
Getting started with the ALFAM2 package

Sasha D. Hafner (sasha@hafnerconsulting.com, sasha.hafner@eng.au.dk)

October 2, 2021

1 Introduction

The ALFAM2 project is on ammonia volatilization (emission) from field-applied
manure, and includes two main products: a database with volatilization mea-
surements and a model for estimating volatilization. The model, which is de-
scribed in detail in [1], is the focus of the ALFAM2 R package and this document.
The ALFAM2 package is an add-on package for R, which is an environment
for statistical computing. With the model, it is possible to predict average
volatilization rate and cumulative emission over time, as affected by application
method, weather, and manure characteristics. This document provides an in-
troduction to the use of the model, and is aimed for users who are new to R.
Those with some knowledge of R can skip Section 2.

1.1 Excel or R?

The ALFAM2 model is available in an Excel spreadsheet in addition to the
R package that is described in this document. If you would just like to know
cumulative emission for a few scenarios with constant conditions, the Excel
model is a good choice. But to work with many different scenarios, or when
weather changes over time (e.g., wind or rain), or if you are interested in emission
dynamics and not just final cumulative emission, you should use the R package.
You can use the ALFAM2 package without much knowledge of R. If you are not
currently an R user, but you plan on using the ALFAM2 model extensively, it is
worthwhile to learn a little bit about R and use the ALFAM2 package, instead
of the less efficient Excel spreadsheet model.

2 Some basics for new R users

The information given in this section should be enough for new R users to install
the package and learn enough about R to start using the model (albeit with a
lack of understanding about some of the code) as described in Section 3. For a
better understanding, check out the sources mentioned below.

1

2.1 Getting started with R

To use R it must be installed on your computer. You can download R and
find installation instructions from here: https://www.r-project.org/. And
while not required, it is convenient to have a good script editor. The RStudio
IDE (integrated development environment) is a good (and very popular) choice.
It can be downloaded from here: https://rstudio.com/products/rstudio/

download/.
To use the ALFAM2 package, you will need to install the package, and then

call up the function. In R, you will need to be able to install and load packages,
call functions, and, ideally, create data frames and export data. For information
on these tasks and more, there are many free resources online. I recommend this
book I use for a course on R: https://www.researchgate.net/publication/
325170649_An_Introduction_to_R_for_Beginners. CRAN provides various
manuals, including a good introduction: https://cran.r-project.org/ (se-
lect ”Manuals” at the lower left). RStudio also provides various materials for
learning R, although the focus is skewed toward packages developed by RStu-
dio employees: https://education.rstudio.com/learn/. Alternatively, the
instructions given below may be sufficient.

2.2 Installing the ALFAM2 package

The ALFAM2 package is available from a GitHub repository: https://github.
com/sashahafner/ALFAM2. Installation of packages from GitHub requires a
package called devtools. You can run the code below to install devtools and
ALFAM2.

First, install devtools from CRAN.

install.packages("devtools")

Then load the package,

library(devtools)

and install the ALFAM2 package from GitHub.1

install_github("sashahafner/ALFAM2", build_vignettes = TRUE)

Alternatively, to avoid loading devtools, use this syntax.

devtools::install_github("sashahafner/ALFAM2", build_vignettes = TRUE)

1Some additional notes. You need the build vignettes = TRUE bit to install this vignette
that you are now reading (and any others that may be added in the future). To get the latest
version of the package (possible bugs, incomplete testing, and all), add the argument ref =

"dev".

2

https://www.r-project.org/
https://rstudio.com/products/rstudio/download/
https://rstudio.com/products/rstudio/download/
https://www.researchgate.net/publication/325170649_An_Introduction_to_R_for_Beginners
https://www.researchgate.net/publication/325170649_An_Introduction_to_R_for_Beginners
https://cran.r-project.org/
https://education.rstudio.com/learn/
https://github.com/sashahafner/ALFAM2
https://github.com/sashahafner/ALFAM2

These steps only need to be carried out once.
Finally, every time you open R to use the ALFAM2 package, it must be

loaded.

library(ALFAM2)

You can open this vignette with the following call.

vignette("ALFAM2-start")

3 The ALFAM2mod() function

The ALFAM2 package includes a single function that is an implementation of
the ALFAM2 model: ALFAM2mod() After an explanation of the function, its use
is shown in a few examples.

3.1 Overview of the function

The ALFAM2() function can be used for predicting average volatilization rate
and cumulative emission over time. The function has several arguments, as
shown below.

args(ALFAM2mod)

function (dat, pars = ALFAM2::ALFAM2pars02, app.name = "TAN.app",

time.name = "ct", time.incorp = NULL, group = NULL, center = TRUE,

cmns = c(app.rate = 40, man.dm = 6, man.tan = 1.2, man.ph = 7.5,

air.temp = 13, wind.2m = 2.7, crop.z = 10), check.NA = TRUE,

pass.col = NULL, incorp.names = c("incorp", "deep", "shallow"),

add.incorp.rows = FALSE, warn = TRUE, parallel = FALSE, n.cpus = 1,

...)

NULL

You can find more details on the arguments (as well as examples) in the help
file. As with any R function, you can open the file with ?:

?ALFAM2mod

But the most important arguments are described here. Most arguments have
default values, and the only one that is required to make predictions is the dat

argument, which is a data frame containing some input data, i.e., values of pre-
dictor variables over time. The dat data frame can contain any number of rows
(each representing a time interval), but must contain a column with cumulative
time in hours, and the name of this column is indicated with time.name. Typ-
ically the data frame will have predictor variables as well, for example, manure

3

Table 1: Default predictor variables that can be used with ALFAM2mod(), as
given in the ALFAM2pars02 or ALFAM2pars01 objects.

Variable name Description Units Notes
int Intercept terms None
app.mthd.os Open slot application None (logical) Binary variable
app.mthd.cs Closed slot application None (logical) Binary variable
app.mthd.bc Broadcast application None (logical) Binary variable
app.mthd.ts Trailing shoe application None (logical) Binary variable
app.rate Manure application rate t/ha
app.rate.ni Manure app. rate (excluding (no) injection) t/ha
man.dm Manure dry matter %
man.ph Manure pH pH units For acidification
man.source.pig Pig manure None (logical) Binary variable
incorp.deep Deep incorporation None (logical) Binary variable
incorp.shallow Shallow incorporation None (logical) Binary variable
air.temp Air tempreature ◦C
wind.2m Wind speed (at 2 m) m/s
rain.rate Rainfall rate mm/h
rain.cum Cumulative rain mm
cereal.hght Cereal height cm

dry matter, application method, air temperature, or wind speed. The name of
the predictor columns are used to link predictor variables to model parameters,
which are set by the pars argument. Usually the default values, based on the
measurements in the ALFAM2 database, should be used. Predictor variables
and their default names are given in Table 1 below.

Default model parameters and numeric values in the ALFAM2pars02 object
(“Set 2”) should generally be used. For information on how these values were
calculated, see the report on calculation of Danish emission factors [2]. (An
earlier version (“Set 1”) are available in ALFAM2pars01. Derivation of these is
described in the 2019 paper [1].) Comparing the contents of ALFAM2pars02 to
the variable names given in Table 1, you can see an additional letter and number
added to the end of the parameters.

ALFAM2pars02

int.f0 app.mthd.os.f0 app.rate.ni.f0

-0.60568338 -1.74351499 -0.01114900

man.dm.f0 man.source.pig.f0 app.mthd.cs.f0

0.39967070 -0.59202858 -7.63373787

int.r1 app.mthd.bc.r1 man.dm.r1

-0.93921516 0.79352480 -0.13988189

air.temp.r1 wind.2m.r1 app.mthd.ts.r1

0.07354268 0.15026720 -0.45907135

ts.cereal.hght.r1 man.ph.r1 int.r2

4

-0.24471238 0.66500000 -1.79918546

rain.rate.r2 int.r3 app.mthd.bc.r3

0.39402156 -3.22841225 0.56153956

app.mthd.cs.r3 man.ph.r3 incorp.shallow.f4

-0.66647417 0.23800000 -0.96496655

incorp.shallow.r3 incorp.deep.f4 incorp.deep.r3

-0.58052689 -3.69494954 -1.26569562

These numbers indicate a primary parameter. So, for example, the (sec-
ondary) parameter wind.2m.r1, which is 0.15 s/m by default, is used in the
calculation of the primary parameter r1. The most important message here is a
simple one: names for predictor variables can be taken from the names given in
the default pars argument value, but be sure to omit the last three characters
(a ”.”, a number, and a letter).

By design, any time a predictor variable is omitted when ALFAM2mod() is
called, the reference level or value is assumed for that variable.2 The scenario
with reference levels for all predictors is the default scenario, and is the one given
in the first row of Table 4 in [1]. Predictor values for the default scenario can be
found in the (cmns) argument (for centering means, see help file). The default
application method is trailing hose. The cmns argument is used for centering
predictor variables, and this approach facilities the behavior described above.

3.2 Cumulative emission for a single scenario

In this example, let’s assume we are interested in manure application by broad-
cast when manure had 8% dry matter (DM), total TAN application is 50 kg/ha,
wind is 3 m/s, and air temperature is 20◦C.

First we need to create a data frame with the input data.

dat1 <- data.frame(ctime = 72, TAN.app = 50, man.dm = 8,

air.temp = 20, wind.2m = 3,

app.mthd.bc = TRUE)

dat1

ctime TAN.app man.dm air.temp wind.2m app.mthd.bc

1 72 50 8 20 3 TRUE

Our predictor variable values are in the columns man.dm and the following
ones. The names for the predictor variables must match those names used in the
model parameters, which can be seen by checking the parameter object contents
(see just above).

Time, in hours after application, is given in the column named ctime here,
for cumulative time (although any name can be used).

2One exception is app.rate.ni.

5

And now we can call the model function, using default values for most other
arguments. We can predict cumulative emission after 3 days (72 hours) with
the following call.

pred1 <- ALFAM2mod(dat1, app.name = 'TAN.app', time.name = 'ctime')

Default parameters (Set 2) are being used.

Warning in ALFAM2mod(dat1, app.name = "TAN.app", time.name = "ctime"):

Running with 10 parameters. Dropped 14 with no match.

These secondary parameters have been dropped:

app.mthd.os.f0

app.rate.ni.f0

man.source.pig.f0

app.mthd.cs.f0

app.mthd.ts.r1

ts.cereal.hght.r1

man.ph.r1

rain.rate.r2

app.mthd.cs.r3

man.ph.r3

incorp.shallow.f4

incorp.shallow.r3

incorp.deep.f4

incorp.deep.r3

##

These secondary parameters are being used:

int.f0

man.dm.f0

int.r1

app.mthd.bc.r1

man.dm.r1

air.temp.r1

wind.2m.r1

int.r2

int.r3

app.mthd.bc.r3

The warning message just tells us that the call included some parameters
with no associated predictor variables in our data frame given in the dat ar-
gument. This is discussed more below. We will turn off the warning in the
examples below.

Let’s look at the predictions.

pred1

ct dt f0 r1 r2 r3 f4

6

1 72 72 0.5482638 1.362777 0.01587869 0.002153413 1

f s j e e.int er

1 2.130583e-42 19.61361 0.4220332 30.38639 30.38639 0.6077278

The most interesting columns here are called e, which has cumulative emis-
sion in the same units as TAN application, and er, which has relative cumulative
emission, as a fraction of applied TAN. So in this example, 48% of applied TAN
is predicted to be lost by volatilization.

The warning message above is related to an important point: Any excluded
predictors are effectively assumed to be at their reference levels.

3.3 Adding incorporation

To include incorporation, we need to add a couple columns to our data frame.
First let’s make a new data frame for the example.

dat2 <- dat1

And add the two new columns. Here we are specifying that deep incorpora-
tion happens after 0.5 hours.

dat2$incorp.deep <- TRUE

dat2$t.incorp <- 0.5

dat2

ctime TAN.app man.dm air.temp wind.2m app.mthd.bc incorp.deep

1 72 50 8 20 3 TRUE TRUE

t.incorp

1 0.5

pred2 <- ALFAM2mod(dat2, app.name = "TAN.app", time.name = "ctime",

time.incorp = "t.incorp", warn = FALSE)

pred2

ct dt f0 r1 r2 r3 f4

1 72 72 0.5482638 1.362777 0.01587869 0.000116797 0.02424622

f s j e e.int er

1 5.165858e-44 35.84833 0.1965509 14.15167 14.15167 0.2830333

Here we see that with incorporation, emission drops to 28% of applied TAN.
Shallow incorporation has less of an effect.

dat3 <- dat1

dat3$incorp.shallow <- TRUE

dat3$t.incorp <- 0.5

dat3

7

ctime TAN.app man.dm air.temp wind.2m app.mthd.bc

1 72 50 8 20 3 TRUE

incorp.shallow t.incorp

1 TRUE 0.5

pred3 <- ALFAM2mod(dat3, app.name = "TAN.app", time.name = "ctime",

time.incorp = "t.incorp", warn = FALSE)

pred3

ct dt f0 r1 r2 r3 f4

1 72 72 0.5482638 1.362777 0.01587869 0.0005657185 0.2758849

f s j e e.int er

1 5.877957e-43 31.42921 0.2579277 18.57079 18.57079 0.3714159

3.4 Multiple scenarios in a single call

A single function call can be used for multiple scenarios. For example, perhaps
we would like to compare 5 different incorporation times. First let’s create a
new data frame that contains this information. We will need to add a new
column with a grouping variable also, to let ALFAM2mod() know that each row
represents a different scenario.

dat4 <- data.frame(scenario = 1:5, ctime = 72, TAN.app = 50,

man.dm = 8, air.temp = 20, wind.2m = 4,

app.mthd.bc = TRUE,

incorp.deep = TRUE,

t.incorp = c(0.1, 1, 6, 24, Inf))

dat4

scenario ctime TAN.app man.dm air.temp wind.2m app.mthd.bc

1 1 72 50 8 20 4 TRUE

2 2 72 50 8 20 4 TRUE

3 3 72 50 8 20 4 TRUE

4 4 72 50 8 20 4 TRUE

5 5 72 50 8 20 4 TRUE

incorp.deep t.incorp

1 TRUE 0.1

2 TRUE 1.0

3 TRUE 6.0

4 TRUE 24.0

5 TRUE Inf

It may seem strange to have a scenario column–isn’t it clear that each row
is a different scenario? The answer is no, not when there are multiple time
intervals per scenario, for example when one is interested in volatilization rates

8

over time and how they change. Note that there is no incorporation for scenario
5. We could also specify this behavior with t.incorp = NA.3

Let’s run the model for these 5 scenarios.

pred4 <- ALFAM2mod(dat4, app.name = "TAN.app", time.name = "ctime",

time.incorp = "t.incorp", group = "scenario", warn = FALSE)

pred4

scenario ct dt f0 r1 r2 r3

1 1 72 72 0.5482638 1.926158 0.01587869 0.000116797

2 2 72 72 0.5482638 1.926158 0.01587869 0.000116797

3 3 72 72 0.5482638 1.926158 0.01587869 0.000116797

4 4 72 72 0.5482638 1.926158 0.01587869 0.000116797

5 5 72 72 0.5482638 1.926158 0.01587869 0.002153413

f4 f s j e

1 0.02424622 1.249271e-61 44.27971 0.07944843 5.720287

2 0.02424622 1.249271e-61 26.34738 0.32850861 23.652620

3 0.02424622 1.249271e-61 22.34567 0.38408785 27.654325

4 0.02424622 1.249271e-61 21.54112 0.39526229 28.458885

5 1.00000000 5.152434e-60 19.53496 0.42312550 30.465036

e.int er

1 5.720287 0.1144057

2 23.652620 0.4730524

3 27.654325 0.5530865

4 28.458885 0.5691777

5 30.465036 0.6093007

We can see that predicted emission increases substantially as incorporation
time goes up. And incorporation after 24, or really even 6, hours is not much
better than no incorporation!

Scenarios could differ in any way. Below, both temperature and application
method vary. For scenario 2, application method is not explicitly specified,
which means it is the default–trailing hose.

dat5 <- data.frame(scenario = 1:3, ctime = 72, TAN.app = 50,

man.dm = 8, air.temp = 10 + (0:2 * 10),

wind.2m = 3,

app.mthd.bc = c(TRUE, FALSE, FALSE),

app.mthd.os = c(FALSE, FALSE, TRUE)

)

dat5

scenario ctime TAN.app man.dm air.temp wind.2m app.mthd.bc

1 1 72 50 8 10 3 TRUE

3Rhis would provide identical results, but for package v0.3.2 and prior, this approach did
not work correctly unless incorp.deep was set to FALSE.

9

2 2 72 50 8 20 3 FALSE

3 3 72 50 8 30 3 FALSE

app.mthd.os

1 FALSE

2 FALSE

3 TRUE

pred5 <- ALFAM2mod(dat5, app.name = "TAN.app", time.name = "ctime",

group = "scenario", warn = FALSE)

pred5

scenario ct dt f0 r1 r2 r3 f4

1 1 72 72 0.5482638 0.2506098 0.01587869 0.0021534129 1

2 2 72 72 0.5482638 0.2192300 0.01587869 0.0005910004 1

3 3 72 72 0.1751069 1.1921385 0.01587869 0.0005910004 1

f s j e e.int er

1 1.273732e-07 20.75301 0.4062081 29.24699 29.24699 0.5849397

2 1.219828e-06 23.42462 0.3691024 26.57538 26.57538 0.5315075

3 1.474136e-37 39.63677 0.1439338 10.36323 10.36323 0.2072646

3.5 Volatilization dynamics

All the calls above returned results for a single time per scenario. The func-
tion also predicts dynamics. If your interest is final cumulative emission, it is
not necessary to look at dynamics. The model uses an analytical expression
in each interval, and so results are independent of time step size, as long as
conditions (e.g., wind or air temperature) are constant. However, if detailed
temporal weather data are available, running the model with with multiple
intervals will generally improve the accuracy of prediction of final cumulative
emission. Where needed for incorporation calculations, the function will add an
interval (row), but these rows are excluded from the results by default (set the
add.incorp.rows argument to TRUE to show them).

Let’s assume we have some high resolution measurements of weather condi-
tions. We’ll create some data to represent this below.

set.seed(1201)

dat6 <- data.frame(ctime = 0:36*2, TAN.app = 100, man.dm = 8,

air.temp = 7 + 7*sin(0:36*2 * 2*pi/24) + rnorm(37, 0, 2),

wind = 10^(0.5 + 0.4*sin(0:36*2 * 2*pi/24) +

rnorm(37, 0, 0.12)),

app.mthd.bc = TRUE)

plot(air.temp ~ ctime, data = dat6, type = 'o', col = 'gray45')

10

0 10 20 30 40 50 60 70

0
5

10
15

ctime

ai
r.t

em
p

plot(wind ~ ctime, data = dat6, type = 'o', col = 'blue')

11

0 10 20 30 40 50 60 70

1
2

3
4

5
6

7
8

ctime

w
in

d

Predictions are made as above. By default, multiple rows in dat are assumed
to all below to the same scenario (same plot, same emission trial).4

pred6 <- ALFAM2mod(dat6, app.name = 'TAN.app', time.name = 'ctime',

warn = FALSE)

Cumulative emission and average interval flux are plotted below.

plot(e ~ ct, data = pred6, type = 'o', xlab = 'Time (h)',

ylab = 'Cumulative emission (kg/ha)')

4This is the reason the group argument was needed above.

12

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60

Time (h)

C
um

ul
at

iv
e

em
is

si
on

 (
kg

/h
a)

plot(j ~ ct, data = pred6, type = 'S', log = 'y', col = 'red',

xlab = 'Time (h)', ylab = 'Average flux (kg/ha-h)')

13

0 10 20 30 40 50 60 70

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Time (h)

A
ve

ra
ge

 fl
ux

 (
kg

/h
a−

h)

Dynamics in the case of incorporation may be interesting. The additional
interval required internally because incorporation does not line up exactly with
an interval in the input data frame can be returned in the output by using the
add.incorp.rows argument. But recall that this has no effect on cumulative
emission.

dat7 <- dat6

dat7$incorp.deep <- TRUE

dat7$t.incorp <- 6.5

pred7 <- ALFAM2mod(dat7, app.name = 'TAN.app', time.name = 'ctime',

time.incorp = 't.incorp', warn = FALSE, add.incorp.rows = TRUE)

14

plot(e ~ ct, data = pred7, type = 'o', xlab = 'Time (h)',

ylab = 'Cumulative emission (kg/ha)')

abline(v = 6.5, col = 'blue')

0 10 20 30 40 50 60 70

0
10

20
30

40

Time (h)

C
um

ul
at

iv
e

em
is

si
on

 (
kg

/h
a)

plot(j ~ ct, data = pred7, type = 'S', log = 'y', col = 'red',

xlab = 'Time (h)', ylab = 'Average flux (kg/ha-h)')

abline(v = 6.5, col = 'blue')

15

0 10 20 30 40 50 60 70

5e
−

03
5e

−
02

5e
−

01
5e

+
00

Time (h)

A
ve

ra
ge

 fl
ux

 (
kg

/h
a−

h)

The drop in flux immediately after incorportaion is particularly clear in the
flux (second) plot.

3.6 Data import and export

Any of the results shown above can be exported as with any data frame in R.
The simplest function for this is write.csv(). The following call will create a
comma delimited text file that can be opened with spreadsheet or text editor
programs.

write.csv(pred6, 'pred6.csv', row.names = FALSE)

Alternatives include write.csv2, write.table, and any of the various func-
tions in add-on packages for writing to Excel files.

Except for simple scenarios, it is not very efficient to create a data frame for
entering predictor variable values. A more typical approach will be to read data
into R from a file, especially when using the model in association with emission

16

measurements. The simplest approach here is to use the read.csv() function
or some of the related functions. Alternatively, data can be easily read from
Excel files with the read xls and related functions in the readxl package. See
the book mentioned above for details.

3.7 More with the ALFAM2 model

Dynamic predictions can be combined with multiple scenarios, although this is
not shown here. In fact, the only difference between these dynamic calls and
the simple examples given above is the number of measurement intervals.

All the calls in this document used the default parameter values. However, it
is possible to use completely different parameter values for the same parameters,
or even different secondary parameters. These are set with the pars argument.

For large datasets, or parameter estimation (where the ALFAM2mod() func-
tion is called many times), parallel processing will be helpful. See the parallel

argument.

Acknowledgements

Christoph Haeni, Johanna Maria Pedersen, and Anders Peter Adamsen provided
helpful suggestions and identified errors in earlier drafts of this vignette. Thank
you!

References

[1] Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M.,
Génermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Missel-
brook, T., Neftel, A., Nyord, T., Sommer, S.G. A flexible semi-empirical
model for estimating ammonia volatilization from field-applied slurry. At-
mospheric Environment. Atmospheric Environment, 199:474-484, 2018.
https://doi.org/10.1016/j.atmosenv.2018.11.034

[2] Hafner, S.D., Nyord, T., Sommer, S.G., Adamsen, A.P.S. 2021. Es-
timation of Danish emission factors for ammonia from field-applied liq-
uid manure for 1980 to 2019. Danish Centre for Food and Agricul-
ture, Aarhus University, Aarhus, Denmark. Report no. 2021-0251862.
https://pure.au.dk/portal/files/223538048/EFreport23092021.pdf

17

	Introduction
	Excel or R?

	Some basics for new R users
	Getting started with R
	Installing the ALFAM2 package

	The ALFAM2mod() function
	Overview of the function
	Cumulative emission for a single scenario
	Adding incorporation
	Multiple scenarios in a single call
	Volatilization dynamics
	Data import and export
	More with the ALFAM2 model

