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1 Introduction 
Aboveground crop biomass and the estimation of this during the growth and development of the 
potato crop is an important parameter for the general status of the crop. Crop biomass is also 
important if the aim is to optimise nitrogen application rate and/or optimise irrigation. It is difficult 
and time consuming to either estimate crop biomass by the human eye or take destructive plant 
samples in the field, process these samples and calculate the total biomass. Based on the 
importance of gathering information of potato crop biomass, one of the aims in the Blightmanager 
project is to use cameras to predict aboveground potato crop biomass. 

This internal report for the Blightmanager project presents an algorithm for estimating the dry 
matter content of potato plants. The proposed algorithm uses a stereo vision camera to estimate the 
change in volume to predict the dry weight of sampled potato plants.  

 

2 Data acquisition 
Potato plant samples and corresponding images were collected on 11th and 16th August 2021 at 
Aarhus University, Flakkebjerg. The MultiSense S21 (Carnegie Robotics, Pittsburgh, PA, USA) 
stereovision camera was used to collect matching RGB and depth images (Figure 1). The depth 
images are derived by matching points in the MultiSense S21’s built-in left and right RGB cameras. 
The MultiSense S21 calculated the depth image internally and with respect to its left camera. The 
two cameras had a resolution of 544×1024 pixels, a focal length of 6 mm and a baseline1 of 28 cm. 
Exposure time and white balance were set automatically by the camera. The camera was mounted 
downward facing at approximately 1.7 m above the ground on the agricultural field robot Robotti 
(Agrointelli, Aarhus, Denmark). A laptop running the open source Robot Operating System (ROS, 
www.ros.org) was connected to the camera. The laptop was used to control and monitor the live 
images from camera and to store the collected images for offline processing. Images of the plant 
samples were acquired before and after collecting the individual plant samples (Figure 1). On the 
11th August, the Robot remained stationary before, during and after collecting the plant samples. On 
the 16th August, the Robotti moved while collecting the images to provide images of the same plant 
sample from multiple view points. 

The potato plants were sown in rows with a row distance of 0.75 m and 0.33 m between plants in in 
the same row. Ten plant samples were collected on both the 11th and 16th August. A given plant 
sample could contain multiple plants (Figure 1, a+c). The collected samples were weighted in the 
laboratory and then dried for 24 hours at 60 °C. The samples were weighed before and after the 
drying process. The samples from the 11th and 16th August ranged from 30 g to 157 g dry matter and 
from 30 g to 116 g dry matter, respectively (Figure 2). 

The data collected on the 11th August were used for calibration, while the data collected on the 16th 
August were used for validation.  

                                                           
1 The baseline is the distance between the left and right camera in a stereovision setup. 

http://www.ros.org/
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

 
i) 

Figure 1. Examples of collected RGB images (a-d) and pseudo-coloured depth images (e-h) before (a-b and e-f) and after (c-
d and g-h) collecting two different potato plant samples. i) shows the pseudo-colour to depth mapping used in the pseudo-
coloured depth images. White corresponds to unknown depths. 
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Figure 2. Dry matter distribution of the collected plant samples. The red lines indicate the median, the box edges are the 
25th and 75th percentile and the end of the dashed lines show the extreme data points. “+” indicates outliers (none present). 
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3 Potato plant segmentation 
To estimate the dry matter of the sampled potato plants from the collected RGB and depth images, 
the RGB and depth images are first converted to 3D point clouds. Then the point clouds before and 
after sampling are aligned and the changes between the two are determined. Assuming, that only 
the sampled plants have been removed between acquiring the “before” and “after” point clouds, 
the sampled plants can be identified by examining the changes between the two point clouds. The 
sampled potato plant is segmented in the “change” point cloud by through thresholding and 
clustering. Two volume estimates were explored. Each step is described in detail in the following 
sections. 

 

3.1 From images to point cloud 
Each pixel in the depth image provided by the stereovision camera corresponds to the distance from 
the camera to a point on the nearest object intersected by the pixel ray. The stereovision camera 
must be able to identify the same point in both the left and the right camera of the stereovision 
camera to calculate the distance to the point. Therefore, points, which are either not identifiable in 
both the left and right camera of the stereovision camera, lead to undefined depths in depth image 
(Figure 1, e-h). 

The intensity of each pixel in the depth image are in metric units, while the spatial extend of the 
image are in pixel units. To have both metric units, the depth image was converted to a point cloud 
using the focal length and principle point of the camera. The conversion assumes a pinhole camera 
model without any distortion. As left and right images are rectified to create the depth images, this 
is a fair assumption. Let 𝑝𝑝 = �𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧� be a point in three dimensional space, and 𝑥𝑥𝑝𝑝𝑥𝑥 and 𝑦𝑦𝑝𝑝𝑥𝑥 be 
the image coordinates, where the ray from the optical centre to 𝑝𝑝 intersects the image plane, then 
the coordinates of 𝑝𝑝 are given by: 

𝑝𝑝𝑥𝑥 =
�𝑥𝑥𝑝𝑝𝑥𝑥 − 𝜌𝜌𝑥𝑥� ∙ 𝐷𝐷�𝑥𝑥𝑝𝑝𝑥𝑥,𝑦𝑦𝑝𝑝𝑥𝑥�

𝑓𝑓𝑥𝑥
 𝐸𝐸𝐸𝐸. 1 

𝑝𝑝𝑦𝑦 =
�𝑦𝑦𝑝𝑝𝑥𝑥 − 𝜌𝜌𝑦𝑦� ∙ 𝐷𝐷�𝑥𝑥𝑝𝑝𝑥𝑥 ,𝑦𝑦𝑝𝑝𝑥𝑥�

𝑓𝑓𝑦𝑦
 𝐸𝐸𝐸𝐸. 2 

𝑝𝑝𝑧𝑧 = 𝐷𝐷�𝑥𝑥𝑝𝑝𝑥𝑥,𝑦𝑦𝑝𝑝𝑥𝑥� 𝐸𝐸𝐸𝐸. 3 

where 𝜌𝜌 = �𝜌𝜌𝑥𝑥 ,𝜌𝜌𝑦𝑦� is the principle point in the image plane, 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the focal length in pixels in 
the x- and y-directions of the image plane, respectively, and 𝐷𝐷�𝑥𝑥𝑝𝑝𝑥𝑥 ,𝑦𝑦𝑝𝑝𝑥𝑥� is the depth given by the 
depth image at coordinates �𝑥𝑥𝑝𝑝𝑥𝑥 ,𝑦𝑦𝑝𝑝𝑥𝑥�. We used the calibration values obtained by the 
manufacturer: 𝜌𝜌 = [252, 498] and 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦 = 556 pixels. 

As the depth image is derived from and fully aligned with the left RGB image from the stereovision 
camera, the points in the point cloud can without any assumptions be coloured from the RGB image. 

Figure 3 show examples of the converted point clouds from the depth and RGB images in Figure 1. 
Note, that direction of the Z-axis is reversed, as the origin of the Z-axis is according to the image 
plane of the downward facing camera – and not the ground. 
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a) b) 

  
c) d) 

Figure 3. Examples of generated point clouds from before (a-b) and after (c-d) collecting potato plant samples from two 
different conditions. The point clouds correspond to the RGB and depth images in Figure 1. 

 

3.1.1 Orient point cloud according to ground plane 
As noted in the previous section, the z-axis of the generated point cloud is reversed (Figure 3). While 
not strictly necessary, it is convenient when working with and viewing the point clouds to have the z-
axis pointing upwards and the origin at ground level. 

To estimate the ground level, a plane was fitted to all soil points in a distance between 1600 to 1800 
mm from the camera (Figure 4.a-d). The plane was fitted to the soil points using the M-estimator 
SAmple Consensus (MSAC) algorithm (Torr & Zisserman, 2000). A point was regarded as soil, if its 
excess red (ExR) value was larger than its excess green (ExG) value (Meyer & Neto, 2008). Let 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅 =
[𝑝𝑝𝑅𝑅 ,𝑝𝑝𝑅𝑅 ,𝑝𝑝𝑅𝑅] be the red, green and blue colour of the point 𝑝𝑝, then 𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) and 𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) are 
given by: 

𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) =
2𝑝𝑝𝑅𝑅 − 𝑝𝑝𝑅𝑅 − 𝑝𝑝𝑅𝑅
𝑝𝑝𝑅𝑅 + 𝑝𝑝𝑅𝑅 + 𝑝𝑝𝑅𝑅

 𝐸𝐸𝐸𝐸. 4 

𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) =
1.4𝑝𝑝𝑅𝑅 − 𝑝𝑝𝑅𝑅
𝑝𝑝𝑅𝑅 + 𝑝𝑝𝑅𝑅 + 𝑝𝑝𝑅𝑅

 𝐸𝐸𝐸𝐸. 5 

𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) = 𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) − 𝐸𝐸𝑥𝑥𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) 𝐸𝐸𝐸𝐸. 6 

The point 𝑝𝑝 is then regarded as a soil point, if 𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸(𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅) < 0. 

A rigid transformation was used to translate and rotate the point cloud. The translation of the z-
coordinates corresponded to the distance from the ground plane to the origin was transformed 
using a rigid transformation with a translation corresponding to the distance from the ground plane  
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The origin of the x- and y-axis in the untransformed point cloud and the sampled potato plants were 
located at approximately the centre of the point cloud. Therefore, the distance from the camera to 
the ground plane was evaluated with respect to the origin. The untransformed point cloud was 
translated according to the estimated distance to the ground plane and fixed rotations around the y-
axis and z-axis of 180° was used to orient the point cloud correctly, such that it had its z-axis point 
upwards, a right handed coordinate system and the aligned with the original RGB and depth images 
(Figure 4). 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 4. Examples of identified soil points (a-b), ground plane fitted to soil points (c-d), and rotated and translated point 
cloud (e-f). The examples corresponds to the point clouds seen in Figure 3.a (a, c, and e) and Figure 3.d (b, d, and f). 
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3.2 Subtract point clouds from before and after sampling plants 
To subtract the point cloud after plant sampling from the point cloud before plant sampling, the two 
point clouds need to be aligned and resampled to the same spatial grid. 

3.2.1 Align point clouds using iterative closest point 
The iterative closest point (ICP) algorithm (Besl & McKay, 1992) was used to align the point clouds 
before and after sampling a potato plant. The ICP algorithm iteratively estimates the translation and 
rotation of a “moving” point cloud to align it with a “fixed” point cloud. In each iteration, the ICP 
algorithm matches the points in the “moving” point cloud to the points in the “fixed” point cloud, 
uses the matched points to estimate the translation and rotation, and translates and rotates the 
“moving” point cloud before rematching the points again in the next iteration. The ICP algorithm 
terminates, when the translation and rotation in a given iteration is sufficiently small or the 
maximum number of iterations has been reached. 

In the present case, the point cloud collected after plant sampling was the “fixed” point cloud, while 
the point cloud from before sampling the potato plant was the “moving” point cloud. To reduce the 
processing time and reduce false matching between points while aligning the point clouds with ICP, 
the centre 1.5 m of the point clouds were ignored and each point cloud were downsampled using an 
averaging grid with 27 mm grid cells (Figure 5.a-b). 

Examples of the aligned point clouds superimposed on each other are shown in Figure 5.c-d. Note 
that the soil/ground below the sampled plants are now present compared to Figure 3.a-b. 

  
a) b) 

  
c) d) 

Figure 5. Examples of aligned point clouds. a) and b) show the downsampled point clouds without the centre used to 
determine the translation and rotation of the “before” point cloud. Green, magenta, and black points are the “before”, 
“after” and aligned points. c) and d) show the aligned “before” and “after” point clouds superimposed on each other. Note 
the soil below the sampled plants. 
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3.2.2 Resample point clouds to same spatial grid 
To resample the point clouds to the same spatial grid, the coordinates of the point clouds were 
rounded to a fixed grid size. Let 𝑝𝑝 = �𝑝𝑝𝑥𝑥 ,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧� be a point in the point cloud, then the resampled 
point 𝑝𝑝� = �𝑝𝑝�𝑥𝑥 ,𝑝𝑝�𝑦𝑦,𝑝𝑝�𝑧𝑧� is given by: 

𝑝𝑝�𝑥𝑥 = �
𝑝𝑝𝑥𝑥 − �𝑝𝑝𝑥𝑥,0 − ½𝛿𝛿�

𝛿𝛿
� 𝛿𝛿 +  �𝑝𝑝𝑥𝑥,0 − ½𝛿𝛿� 𝐸𝐸𝐸𝐸. 7 

𝑝𝑝�𝑦𝑦 = �
𝑝𝑝𝑦𝑦 − �𝑝𝑝𝑦𝑦,0 −½𝛿𝛿�

𝛿𝛿
� 𝛿𝛿 + �𝑝𝑝𝑦𝑦,0 − ½𝛿𝛿� 𝐸𝐸𝐸𝐸. 8 

𝑝𝑝�𝑧𝑧 = �
𝑝𝑝𝑧𝑧 − �𝑝𝑝𝑧𝑧,0 −½𝛿𝛿�

𝛿𝛿
� 𝛿𝛿 + �𝑝𝑝𝑧𝑧,0 − ½𝛿𝛿� 𝐸𝐸𝐸𝐸. 9 

where 𝑝𝑝𝑥𝑥,0, 𝑝𝑝𝑦𝑦,0 and 𝑝𝑝𝑧𝑧,0 are the lower spatial limits of the spatial grid, 𝛿𝛿 is the step size of the grid, 
and ⌊ ⌉ rounds the number to the nearest integer. A step size 𝛿𝛿 of 3 mm was used. The colour of 
the resampled point is the same as the original point. While resampling, resampled points outside 
the spatial limits of either point cloud are discarded. 

 

3.2.3 Subtracting point clouds 
The points in the “before” point cloud were linked to the points in the “after” point cloud by 
comparing their xy-coordinates. If the distance in xy-coordinates between the points was less than 3 
mm, the “after” points were considered a link candidate of the “before” point. The link candidate 
with the highest z-coordinate was linked to the “before” point, and the remaining link candidates 
were discarded. If there were no points within 3 mm, the “before” point was discarded. 

After linking a point in the “before” and “after” point clouds, the height was determined change z-
coordinate (∆𝑧𝑧) by subtracting the z-coordinate of the “after” point from the z-coordinate of the 
“before” point. Furthermore, the change in ExGR (∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸) was determined by subtracting the ExGR 
value of the “after” point from the ExGR value of the “before” point. 

After determining the changes in height ExGR, a “change” point cloud was created by using the xy-
coordinates of the points in the linked points in the “before” point cloud, the change in height as z-
coordinate and the change in ExGR as intensity (Figure 6). 

  
a) b) 

Figure 6. Examples of difference in height (∆𝑧𝑧) and ExGR (∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸) between pairs of “before” and “after” point clouds. The 
two examples (a) and (b) corresponds to the pairs of point clouds in Figure 3. 
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3.3 Segment potato plant 
As an initial step to segment the potato plant in the “change” point cloud, all points with a change in 
ExGR  (∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸) less than ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ were removed (Figure 7a-b). A numerical small ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸 
corresponds to an area, which are either soil before and after sampling the plant or green plant 
material before and after plant sampling. A large positive ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸 corresponds to green plant 
material removed and revealing soil below. This is mainly the sample potato plant. Small areas not 
associated with the sampled plant may also experience a positive ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸 (Figure 6). This is due to 
small changes in canopy making the soil below visible, e.g. due to wind. Similarly, small changes in 
the canopy can also leads to a large negative ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸, when soil, which was visible in the “before” 
point cloud, is covered by green plant material in the “after” point cloud. 
 

  
a) b) 

 
 

c) d) 

  
e) f) 

Figure 7. a) and b) show the thresholded “change” point clouds (∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸 > 0.2) from Figure 6. c) and d) show the clustering 
of the remaining points after thresholding. Each colour represents a different cluster. The red lines are the convex hull of the 
large clusters (#points < 717). e) and f) are the final segmented “change” point cloud after small clusters within the convex 
hull of the large clusters have been added. 



Blightmanager Internal report December 2021 
 Above-ground potato plant dry matter estimation using stereo vision 

Page 12 of 18 
 

After thresholding the “change” point cloud, the points are clustered based on their Euclidean 
distance. As the points were resampled to the same spatial grid with a step size of 3 mm, the points 
within √3 ∙ 𝛿𝛿2 = √3 ∙ 32 = √27 ≅ 5.2 mm from each other are assigned to the same cluster. After 
thresholding, the largest clusters are formed from points associated with the sampled plant (Figure 
7c-d). Small clusters exist are formed from both points associated with the sampled plant and from 
other minor changes in between the “before” and “after” point clouds, which has led to a large 
∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸. To separate the large clusters of the sampled plant from the small clusters, a threshold on 
the cluster size were employed. All clusters larger than 𝐶𝐶𝑡𝑡ℎ was considered large clusters and 
assumed to be part of the sampled plant. To include the small clusters associated with the plant, all 
small clusters with a centre of mass inside the convex hull of the large clusters were assumed to be 
part of the sampled plant as well (Figure 7c-d). 

Examples of the final segmented potato plant in the “change” point cloud are shown in Figure 7e-f. 

 

3.4 Volume 
Two different approached to estimating the volume change were explored: 1) convex hull (Barber, 
Dobkin, & Huhdanpaa, 1996) and 2) sum-of-columns. Furthermore, two segmentations were 
considered: One using only the large clusters to form the segmented point cloud and one using both 
the large and the small clusters to form the segmented point cloud. 

The convex hull of a set of points is the extreme points, which encases all the other points (Figure 8c-
d). The convex hull volume is then the volume spanned by these points. A virtual point with zero 
height was added for each point in the point cloud to ensure that the height was captured by the 
convex hull. If no virtual point were added, the change in height below the lowest point in the 
segmented point cloud would no contribute to the estimated volume. 

As the point clouds were resampled into a regular spatial grid, each point in the segmented point 
cloud effectively represent a column with a volume of 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛿𝛿2 ∙ ∆𝑧𝑧 . The sum-of-columns volume 
is then the sum of the volume of each point in the segmented point cloud (Figure 8e-f). 
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a) b) 

  
c) d) 

  
e) f) 

Figure 8. a-b) Segmented point clouds, where the colour corresponds to the change in height. c-d) Convex hull (red shaded 
area) of the segmented point clouds (a-b). e-f) column representation of the segmented point cloud (a-b) used to calculate 
the sum-of-columns volume. 
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4 Results 
4.1 Effect of hyper-parameters 
To study the effect of the two hyper-parameters ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ and 𝐶𝐶𝑡𝑡ℎ on the estimated dry matter, a 
set of linear models are fitted to the training data and evaluated using leave-one-out cross validation 
(Figure 9). The average root mean square error (RMSE) of the cross validation is used as metric for 
the performance of a given set of hyper-parameters. Five different values of ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ were 
evaluated. For each ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ a set of logarithmic spaced values of 𝐶𝐶𝑡𝑡ℎ ranging from 1 to 1585 were 
evaluated. Both sum-of-columns (Figure 9a) and convex hull (Figure 9b) volumes as well as using 
only the large clusters and including the small clusters were explored. 

The models using the sum-of-columns volume estimation generally showed a much lower average 
RMSE and appeared more stable in terms of 𝐶𝐶𝑡𝑡ℎ. This is likely due to the convex hull being very 
sensitive to outliers, which can greatly increase the estimated volume (Figure 8d), while the same 
outlier will only increase the volume by the equivalent to its column in the case of the sum-of-
columns method (Figure 8f). Moreover, the convex hull will also tend to overestimate the volume of 
point clouds, which have a concave shape, i.e., low point in the centre and high points near the edge 
(Figure 8c-d). 

For the models using the sum-of-columns volume including the small clusters generally improved the 
models, particularly when increasing 𝐶𝐶𝑡𝑡ℎ (Figure 9a). In some cases, not including the small clusters 
resulted in a lower average RMSE, but in those cases, the average RMSE of the model without small 
clusters is very similar to the average RMSE of the model with small clusters. 

Overall, the models with ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ = 0.1 and 𝐶𝐶𝑡𝑡ℎ = 282 produces the lowest average RMSE. While 
these parameters provide the lowest RMSE for relating the volume to the dry matter, they do not 
necessarily provide the most accurate segmentation of the plants. 
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a) 

 
b) 

Figure 9. The effect of ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸 threshold, cluster size thresholds (x-axis), inclusion of small clusters and volume calculation 
method on the average RMSE in leave-one-out cross validation on the training set. a) Volume calculated using sum-of-
columns. b) Volume calculated using convex hull. Note that while the y-axis of both the top and bottom graphs start at 0, 
the y-axis on the bottom graph span twice the range of the y-axis on the top graph. 

 

4.2 Dry matter estimation 
The dry matter was estimated using the values for the hyper-parameters (∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ = 0.1 and 𝐶𝐶𝑡𝑡ℎ =
282) from the previous section and using the sum-of-columns method for calculating the volume. 
Both large and small clusters were included in the calculation of the volume. A linear model was 
fitted on the training set and evaluated on the test set. A single outlier from the training set was 
excluded from the model fitting as it underestimated the volume across all hyper-parameters tested 
in the previous section. Unfortunately, this was also the sample with the highest dry matter. 

The fitted model showed a strong correlation (𝐸𝐸2 = 0.98) on the training set (Figure 10), but a 
weaker correlation to the test set (𝐸𝐸2 = 0.62). The RMSE of the training and test sets were 4.4 g and 
18.5 g, respectively. The test set indicates a slight trend in the model to underestimate the dry 
matter in the larger plants (90 – 120 g), however, the number of samples are low and including more 
samples may easily change the slope of the model. Including the outlier from the training set may 
have created a model better correlated with the test set, however, as all decisions regarding the 
model should be taken independently of the test set, it was not included. 
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In the hyper-parameter search in the previous section, the models fitted with a low cluster size 𝐶𝐶𝑡𝑡ℎ 
performed almost as good as the corresponding models fitted a higher 𝐶𝐶𝑡𝑡ℎ (Figure 9a). Likewise, the 
models fitted with ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ = −0.1 performed almost as well as the models fitted with the optimal 
∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ = 0.1 (Figure 9a). A low ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ corresponds to including almost all the points in from 
the “change” point cloud in segmentation, while a very low 𝐶𝐶𝑡𝑡ℎ of 1 corresponds to including almost 
all points in the large clusters. Combined this almost equals skipping the segmentation step. This 
naturally leads to the question, if the segmentation step can be skipped altogether to fit a model on 
a sum-of-columns volume estimate of the “change” point cloud rather than the segmented point 
cloud. The model fitted directly to the “change” point cloud showed a similar, but slightly weaker 
correlation (Figure 11) to both the training (𝐸𝐸2 = 0.97) and test set (𝐸𝐸2 = 0.58) compared to the 
model fitted to the segmented point cloud (Figure 10). The RMSE of the training and test sets were 
6.3 g and 19.5 g, respectively. The test set shows a greater trend underestimate the volume and dry 
matter across all samples. The outlier from the training set appears to be more aligned with the test 
set (Figure 11b). 

  
a) b) 

Figure 10. Correlation plots for the model using the hyper-parameters: ∆𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑡𝑡ℎ = 0.1 and 𝐶𝐶𝑡𝑡ℎ = 282. a) Correlation plot 
of the estimated volume and the observed dry matter. b) Correlation plot between predicted dry matter and the observed 
dry matter. 

  
a) b) 

Figure 11. Correlation plots for the model without segmenting the potato plant. a) Correlation plot of the estimated volume 
and the observed dry matter. b) Correlation plot between predicted dry matter and the observed dry matter. 
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5 Conclusion 
This report has presented a novel method for estimating the dry matter change between two point 
clouds generated from coloured 3D point clouds generated from depth and RGB images from a 
stereovision camera. While the results are promising, they are preliminary as the number of samples 
are very low. The results showed that the segmentation step could potentially be omitted for a 
slightly weaker correlation, but for a simpler algorithm with less hyper-parameters. 

While the proposed method has focused on estimating the dry matter, it could be used for 
estimating new growth. This be done by comparing the “before” point cloud to a reference point 
cloud of the bare soil acquired the plant emerges. Weekly scans of the potato plants would give 
weekly estimates of the dry matter – and changes in the weekly dry matter would provide estimates 
of new growth. A deceleration in new growth could indicate plant stress, e.g. from fungal infection. 

Future work should focus on acquiring more samples – ideally throughout the growing season, 
across different years and locations to capture as much variability in the conditions as possible. 
Future work may also focus on estimating the below-ground yield based on the above-ground plant 
material. This work may need support from a growth model combining the expertise of engineers 
(point cloud segmentation) and agronomists (growth model). 
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