$\mathbb{C}P^1$ -structures and dynamics in moduli space

Subhojoy Gupta, Center for Quantum Geometry of Moduli Spaces (QGM), Aarhus.

What is a $\mathbb{C}P^1$ -structure?

A complex projective structure on a surface S is a choice of charts to $\mathbb{C}P^1$ such that the transition maps lie in $PSL(2,\mathbb{C})$. It has a **developing map** $f: \widetilde{S} \to \mathbb{C}P^1$ and a **holonomy representation** $\rho: \pi_1(S) \to PSL(2,\mathbb{C})$ that records the mismatch of charts around loops.

Bending and grafting

Given a hyperbolic surface X and a simple closed geodesic γ , one can deform the $\mathbb{C}P^1$ -structure by *bending* the developing map.

Teichmüller geodesic rays

For two Riemann surfaces X and Y one can construct **quasiconformal maps** between them that allow a bounded distortion of angle.

For each such f, this distortion is some quantity K and the **Teichmüller distance** is given by the *least* distortion map:

 $d_{\mathcal{T}}(X,Y) = \frac{1}{2} \inf_{f} \ln K$

$\phi \circ \psi^{-1}$ is a Möbius map

Example: A hyperbolic surface, with charts to the hyperbolic plane \mathbb{H}^2 thought of as the upper hemisphere of $\mathbb{C}P^1$, and transition maps in $Isom^+(\mathbb{H}^2) = PSL_2(\mathbb{R}) \hookrightarrow PSL_2(\mathbb{C})$. The holonomy is a **Fuchsian representation**.

The bundle picture

Assume S is closed, oriented and of genus $g \geq 2$.

Let $\mathcal{P}_g = \{\text{space of projective structures on } S\}.$

Since the transition maps above are conformal, they also define a complex structure on S. So we have:

This amounts to grafting in a euclidean cylinder at γ . More generally, one can graft along a **lamination** λ , which is a *limit* of curves.

The "bending angle" gives a one-parameter family of deformations

 $\{gr_{t\lambda}X\}_{t\geq 0}$

whose projection to \mathcal{T}_g is a grafting ray.

Our results

Theorem 1. Let $X \in \mathcal{T}_g$ and λ any lamination. Then there exists a $Y \in \mathcal{T}_g$ such that the grafting ray determined by (X, λ) is **strongly asymptotic** to the Teichmüller ray determined by (Y, λ) , that is,

Such a map picks a decomposition of the surface into rectangles, and stretches horizontally along each *(the figure above gives a partial picture)*.

Given X and a horizontal foliation λ , the *stretch* factor parametrizes a geodesic path

 ${Teich_{t\lambda}X}_{t\geq 0}$

in \mathcal{T}_g which is a **Teichmüller ray**.

 $\dot{\mathcal{M}}_q$

Here \mathcal{T}_g is the **Teichmüller space** of all "marked" Riemann surfaces, and \mathcal{M}_g is **Riemann's moduli space**, the quotient by the action of the mapping class group.

 $\chi(S)$ is the **character variety** of $PSL(2, \mathbb{C})$ representations of $\pi_1(S)$ upto conjugation, and h maps a $\mathbb{C}P^1$ -structure to its holonomy.

A motivating question

Given a representation $\rho \in \chi(S)$, what is the structure of the level set $h^{-1}(\rho)$?

In 1983 Faltings conjectured that for ρ Fuchsian this set is infinite - this was shown to be true in [2]. More recently, work of Shinpei Baba shows

as $t \to \infty$.

By the *ergodicity* of the Teichmüller geodesic flow (see [6]), we have:

Corollary. Almost every grafting ray projects to a dense set in \mathcal{M}_g .

Theorem 2. Let $X \in \mathcal{T}_g$. Then the set

 $\mathcal{S} = \{ gr_{2\pi\gamma} X \mid \gamma \text{ is a multicurve } \}$

 $d_{\mathcal{T}}(qr_{e^t\lambda}X, Teich_{t\lambda}Y) \to 0$

projects to a **dense** set in moduli space \mathcal{M}_g .

Since these " 2π -graftings" preserve Fuchsian holonomy we get:

Corollary. For ρ a Fuchsian representation, $h^{-1}(\rho)$ projects to a dense set in \mathcal{M}_g .

Idea of the proof of the asymptoticity result

• Take a **conformal limit** of the grafting ray as $t \to \infty$:

 \mathcal{P}_{g}

that a generic level set is infinite.

References

- D. Dumas, Complex projective structures. In "Handbook of Teichmüller theory" Vol. II, EMS Zürich, 2004.
- W. Goldman, Projective structures with Fuchsian holonomy. J. Differential Geom. Vol 25 No. 3, 1987.
- [3] S. Gupta, Asymptoticity of grafting and Teichmüller rays I. http://arxiv.org/abs/1109.5365
- [4] -, Meromorphic quadratic differentials with halfplane structures. http://arxiv.org/abs/1301.0332
- [5] -, Conformal limits of grafting and Teichmüller rays. http://arxiv.org/abs/1303.7387
- [6] H. Masur, Interval exchange transformations and measured foliations. Ann. of Math. (2), Vol. 115 No.1, 1982.

The "infinitely-grafted surface" is obtained by gluing in euclidean half-planes and half-infinite cylinders to the complement of the lamination.

- "Uniformize" this to an infinite-area *singular flat surface* by prescribing a **meromorphic quadratic differential with higher order poles**. This shall be the "limit" of the asymptotic Teichmüller ray.
- Use **quasiconformal cut-and-paste** to adjust this uniformizing map to an *almost-conformal* map between surfaces along the rays.