDG 14 (life below water), Aichi Target 6 (aquatic organisms managed sustainably),
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Aichi Target 8 (reduced pollution, including nutrients), and Aichi Target 11 (protecting inland waters
and coastal areas).

Soil biodiversity plays obvious roles in biological soil water use, but many organisms also facilitate
physical and chemical interactions between water and the soil matrix [48]. For example, burrowing
fauna including earthworms [49], ground beetles [50], and prairie dogs [51] influence the rate of
water infiltration into soil through the development of mega- and macropores [52]. In Burkina Faso,
increased termite foraging in restored forests increased water infiltration by 2–4 times over crop fields
and bare ground [53]. This can alleviate flooding during high precipitation events, reduce soil erosion,
and increase moisture in sub-surface soil. At the same time, plant roots and their excretions play critical
roles in water flow dynamics in soil, which we are only beginning to understand through laboratory
work with model organisms [54]. Further, biotic interactions between plants and microbes can directly
impact hydrology and these interactions are impacted by changing climate [55].

Improving water infiltration also increases opportunity for plants and soil organisms to use
dissolved and suspended nutrients such as nitrates and phosphates, reducing nutrient run-off into
surface water and groundwater. Soil microbial metabolism of phosphates and nitrates recycles those
nutrients within terrestrial systems and limits export to aquatic systems. Leveraging these ecological
processes can be an important way to reduce reliance on fertilizer inputs and improve water quality,
and reduce zones of eutrophication such as the large “dead zones” that appear in the Gulf of Mexico
near the United States [56], the Sea of Oman between Iran and Oman [57], and the Yellow Sea near
China [58]. In addition to nutrients, some bacteria and fungi are capable of degrading pollutants [59,60].
Linking soil biodiversity with water quality and hydrology is an area with great need for additional
research as water quality and supply is a major challenge for communities world-wide, including
wealthy nations.

2.4. Soil Biodiversity Regulates Climate (SDG 13; Aichi Target 15)

With more than 75% of soil organic carbon (C) residing in the top meter of soils, soil management
plays a key role in how soils may act as a sink and store more C [61]. The pathway of C into the
soil largely goes through plants, which take up carbon dioxide (CO2) from the atmosphere during
photosynthesis and use it as the building blocks for roots, stems, and leaves. Living plants move C
belowground as root tissue and root exudates, which are readily incorporated into microbial biomass
and either respired or deposited as complex organic molecules [10]. Because belowground C is stored
as organic matter, it represents a dynamic pool that can be diminished through respiration, emitting
greenhouse gases like CO2, methane (CH4), and nitrous oxide (N2O), or enhanced through organic
matter inputs, namely roots, detritus, and soil microbial biomass. Through these processes, soil is a
critical part of addressing global climate change (SDG 13) and at the heart of Aichi Target 15 (protect
and increase biodiversity contributions to C stocks). Soil is already part of some climate solutions.
For example, the ‘4 per mil’ measure seeks to increase C pools in agricultural soils through changes
in farming practices [62], although questions remain as to the extent this goal can be realized [63].
Soil biology plays a key role in better understanding how soil can be leveraged and managed to
mitigate global climate change (Figure 2).

The role of soil biodiversity in regulating greenhouse gas emissions and storage of soil C, is well
recognized [10,64]. The balance of C in soils is controlled by the interactive effects of climate, plant
diversity, and soil biodiversity [65,66], and it is the soil community that ultimately controls the short
and long-term fluxes and flows of C in and out of soils [67]. Much research has focused on the important
role of soil microorganisms in plant litter decomposition, in large part because bacteria and fungi
produce a suite of enzymes capable of breaking apart slow degrading plant molecules like cellulose and
lignin. When assessing the ability of soils to store C we must also look at the specific functional types
and traits within the microbial community [68]. For example, microbial traits or functional groups
that would control C cycling and storage include: C use efficiency, community biomass turnover
rates, microbial produced extracellular enzymes, and stoichiometry. Some of these metrics are being
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incorporated into new C models such as Microbial Efficiency-Matrix Stabilization (MEMS) [69] and
Microbial Mineral Carbon Stabilization (MIMICS) [70]. Soil animals also play important roles in litter
decomposition and greenhouse gas emissions. Through leaf shredding, soil fauna increases the surface
area of litter, which increases microbial decomposition rates [71]. Many soil animals consume leaf litter,
digesting leaf litter and expelling excrement. Excrement from soil fauna decomposes more slowly than
leaf litter [72]. Soil fauna generally increase litter decomposition rates in temperate and wet tropical
climates, but not necessarily in cold dry environments [20,72]. Earthworm activity can both stabilize
soil C [73] and increase greenhouse gas emissions [74] depending on local ecosystem conditions and
climate. Soil biodiversity is an important avenue for deeper understanding, model prediction, and land
use action to address climate change [67].

3. Threats to Soil Biodiversity

Despite the important role soil biodiversity plays across ecosystems, soil organisms face many of
the same threats as aboveground organisms and receive far less research, media attention, and legal
protection [35]. Habitat loss from land-use change, climate change, and invasive species, both above-
and belowground, are as challenging for soil organisms as they are for terrestrial and aquatic organisms.

Habitat loss is the primary threat to soil biota. Agriculture is the largest driver of habitat loss
and biodiversity declines globally [2], including land conversion to agricultural use and management
practices within agroecosystems. Conversion of Amazonian forest to agricultural land-use results in
the homogenizations of soil bacterial communities and loss of soil fungal diversity [75,76] as well as
reductions in macrofauna [77]. Agricultural fields support smaller and less diverse soil communities
than forests and grasslands [17] and agricultural intensification further reduces soil biodiversity,
particularly larger bodied organisms (e.g., invertebrates) [78,79]. Even reduced tillage systems typically
host less soil biodiversity than natural ecosystems, as shown by Domínguez et al. [80] in a study of
grasslands and agroecosystems in Argentina. In addition to agricultural land use changes, urbanization
and suburbanization leads to the destruction of soil habitats through building construction and
pavement which results in soil sealing [81].

Habitat quality can be degraded through pollution, including excessive nutrient inputs,
and invasive species. Heavy metal pollution can shift communities to become dominated by a
few taxa that can tolerate, or even thrive with, high levels of chemical inputs with corresponding
decreases in taxa abundant in unpolluted soils [82,83]. Increased N inputs, from atmospheric deposition
or from direct fertilizer application, is also a form of pollution and can shift soil bacterial communities,
decreasing Acidobacteria and Verrucomicrobia and increasing Actinobacteria and Fermicutes, and decrease
overall microbial activity [84]. Habitat quality can also be impacted by invasive species. Invasive plants
can alter belowground communities through release of exudates toxic to some soil organisms, such as
arbuscular mycorrhizal fungi, changes in N-cycling, such as invasive legumes, shifts in fire frequency
and intensity, and/or variations in plant litter and root inputs [85]. In some cases, invasive plants
increase diversity and abundance of soil organisms, particularly when invasive plants result in increased
litter and root inputs [86]. In other situations, soil organisms can be invasive species, reducing plant
fitness and animal diversity and abundance [87]. Invasive earthworms in northern North America
negatively impact native soil fauna, alter C and nutrient cycles [88], and affect plant community
composition [89]. Enough research exists to know soil habitats face multiple threats, from direct and
indirect inputs of pollutants and nutrients, to shifts in aboveground communities, including exotic
species. However, habitat loss and degradation are not the only threats to soil biodiversity.

Climate change is the paramount challenge of our generation, and soil biota are impacted like all
other life on Earth. Climate change includes a suite of environmental changes including atmospheric
concentration of greenhouse gases, namely CO2, precipitation quantity and frequency, and temperature.
Globally, these variables are predicted to shift in different directions and magnitudes, and as such,
understanding how soil biodiversity responds to climate change requires deep understanding of both
soil biodiversity in biomes, predicted impacts of climate change, and how soil taxa populations and
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communities may likely respond. A meta-analysis of soil microbial community studies found soil
fungal abundance responses to elevated CO2 varied by taxon and ecosystem [90]. Altered precipitation
regimes impact insects, both above- and belowground. In an Australian grassland, summer drought
periods corresponded with increased aboveground insect plant predator populations the following
spring, but no changes in belowground invertebrates [91]. Decreased precipitation increased
root-feeding nematode populations in mesic and semi-arid grasslands by decreasing predator
nematodes, but this pattern was not observed in xeric grasslands where nematode communities
are adapted to prolonged drought periods [92]. Temperature impacts soil communities in unique ways
as well. Increased temperatures impact soil biota physiologically, as some taxa have a very narrow
temperature range for optimal functioning and others can tolerate a broader range. In a study of
springtails (Collembola) [93], an exotic species was more tolerant of higher temperatures than native
springtail species, potentially increasing the risk that exotic invasive species could usurp native soil
communities as climates change. Given the numerous interacting consequences of global climate
change and the hyper-diversity of soil communities, there are many uncertainties in understanding
climate change impacts on soil biodiversity.

4. Protecting Soil Biodiversity

Opportunities exist to protect and support soil biodiversity, which in turn sustains the diversity of
life on Earth, including humanity. Many actions that support biodiversity aboveground also support
biodiversity belowground. Because soil biodiversity is woven into many facets of ecosystems, explicit
consideration of soil biodiversity can provide a holistic approach to advance many components of
global sustainability agendas. Protecting existing natural areas, restoring degraded habitats, employing
sustainable agricultural practices, and embracing urban biodiversity are all practices that reinforce and
sustain diverse soil communities and the functions and services they provide across all ecosystems
(Figure 3).
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4.1. Protect Natural Areas

Protecting natural lands is essential to protecting soil biota and the functions it provides (Figure 3).
Prioritizing natural areas for protection has primarily focused on aboveground biodiversity [94], in large
part because knowledge of soil biodiversity has lagged behind aboveground biodiversity. Protecting
soil habitat in natural areas is an important source of this information, representing unique habitats and
ecosystems with lighter human impacts. Soil biodiversity within natural areas improves water quality
and can provide flood protection to populated areas in extreme events. Soil organisms in undisturbed
soils are also critical to addressing global climate change, as they store C and regulate greenhouse
gas cycling [95,96]. Models have shown that protecting areas from deforestation or conversion to
agriculture can be a cost-effective way to prevent soil greenhouse gas emissions from microbial activity,
conferring societal benefits far beyond estimated costs [97]. For example, in the Great Plains of North
America, preventing cultivation of 10% of existing grasslands would avoid CO2 emissions estimated
to cost society $430 million over 20 years [98].

Natural area protection and management is critical to sustaining biological diversity, both above-
and belowground. Many land management decisions are driven by above-ground plants and animals,
but soil organisms can provide an important focus for natural area management. For example, using
prescribed fire to reduce and prevent woody plant or invasive species encroachment in grasslands
benefits soil-dwelling insects and aboveground organisms that rely on open grassland habitats [99].
Timing and intensity of fire can be modified to protect abundance and diversity of soil-dwelling insects.
Some invasive plant species impact soil organisms, including symbiotic mycorrhizal fungi, which can
affect the ability of native plants to compete [85]. Such considerations are important for land managers
making decisions about when and how to control invasive species in natural areas. There is much
still to learn about soil communities across habitat types around the world, and natural areas are an
important way to both protect soil communities and retain ecosystem services for a sustainable future.

4.2. Restore Degraded Ecosystems

Declines in biodiversity and ecosystem services from nature, largely from human land use,
are globally pervasive. Ecosystem restoration is one of the best returns on investments to improve
soil habitat and functioning to advance global sustainability [2,100]. Restoring ecosystems for soil
biodiversity can provides numerous ecosystem functions and services that support global sustainability
(Figure 3). Soil biodiversity, and the services it provides, can be both a goal of restoration and a means
to restore degraded systems.

Restoration ecology has traditionally focused on above-ground metrics like plant and bird
diversity; however, soil communities are central to ecosystem recovery and restoration. Soil fauna shift
in community composition with time since restoration in North American tallgrass prairie [101–103],
Costa Rican forests [104], and Australian mines [105], although in most cases, restored communities
did not resemble communities in native reference ecosystems during the course of the study.
Restoration practices in temperate woodlands and savannas increased collembola abundance and
decreased non-native isopod habitat compared with no management [106]. Similarly, microbial
communities show strong recovery trajectories with restoration in grasslands [107,108], wetlands [109],
and forest [110], although they often fail to resemble native reference ecosystems. Considering ecosystem
interactions, limited available data suggests trophic rewilding as a form of restoration has
important feedbacks with belowground communities and their functioning including C and nutrient
cycling [111,112]. Microbial communities can be managed in wetland restorations, to reduce N and
phosphorous (P) export [109] through practices like altering hydrology to create anoxic conditions
through flooding and select for anaerobic bacteria and metabolisms. Recent work with nematode
communities in European grassland restored with seed addition and/or soil inoculum found it took
seven years before differences in soil communities among the treatments was detected [113]. Similarly,
Ribas et al. [114] found that ant communities had greater diversity, including some more conservative
species, in gold mine tailings that revegetated naturally compared with planted grass and shrub,
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although recovery may take longer. Recovery of soil organisms will vary by taxa and geography.
Evidence is accumulating that soil biodiversity is an important part of ecosystem restoration.

Soil biodiversity can also be leveraged to restore degraded systems. For example, bacteria and
fungi within soil can actively degrade chemical pollutants in soil like diesel [60] and glyphosate [59],
and tolerate and chelate heavy metals [115,116]. Restoring belowground communities can stabilize
soils and reduce erosion, and provide additional benefits in restored ecosystems, including faster
recovery of soil C pools in restoration with high plant diversity compared with low plant diversity
in North American grasslands [117]. In the tallgrass prairie of North America, certain arbuscular
mycorrhizal fungi species can facilitate establishment and persistence of rare native plants [118].
Increasing the pace of ecosystem restoration is widely recognized as central to global sustainability
agendas, including the UN declaration of 2021–2030 as the Decade on Ecosystem Restoration, and soil
biodiversity provides a focus for both restoration practice and targets that integrates the multiple
benefits gained from ecosystem restoration.

4.3. Employ Sustainable Agriculture Practices

Sustainable food production is essential to the future of humanity and nature on Earth, and as
outlined above, soil and the biodiversity within it is the foundation of sustainable agriculture (Figure 3).
Sustainable agricultural actions focused on soil biology are needed across cultures and farming
contexts. There is an abundance of research from industrial row-cropping systems, including robust
evidence that tillage negatively impacts soil organisms with larger body size [78,119], including
earthworms [120], collembola [121], and mites [122]. No-till and reduced-till systems generally
support a greater proportion of fungi than bacteria compared with conventional systems [119,123].
Tsiafouli et al. [79] found that management with annual tillage reduced soil biodiversity and shifted
communities in favor of small-bodied organisms compared with grass/legume rotations and grasslands
managed without any tillage. Smaller, less taxonomically diverse soil communities can lead to lower
plant productivity, less N turnover, and greater P leaching [34], which could lead to reduced crop
yields and increased loss of nutrients from agroecosystems. In addition to tillage, presence of cover
crops and retention of litter are important factors for soil communities. Cover crops, which are grown
in row-crop fields outside of the primary crop growing season, prevent extended periods of time
when fields have exposed soil. Living roots from cover crops reduce soil erosion [124] and provide
inputs, in the form of root tissue and exudates, that support numerous soil organisms including
microorganisms, fungi, and nematodes [9,125]. Perennial crops generally improve habitats for soil
organisms, reducing N loss [126,127] and building organic matter [128]. Diversity of plant inputs,
through diverse rotations of crops and cover crops can shift soil microbial profiles and activity resulting
in greater soil C accrual [129]. The retention of litter and a diversity of soil organisms play important
roles in accruing and storing soil organic matter [130] and in some systems, increases in soil organic
carbon (SOC) would also have the added benefit of increasing crop yields [131]. Furthermore, greater
soil biodiversity and the functional redundancy it provides may increase the capacity of soil to continue
functions like nutrient turn-over and plant productivity under global change scenarios.

Many traditional approaches to agriculture leverage crop diversity and rotation to improve
production and break disease cycles. In the broad context of global agriculture, soil organisms
play important roles across differing approaches and climates. In Honduras and other parts of
Central America, crop rotation and wood ash application are leveraged to encourage soil-dwelling
predators and reduce white grub outbreaks [132]. Pre-Columbian people in what is now French Guiana
created raised fields that supported (and continue to support) soil engineers including ants, termites,
and earthworms, which in turn increase soil nutrients and drain marshy soil, creating space for crop
production [133]. Soil biodiversity is at the heart of sustainable agriculture, supporting crop and
livestock production across all types of systems with fewer inputs that are costly to farmers and impact
non-target species and habitats. Recognizing soil as complex, biological ecosystems that support
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sustainable agroecosystems, rather than input/output systems to be optimized is a critical perspective
shift necessary to advancing a sustainable future.

4.4. Adapt Urban Areas for Biodiversity and People

Approximately 55% of people world-wide live in urban areas and that number is expected to rise
to 68% by 2050 [134]. Expansion of urban areas can lead to the destruction of soil habitats through
building construction and pavements; however, urban areas can be home to diverse soil microbial and
invertebrate communities. Soil is foundational to services provided by nature to urban areas (Figure 3).
As mentioned before, soil organisms can directly degrade pollutants and chelate heavy metals in
former industrial sites, improving safety of these sites within heavily populated areas. Urban soils
support plants in green spaces and street curbs that can reduce air temperature in cities and provide
space for play and relaxation. Soil fauna play key functional roles in urban rain gardens, which absorb
stormwater and filter pollutants, reducing stress on storm water management systems.

Urban soils show some convergence, particularly with soil organic C and total N content, and some
distinction from parent material and climate [135]. Biologically, a global survey of urban areas found
convergence of archaeal and fungal communities, but not bacterial [136]. Studies of urban green spaces
found similar levels of soil biodiversity as in a survey of soils in surrounding natural areas, although
that pattern does not necessarily hold for some taxa [137].

There are many ways to support and encourage soil biodiversity in urban areas. Green spaces
support the most soil biological diversity in cities [137,138]. Prioritizing green space in urban planning is
an important way to maintain soil biodiversity and retain the ecosystem benefits it provides. In planning
urban space use, including parks, using mulch for ground cover instead of rock increases earthworm
abundance and reduces surface temperature [139], increasing water infiltration and alleviating “heat
island” effects. Activity of soil organisms within rain gardens have the potential to enhance storm water
infiltration, pathogen removal, and removal of excess nutrients and pollutants [140]. Soil compaction
can be reduced with removal of disturbance (e.g., foot traffic or temporary structure). Green roofs can
create additional habitat, supporting unique and diverse soil fungal [141] and beetle [142] communities.
In addition, thoughtful urban development choices that ‘build up not out’ can be an important tool
for protecting soil biodiversity and ecosystem services not only in urban areas, but also preventing
conversion of natural areas and productive agricultural land. A co-benefit of many of these approaches
is creating spaces for people to gather, share, learn, play, and relax. With most of humanity living
in cities, and that percentage growing, urban areas are an important part of our present and future,
and actions that support biological diversity belowground can make cities more livable and sustainable.

5. Knowledge Gaps

Global knowledge of soil biodiversity distribution lags markedly behind aboveground knowledge.
New observations and understandings of soil-dwelling taxa and their habitats consistently come to
light. Initiatives to bring together global datasets have created maps that show gaps in biogeography,
biomass, and function, and species distributions of nematodes [143], bacteria [144], and fungi [145].
These synthesis efforts have highlighted knowledge gaps in distributions of soil taxa persist. Given
the greater uncertainty around global distribution of soil biodiversity compared with aboveground
biodiversity, analysis has shown only 37% of areas with the highest levels of both above- and
belowground biodiversity overlapped [146]. More research is needed, particularly in the Global South,
which is highly under-represented in the scientific literature, to refine these maps and build confidence
needed to shape habitat conservation with soil biota in mind. Knowledge of soil microbial communities
has grown exponentially in recent decades with the advent of molecular tools, but knowledge of
many soil invertebrates has slowed as taxonomic expertise dwindles at many academic institutions.
Understanding and appreciating soil biodiversity within taxa is a major knowledge gap. Soil organisms
are estimated to have much higher proportions of undescribed species than larger terrestrial and aquatic
taxa, which makes it challenging to evaluate which species may be in need of conservation and how best
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to prioritize conservation efforts [35]. Furthermore, lagging understanding genetic diversity within soil
biota, both fauna and microbial could slow discovery of pharmaceuticals [22,29] as well as capacity for
soil communities to respond to changing climate. Understanding of soil organisms, both microbial and
faunal, detailed enough to determine conservation status (e.g., common/rare/threatened/endangered)
is needed to catch-up to aboveground knowledge and inform action.

Linking soil biodiversity with ecosystem services and functions is a crucial area in which to
build information. We know soil organisms are central to nutrient cycling driving crop and livestock
production, but we lack clear understanding of which organisms or communities are most directly
involved. This leads to ambiguity around recommending actions for producers to leverage soil biology
for sustainable agriculture. Water quantity and quality is a top concern for agriculture and humanity.
Linking soil biodiversity impacts on water movement and quality at the watershed scale, perhaps
through modeling, and scaling those findings up to landscape-scale actions appropriate for addressing
current and developing water concerns is a priority. Scaling up soil biodiversity knowledge for global
climate action is another key challenge. Recent work is advancing understanding of how soil biology
can influence carbon cycling and next steps involve including biodiversity in climate change models to
improve predictions [67].

Uncertainties also exist around threats to soil biodiversity and solutions to protect soil organisms
and their contribution to sustainability. Enough research exists to know soil habitats face multiple threats,
from direct and indirect inputs of pollutants and nutrients, to shifts in above-ground communities,
including exotic species. However, many questions remain as to exactly how these factors impact
understudied taxa like protists and enchytraeids. There is also a scarcity of soil biodiversity knowledge
from certain habitat types, like urban areas, which have long been underappreciated by ecologists
and soil experts. Even in well-studied systems, like agricultural production, there are knowledge
blind-spots. Most research, including soil biodiversity research, has focused on industrial row-cropping
practices with very little research on small-scale subsistence farming, which makes up a large portion
of global agriculture. Increasing research in these areas will improve our understanding and increase
expert confidence in recommending actions to protect soil biodiversity and leverage its functioning for
global sustainability. We recommend additional research to build bridges between soil biodiversity
expertise and real-world solutions for a sustainable future, and we also believe there is a need to act
now, both to protect soil biodiversity and to advance sustainable development agendas.

6. Conclusions

Soil biodiversity knowledge and research is moving beyond academic circles and being used to
support solutions to biodiversity loss, local (water quality, food security), regional (land degradation),
and global (climate change) challenges. Managing soils, as the vibrant living systems they are, provides
a new perspective for integrated actions and solutions. Soil organisms, microscopic and macroscopic,
support all ecosystems: Cycling energy and nutrients to support plant and animal growth in terrestrial
systems and maintaining nutrient balances in water, thereby affecting aquatic organisms and ecosystem
health. The ways in which soil biodiversity interfaces with multiple ecosystem functions makes it a
natural focus for advancing a holistic global sustainability agenda. Soil biodiversity is at the heart of
natural solutions for climate, biodiversity, and humanity, including protecting natural areas, restoring
degraded ecosystems, employing sustainable agricultural practices, and adapting urban areas for
nature and people. As we work toward a sustainable future, let us not overlook the critical and diverse
asset, right beneath our feet.
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