The Stochastics of Energy Markets

...or...

Modelling Financial Energy Forwards

Fred Espen Benth

Centre of Mathematics for Applications (CMA)
University of Oslo, Norway

In collaboration with: Ole Barndorff-Nielsen (Århus), Andrea Barth (Zürich), Paul Krühner (Oslo), and Almut Veraart (Imperial)

EMS/DMF Joint Mathematical Weekend, Aarhus 5-7 April 2013
Overview

- **Goal:** Model the forward price dynamics in power markets
- **Why?**
 - Price and hedge options and other derivatives
 - Risk management (hedge production and price risk)

1. Some stylized facts of energy forward prices
2. Levy processes in Hilbert space
 - Subordination of Wiener processes
3. Modelling the forward dynamics
 - Adopting the Heath-Jarrow-Morton (HJM) dynamical modelling from interest rate theory
4. Ambit fields and forward prices
 - A direct HJM approach
1. Forward markets
Energy forward contracts

- Forward contract: a promise to deliver a commodity at a specific *future* time in return of an agreed price
 - Examples: coffee, gold, oil, orange juice, corn....
 - or.... temperature, rain, electricity
- Electricity: future delivery of power over a period in time
 - A given week, month, quarter or year
- The agreed price is called the *forward price*
 - Denominated in Euro per MWh
 - Forward contracts traded at EEX, NordPool, etc...
 - Financial delivery!
• Forward price at time $t \leq T_1$, for contract delivering over $[T_1, T_2]$, denoted by $F(t, T_1, T_2)$

• Connection to fixed-delivery forwards

$$F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} f(t, T) \, dT$$

• Musiela parametrization: $x = T_1 - t, y = T_2 - T_1$

$$G(t, x, y) = F(t, t + x, t + x + y), \quad g(t, x) = f(t, t + x)$$

• Focus on modelling the dynamics of the forward curve

$$t \mapsto g(t, x)$$
Some stylized facts of power forwards

- Consider the *logreturns* from observed forward prices (at NordPool)

\[r_i(t) = \ln \frac{F(t, T_{1i}, T_{2i})}{F(t - 1, T_{1i}, T_{2i})} \]

- General findings are:
 1. Distinct heavy tails across all segments
 2. No significant skewness
 3. Volatilities (stdev's) are in general falling with time to delivery
 \[x = T_1 - t \] (Samuelson effect)
 4. Significant correlation between different maturities \(x \)
 (idiosyncratic risk)
• Fitting NIG and normal to logreturns of forwards by maximum likelihood
- Expected logreturn (left) and volatility (right)
• Plot of log-correlation as a function of years between delivery
• Correlation decreases in general with distance between delivery
 • ...but in a highly complex way
Summary of empirical evidence

- Forward curve $g(t, x)$ is a random field in time and space
 - Or, a stochastic process with values in a function space
- Strong dependencies between maturity times x
 - High degree of idiosyncratic risk in the market
- Non-Gaussian distributed log-returns
 - Dynamics is not driven by Brownian motion
2. Hilbert space-valued Lévy processes
• Goal: construct a Hilbert-space valued Lévy process with given characteristics
 • For example, a normal inverse Gaussian (NIG) Lévy process in Hilbert space
• X is a d-dimensional NIG random variable if

$$X | \sigma^2 \sim \mathcal{N}_d(\mu + \beta \sigma^2, \sigma^2 C)$$

• $\mu \in \mathbb{R}^d$, $\beta \in \mathbb{R}$, C $d \times d$ covariance matrix,
• σ an inverse Gaussian random variable
• X defined by a mean-variance mixture model
Lévy processes by subordination

- Define a NIG Lévy process $L(t)$ with values in Hilbert space by subordination
- In general: let
 - H be a separable Hilbert space
 - Θ a real-valued subordinator, that is, a Lévy process with increasing paths
 - W a drifted H-valued Brownian motion with covariance operator Q and drift b
 - Q is symmetric, positive definite, trace-class operator,

\[
\text{Cov}(W)(f,g) = \mathbb{E} [\langle W(1) - b, f \rangle \langle W(1) - b, g \rangle] = \langle Qf, g \rangle
\]

- Define

\[
L(t) = W(\Theta(t))
\]
• Let ψ_{Θ} be the cumulant (log-characteristic) function of Θ

• Cumulant of L becomes

$$
\psi_L(z) = \psi_{\Theta}\left(i\langle z, b \rangle - \frac{1}{2}\langle Qz, z \rangle \right), \ z \in H
$$

• Let $(a, 0, \ell)$ be characteristic triplet of Θ, then triplet of L is (β, aQ, ν)

$$
\beta = ab + \int_0^{\infty} \mathbb{E}[1(|W(t)| \leq 1)] \ell(dz)
$$

$$
\nu(A) = \int_0^{\infty} P^{W(t)}(A) \ell(dt), \ A \subset H, \text{ Borel}
$$
• Suppose L square-integrable Lévy process
• Define covariance operator

$$\text{Cov}(L)(f, g) = \mathbb{E} [\langle L(1), f \rangle \langle L(1), g \rangle] = \langle Qf, g \rangle$$

• Supposing mean-zero Lévy process
• Q symmetric, positive definite, trace-class operator

• If L is defined via subordination, covariance operator is

$$Q = \mathbb{E}[\Theta(1)]Q$$

• Supposing $\Theta(1)$ integrable
• So, how to obtain L being NIG Lévy process?

• Choose Θ to be driftless inverse Gaussian Lévy process, with Lévy measure

$$\ell(dz) = \frac{\gamma}{2\pi z^3} e^{-\delta^2 z^2/2} 1(z > 0) \, dz$$

• Define $L(t) = W(\Theta(t))$, which we call a H-valued NIG Lévy process with triplet $(\beta, 0, \nu)$,

Theorem

L is a H-valued NIG Lévy process if and only if $TL(t)$ is a \mathbb{R}^n-valued NIG Lévy process for every linear operator $T : H \mapsto \mathbb{R}^n$.
3. Forward price dynamics
• Let H be a separable Hilbert space of real-valued continuous functions on \mathbb{R}_+
 • with δ_x, the evaluation map, being continuous
 • $x \in \mathbb{R}_+$ is time-to-maturity
 • H is, e.g. the space of all absolutely continuous functions with derivative being square integrable with respect to an exponentially increasing function (Filipovic 2001)

• Assume L is square-integrable zero-mean Lévy process
 • Defined on a separable Hilbert space U, typically being a function space as well (e.g. $U = H$)
 • Triplet (β, Q, ν) and covariance operator Q
• Define process \(X \) on \(H \) as the solution of

\[
dX(t) = (AX(t) + a(t)) \, dt + \sigma(t) \, dL(t)
\]

• \(A = d/dx \), generator of the \(C_0 \)-semigroup of shift operators on \(H \)
• \(a(\cdot) \) \(H \)-valued process, \(\sigma(\cdot) \) \(L_{HS}(\mathcal{H}, H) \)-valued process being predictable
 • \(L_{HS}(\mathcal{H}, H) \), space of Hilbert-Schmidt operators, \(\mathcal{H} = Q^{1/2}(U) \)

\[
\mathbb{E} \left[\int_0^t \| \sigma(s) Q^{1/2} \|_{L_{HS}(U, H)}^2 \, ds \right] < \infty
\]

• \(\sigma \) and \(a \) may be functions on the state again
 • We will not assume that generality here
• Mild solution, with S as shift operator

$$X(t) = S(t)X_0 + \int_0^t S(t - s)a(s) \, ds + \int_0^t S(t - s)\sigma(s) \, dL(s)$$

• Define forward price $g(t, x)$ by

$$g(t, x) = \exp(\delta_x(X(t)))$$

• By letting $x = T - t$, we reach the actual forward price dynamics

$$f(t, T) = g(t, T - t)$$
• Assume X is modelled under "risk-neutrality", then $f(\cdot, T)$ must be a martingale
 • Yields conditions on a and σ!

• Introduce

\[
\hat{a}(t) = \int_0^t a(s)(T - s) \, ds, \quad \hat{\sigma}(t) = \int_0^t \delta_0 S(T - s)\sigma(s) \, dL(s)
\]

Theorem

The process $t \mapsto f(t, T)$ *for* $t \leq T$ *is a martingale if and only if*

\[
d\hat{a}(t) = -\frac{1}{2} d[\hat{\sigma}, \hat{\sigma}]^c(t) - \{e^{\Delta \hat{\sigma}(t)} - 1 - \Delta \hat{\sigma}(t) - \}
\]

• $\Delta \hat{\sigma}(t) = \hat{\sigma}(t) - \hat{\sigma}(t-)$, $[\hat{\sigma}, \hat{\sigma}]^c$ continuous part of bracket process of $\hat{\sigma}$
Market dynamics

- Forward model under risk neutral probability \mathbb{Q}
- Esscher transform \mathbb{Q} to "market probability" \mathbb{P} to get market dynamics of F
- Let $\phi(\theta)$ be the log-moment generating function (MGF) of L
 - Recall characteristic triplet of L as (β, Q, ν)
 - Assume L is exponentially integrable

\[
\phi(\theta) = \ln \mathbb{E}[e^{(\theta, L(1))U}] \\
= (\beta, \theta)U + \frac{1}{2}(Q\theta, \theta)U \\
+ \int_U e^{(\theta, y)U} - 1 - (\theta, y)U 1_{|y|U \leq 1} \nu(dy), \theta \in U
\]
• $d\mathbb{P}/d\mathbb{Q}$ conditioned on \mathcal{F}_t has density

$$Z(t) = \exp((\theta, L(t))_{\mathbb{U}} - \phi(\theta) t)$$

• Lévy property of L preserved under Esscher transform

• Characteristic triplet under \mathbb{P} is $(\beta_\theta, Q, \nu_\theta)$

$$\beta_\theta = \beta + \int_{|y| \leq 1} y \nu_\theta(dy), \quad \nu_\theta(dy) = e^{(\theta, y)}_{\mathbb{U}} \nu(dy)$$

• $\theta \in \mathbb{U}$ is the market price of risk
 • Esscher transform will shift the drift in X-dynamics, and
 • and rescale (exponentially tilt) the jumps of L
Example

- \(L = W \), Wiener process in \(U \)
- Bracket process can be computed to be

\[
[\hat{\sigma}, \hat{\sigma}]^c(t) = \int_0^t \| \delta_0 S(T-s)\sigma(s)Q^{1/2} \|_{L_{HS}(U,\mathbb{R})}^2 ds
\]

- An example by Audet et al. (2004)
- Volatility specification
 - \(\sigma \) multiplication operator: \(\delta_x \sigma(t)u = \eta e^{-\alpha x} u(x), \ u \in U \)
 - \(\eta, \alpha \) positive constants, \(\alpha \) mean-reversion speed
 - Volatility structure linked to an exponential Ornstein-Uhlenbeck process for the spot
- **Spatial covariance structure of W**
 - Let Q be integral operator
 - $q(x, y) = \exp(-\kappa|x - y|)$ integral kernel
- **Recall correlation structure from empirical studies...**
 - ...close to exponentially decaying
 - Some seasonal variations: let η be seasonal
- **Forward dynamics of Audet et al. (2004)**

\[
\ln \frac{g(t, x)}{g(0, x)} = -\frac{1}{2}\eta^2 \int_0^t e^{-2\alpha(x+t-s)} \, ds + \int_0^t \eta e^{-\alpha(x+t-s)} \, dW(s, x)
\]

- Or....

\[
\frac{df(t, T)}{f(t, T)} = \eta e^{-\alpha(T-t)} \, dW(t, T - t)
\]
• Note: series representation of W
 • Independent Gaussian processes, $\{e_n\}$ basis of U

$$W(t) = \sum_{n=1}^{\infty} \langle W(t), e_n \rangle U e_n$$

• May represent the dynamics in terms of Brownian factors
 • Infinite factor model
• Recall the heavy tails in log-return data for NordPool forwards
 • A Wiener specification W is not justified
• Should use an exponential NIG-Lévy dynamics instead
 • Choose L to be NIG, constructed by subordinator
 • Keep covariance operator
Numerical examples with NIG-Levy field

- Simulation of forward field by numerically solving the hyperbolic stochastic partial differential equation for X
 - Euler discretization in time
 - A finite-element method in "space" x
 - Conditions at "inflow" boundary $x = \infty$ and at $t = 0$
- Initial condition $X(0, x)$ is "today’s observed forward curve" on log-scale
 - Exponentially decaying curve
 - Motivated from "typical" market shapes
- Boundary condition at infinity equal to constant
 - Stationary spot price dynamics yield a constant forward price at "infinite maturity"
• L is supposed to be a NIG-Łévy process, which is defined as a subordination

• Appeal to the series expansion of W, which is truncated in the numerics
 • Simulate a path of an inverse Gaussian Łévy process
 • Change time of the finite set of independent Brownian motions
 • Sum up these scaled by eigenvalues and basis function to get the NIG-Łévy field approximation

• Parameters
 • $\alpha = 0.2$, mean-reversion
 • $\kappa = 2$, correlation
 • IG-parameters chosen by convenience ($\gamma = 10, \delta = 1$)
• Forward field, for \(x = 0, \ldots, 40 \) days to maturity, and \(t \) daily over 4 years. Implied spot process for \(x = 0 \)

• Can we recover the spot dynamics from the forward model?
Implied spot price dynamics

• One can recover the spot dynamics as

\[g(t, 0) = \exp(\delta_0(X(t))) \]

• \(X \) is driven by by NIG Lévy process in \(U \)
 • ”Infinitely” many Lévy processes
• For \(\tilde{L} \) is univariate NIG Lévy process, \(\tilde{\sigma} \) stochastic process on \(\mathbb{R} \), it holds

\[\delta_0 \int_0^t \sigma(s) \, d\tilde{L}(s) = \int_0^t \tilde{\sigma}(s) \, d\tilde{L}(s) \]

• Spot can be represented as a dynamics in terms of a univariate NIG Lévy process
4. HJM modeling by ambit fields
Forward dynamics by ambit fields

- A twist on the HJM approach
 - by direct modelling rather than as the solution of some dynamic equation
 - Barndorff-Nielsen, B., Veraart (2010b)

- Simple arithmetic model in the risk-neutral setting

\[
g(t, x) = \int_{-\infty}^{t} \int_{0}^{\infty} k(t - s, x, y)\sigma(s, y)L(dy, ds)
\]

- \(L \) is a Lévy basis, \(k \) non-negative deterministic function,
 \(k(u, x, y) = 0 \) for \(u < 0 \), stochastic volatility process \(\sigma \)
 (typically independent of \(L \) and stationary)
• **L is a Lévy basis on \mathbb{R}^d** if
 1. the law of $L(A)$ is infinitely divisible for all bounded sets A
 2. if $A \cap B = \emptyset$, then $L(A)$ and $L(B)$ are independent
 3. if A_1, A_2, \ldots are disjoint bounded sets, then

 $$L(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} L(A_i), \text{ a.s}$$

• **Stochastic integration in time and space:** use the Walsh-definition (for *square integrable* Lévy bases)
 - Natural adaptedness condition on σ
 - square integrability on $k(t - \cdot, x, \cdot) \times \sigma$ with respect to covariance operator of L

• **Possible to relate ambit fields to Hilbert-space valued processes**
Martingale condition

- No-arbitrage conditions: \(t \mapsto f(t, T) := g(t, T_t) \) must be a martingale

Theorem

\(f(t, T) \) is a martingale if and only if there exists \(\tilde{k} \) such that

\[
k(t - s, T - t, y) = \tilde{k}(s, T, y)
\]

- Note, cancellation effect on \(t \) in 1st and 2nd argument ensures martingale property
Example 1: exponential damping function (motivated by OU spot models)

\[k(u, x, y) = \exp(-\alpha(u + x + y)) \]

Satisfies the martingale condition

\[k(t - s, T - t, y) = \exp(-\alpha(y + T - s)) =: \tilde{k}(s, T, y) \]

Example 2: the SPDE specification of \(f \)

- Let \(L = W \), a univariate Brownian motion for simplicity

\[dg(t, x) = \frac{\partial g}{\partial x}(t, x) \, dt + \sigma(t, x) \, dW(t) \]
• Solution of the SPDE

\[g(t, x) = g_0(x + t) + \int_0^t \sigma(s, x + (t - s)) \, dW(s) \]

• Note: forward price \(g(t, x) \) is an ambit process
• Letting \(x = T - t \),

\[g(t, T - t) = g_0(T) + \int_0^t \sigma(s, T - s) \, dW(s) \]

• Martingale condition is satisfied....of course!
Example

• Suppose k is a weighted sum of two exponentials
 • Motivated by a study of spot prices on the German EEX
 • ARMA(2,1) in continuous time

$$k(t - s, x, y) = w \exp(-\alpha_1(t - s + x + y)) + (1 - w) \exp(-\alpha_2(t - s + x - y))$$

• $L = \mathcal{W}$ a Gaussian basis
• $\sigma(s, y)$ again an ambit field
 • Exponential kernel function
 • Driven by inverse Gaussian Lévy basis
• Spot is very volatile
• Rapid convergence to zero when time to maturity increases
 • In reality there will be a seasonal level
Thank you for your attention!
References

Coordinates:

- fredb@math.uio.no
- folk.uio.no/fredb/
- www.cma.uio.no