A flow approach to special holonomy

Hartmut Weiß

LMU München

EMS/DMF Joint Mathematical Weekend, Aarhus

Talk based on

- A heat flow for special metrics joint with F. Witt, Adv. Math. 231, 2012, no. 6
- ► Energy functionals and soliton equations for G₂-forms joint with F. Witt, Ann. Global Anal. Geom. 42, 2012, no. 4
- ► A spinorial energy functional: critical points and gradient flow joint with B. Ammann and F. Witt, arXiv:1207.3529
- The spinor flow on surfaces joint with B. Ammann and F. Witt, in preparation

The holonomy group of a Riemannian manifold Definition

Let (M, g) be a Riemannian manifold. The Riemannian metric g determines the Levi-Civita connection

$$\nabla^g : \Gamma(M, TM) \to \Gamma(M, T^*M \otimes TM), Y \mapsto (X \mapsto \nabla_X^g Y)$$

and hence a linear isometry

$$P_{\gamma}: T_{x_0}M \rightarrow T_{x_1}M$$

for any path γ from x_0 to x_1 , the parallel transport along γ . Then

$$\operatorname{Hol}(M,g) := \{ P_{\gamma} \in \operatorname{O}(T_{x_0}M) : \gamma \text{ loop in } x_0 \}$$

is the holonomy group of (M,g) and

$$\mathsf{Hol}_0(M,g) := \{ P_\gamma \in \mathrm{SO}(T_{x_0}M) : \gamma \; \mathsf{nullhomotopic} \}$$

 $\subset \mathsf{Hol}(M,g)$

the *reduced* holonomy group.

The holonomy group of a Riemannian manifold Berger's list

If (M,g) irreducible, simply-connected and non-symmetric, then Hol(M,g) is one of the following:

Hol(M,g)	dim <i>M</i>	geometry
$\overline{\mathrm{SO}(n)}$	n	generic
$\mathrm{U}(\mathit{m})$	2 <i>m</i>	Kähler
SU(m)	2 <i>m</i>	Calabi-Yau (Ricci-flat)
$\mathrm{Sp}(k)$	4 <i>k</i>	hyperkähler (Ricci-flat)
$\mathrm{Sp}(1)\mathrm{Sp}(k)$	4 <i>k</i>	quaternion-Kähler (Einstein)
G_2	7	G ₂ (Ricci-flat)
Spin_7	8	Spin ₇ (Ricci-flat)

Hitchin: \exists parallel unit spinor $\Leftrightarrow g$ Ricci-flat and of special holonomy \Leftrightarrow Hol $(M,g)=\mathrm{SU}(m),\mathrm{Sp}(k),\mathrm{G}_2$ or Spin_7

The spinorial energy functional Definition

Let M be a compact spin manifold, $n = \dim M \ge 2$.

- ▶ g a Riemannian metric $\leadsto \Sigma_g M \to M$, the complex g-spinor bundle, typical fiber: the complex spinor module Σ_n
- ▶ $\Sigma M \to M$ the universal spinor bundle, typical fiber: the vector bundle $(\widetilde{\operatorname{GL}}_n^+ \times \Sigma_n)/\operatorname{Spin}_n \to \widetilde{\operatorname{GL}}_n^+/\operatorname{Spin}_n \cong \odot_+^2 \mathbb{R}^{n*}$, which carries a connection, the Bourguignon-Gauduchon connection
- 1:1 Correspondence

$$\Phi \in \Gamma(\Sigma M) \longleftrightarrow g \in \Gamma(\odot^2_+ T^*M), \varphi \in \Gamma(\Sigma_g M)$$

- ▶ g_t path of Riemannian metrics \leadsto horizontal lift $\Phi_t = (g_t, \varphi_t) \in \Gamma(\Sigma M)$ using Bourguignon-Gauduchon
- Geometric interpretation of parallel transport provided by generalized cylinder construction of Bär-Gauduchon-Moroianu

The spinorial energy functional Definition

Let M be a compact spin manifold, $n = \dim M \ge 2$.

- $ightharpoonup \langle \cdot \, , \cdot
 angle = \operatorname{Re} h(\cdot \, , \cdot)$ real inner product on spinors
- $\mathcal{N} = \Gamma(S(\Sigma M))$, the space of unit spinors

We consider the energy functional

$$\mathcal{E}: \mathcal{N} \longrightarrow \mathbb{R}_{\geq 0}$$

$$\Phi \longmapsto \frac{1}{2} \int_{M} |\nabla^{g} \varphi|_{g}^{2} dv_{g}$$

where $\Phi = (g, \varphi)$ as above

Symmetries

► Diffeomorphism Invariance

$$F$$
 spin-diffeomorphism $\Rightarrow \mathcal{E}(F_*\Phi) = \mathcal{E}(\Phi)$

Scaling

$$\lambda \in \mathbb{R} \Rightarrow \mathcal{E}(\lambda^2 g, \varphi) = \lambda^{n-2} \mathcal{E}(g, \varphi)$$

Representation theory

$$L: \Sigma_n \to \Sigma_n \operatorname{Spin}_n$$
-equivariant isometry $\Rightarrow \mathcal{E}(g, L(\varphi)) = \mathcal{E}(g, \varphi)$

Example:
$$\Sigma_n = \Sigma_n^\mathbb{R} \otimes_\mathbb{R} \mathbb{C} \Leftrightarrow \exists \text{ real structure } J : \Sigma_n \to \Sigma_n$$

The gradient

For $(g, \varphi) \in \mathcal{N}$ consider the subbundle

$$\varphi^{\perp} = \{ \dot{\varphi}_{\mathsf{x}} \in \Sigma_{\mathsf{g}} M : \langle \varphi_{\mathsf{x}}, \dot{\varphi}_{\mathsf{x}} \rangle = 0 \}$$

Using the Gauduchon-Bourguignon connection we split

$$T_{(g,\varphi)}\mathcal{N} = \Gamma(\odot^2 T^*M) \oplus \Gamma(\varphi^{\perp})$$

Consider negative gradient of $\mathcal{E}: \mathcal{N} \to \mathbb{R}$ in L^2 -sense

$$-\operatorname{\mathsf{grad}} \mathcal{E}(\mathsf{g},\varphi) =: \mathsf{Q}(\mathsf{g},\varphi) = (\mathsf{Q}_1(\mathsf{g},\varphi), \mathsf{Q}_2(\mathsf{g},\varphi))$$

with $Q_1(g,\varphi) \in \Gamma(\odot^2 T^*M)$ and $Q_2(g,\varphi) \in \Gamma(\varphi^{\perp})$, i.e.

$$-D_{m{g},arphi}\mathcal{E}(\dot{m{g}},\dot{arphi}) = \int_{M} (Q_{1}(m{g},arphi)_{m{g}},\dot{m{g}})_{m{g}} + \langle Q_{2}(m{g},arphi),\dot{arphi}
angle \, dv_{m{g}}$$

The gradient

Theorem (Ammann-W.-Witt)

$$Q_{1}(g,\varphi) = -\frac{1}{4} |\nabla^{g}\varphi|_{g}^{2} g - \frac{1}{4} \operatorname{div}_{g} T_{g,\varphi} + \frac{1}{2} \langle \nabla^{g}\varphi \otimes \nabla^{g}\varphi \rangle$$
$$Q_{2}(g,\varphi) = -\nabla^{g*}\nabla^{g}\varphi + |\nabla^{g}\varphi|_{g}^{2} \varphi$$

where

► $T_{g,\varphi} \in \Gamma(T^*M \otimes \odot^2 T^*M)$ is the symmetrization in the second and third component of the 3-tensor

$$(X,Y,Z) \mapsto \langle (X \wedge Y) \cdot \varphi, \nabla_Z^g \varphi \rangle$$

• $\langle \nabla^{g} \varphi \otimes \nabla^{g} \varphi \rangle$ is the symmetric 2-tensor defined by

$$(X,Y)\mapsto \langle \nabla_X^g\varphi,\nabla_Y^g\varphi\rangle$$

Critical points $(n \ge 3)$

Taking the trace of the first component yields

$$-4\operatorname{Tr}_{g} Q_{1}(g,\varphi) = \operatorname{Tr}_{g}\operatorname{div}_{g} T_{g,\varphi} + (n-2)|\nabla^{g}\varphi|_{g}^{2},$$

in particular

$$-4\int_{M}\operatorname{Tr}_{g} Q_{1}(g,\varphi) dv_{g} = (n-2)\int_{M} |\nabla^{g}\varphi|_{g}^{2} dv_{g}.$$

Corollary

Let $n \geq 3$. Then (g, φ) is critical $\Leftrightarrow \nabla^g \varphi = 0$, in particular g is Ricci-flat and of special holonomy.

 φ is a g-Killing spinor with constant $\lambda \in \mathbb{R}$ if $\nabla_X^g \varphi = \lambda X \cdot \varphi$ for all $X \in \Gamma(TM)$. Killing spinors are critical points under the constraint $\operatorname{vol}(M,g) = 1$.

Critical points (n = 2)

The functional is scale invariant in this dimension. Hence

$$(g,\varphi)$$
 critical point \Leftrightarrow (g,φ) constrained critical point

Theorem (Ammann-W.-Witt)

Let n = 2. Then

- $\chi(M) > 0$: (g, φ) is critical $\Leftrightarrow (g, \varphi)$ is a global minimum $\Leftrightarrow \varphi = \cos \vartheta \, \psi + \sin \vartheta \, \omega \cdot \psi$ for a g-Killing spinor ψ (ω the real volume element, $\vartheta \in \mathbb{R}$)
- $\chi(M)=0$: (g,φ) is a global minimum $\Leftrightarrow \nabla^g \varphi=0$
- $\chi(M) < 0$: (g, φ) is a global minimum $\Leftrightarrow D_g \varphi = 0$

The spinor flow

Short-time existence and uniqueness

Consider the *spinor flow* with initial condition $\Phi \in \mathcal{N}$

$$\partial_t \Phi_t = Q(\Phi_t), \quad \Phi_0 = \Phi$$

for time-dependent family $\Phi_t = (g_t, \varphi_t) \in \mathcal{N}$, $t \geq 0$.

Theorem (Ammann-W.-Witt)

The spinor flow has a unique short-time solution.

Uniqueness implies: All symmetries are preserved under the flow.

Ingredients of proof:

- $\sigma_{\xi}(D_{\Omega}Q) \geq 0$ for all $\xi \in T^*M$
- ker $\sigma_{\xi}(D_{\Omega}Q)$ precisely coming from diffeomorphism invariance
- ▶ DeTurck trick: $\tilde{Q}(\Phi) := Q(\Phi) + \mathcal{L}_{X(\Phi)}\Phi$ for $X(\Phi)$ a cleverly chosen vector field

G₂-geometry

Locally

Let

$$\Omega_0 := e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245} \in \Lambda^3 \mathbb{R}^{7*}$$

where $e^{ijk} := e^i \wedge e^j \wedge e^k$. Then

$$G_2 := \{A \in \operatorname{GL}_7 : A^*\Omega_0 = \Omega_0\} \subset \operatorname{SO}(7)$$

i.e. G_2 preserves Euclidean metric and standard orientation on \mathbb{R}^I .

$$\Lambda^3_+\mathbb{R}^{7*}:=\operatorname{GL}_7^+$$
-orbit of Ω_0

$$\cong \operatorname{GL}_7^+/\operatorname{G}_2$$

The orbit $\Lambda^3_+\mathbb{R}^{7*}\subset \Lambda^3\mathbb{R}^{7*}$ is

- open $(\dim \Lambda^3 \mathbb{R}^{7*} = 35 = 49 14 = \dim \operatorname{GL}_7^+ \dim \operatorname{G}_2)$
- ▶ a positive cone $(\Omega \in \Lambda^3_+ \mathbb{R}^{7*}, \lambda > 0 \Rightarrow \lambda \Omega \in \Lambda^3_+ \mathbb{R}^{7*})$

G_2 -geometry G_2 -geometry

Let M^7 be compact and oriented. Set

$$\Lambda_+^3 T^*M := P_{\operatorname{GL}_7^+} \times_{\operatorname{GL}_7^+} \Lambda_+^3 \mathbb{R}^{7*}$$

A section $\Omega \in \Gamma(M, \Lambda_+^3 T^*M) =: \Omega_+^3(M)$ is called *positive* 3-form.

$$\Omega \in \Omega^3_+(M) \longleftrightarrow \text{reduction of structure group of } TM$$
 from GL_7^+ to $\operatorname{G}_2 \subset \operatorname{SO}(7)$

In particular: $\Omega \leadsto \mathsf{metric} \ \mathsf{quantities} \ g_\Omega, \star_\Omega, \mathrm{vol}_\Omega, \dots$

$$\operatorname{\mathsf{Hol}}(M,g_\Omega)\subset\operatorname{G}_2 \ensuremath{\Longleftrightarrow}_{\stackrel{\operatorname{Fernandez},}{\operatorname{\mathsf{Gray}}}} d\Omega = d\star_\Omega\Omega = 0$$
 $\Longrightarrow \operatorname{\mathsf{Ric}}^{g_\Omega} = 0$

 $\Omega \in \Omega^3_+(M)$ satisfying $d\Omega = d \star_{\Omega} \Omega = 0$ is called *torsion-free*.

The G₂-flow

Let M be a compact, oriented 7-manifold and $\Omega^3_+(M)$ the space of positive 3-forms on M. Consider

$$\mathcal{D}: \Omega^3_+(M) \longrightarrow \mathbb{R}_{\geq 0}$$

$$\Omega \longmapsto \frac{1}{2} \int_M \{ |d\Omega|_{\Omega}^2 + |d\star_{\Omega}\Omega|_{\Omega}^2 \} \operatorname{vol}_{\Omega}$$

Properties of \mathcal{D} :

- ▶ Diff₊(M)-invariant
- positively homogenous $(\mathcal{D}(\lambda\Omega) = \lambda^{5/3}\mathcal{D}(\Omega)$ for $\lambda > 0)$
- Ω critical w.r.t. $\mathcal{D} \Leftrightarrow \Omega$ torsion-free

Let

$$Q(\Omega) := -\operatorname{\mathsf{grad}} \mathcal{D}(\Omega)$$

be the negative L^2 -gradient of \mathcal{D} .

The G₂-flow

Short-time existence

Consider the G_2 -flow with initial condition $\Omega \in \Omega^3_+(M)$

$$\partial_t \Omega_t = Q(\Omega_t), \quad \Omega_0 = \Omega$$

for time-dependent family $\Omega_t \in \Omega^3_+(M)$, $t \geq 0$.

Theorem (W.-Witt)

The G_2 -flow has a unique short-time solution.

Ingredients of proof:

- $\sigma_{\xi}(D_{\Omega}Q) \geq 0$ for all $\xi \in T^*M$
- \blacktriangleright ker $\sigma_{\xi}(D_{\Omega}Q)$ precisely coming from diffeomorphism invariance
- ▶ DeTurck trick: $\tilde{Q}(\Omega) := Q(\Omega) + \mathcal{L}_{X(\Omega)}\Omega$ for $X(\Omega)$ a cleverly chosen vector field

The G_2 -flow Stability

The G_2 -flow is stable near a critical point. More precisely:

Theorem (W.-Witt)

Let $\bar{\Omega} \in \Omega^3_+(M)$ be torsion-free. Then for any initial condition sufficiently close to $\bar{\Omega}$ in the C^{∞} -topology the G_2 -flow exists for all times and converges modulo diffeomorphisms to a torsion-free positive 3-form on M.

Ingredients of proof:

- linear stability
- integrability of infinitesimal deformations
- compare nonlinear evolution with solution of linearized equation (estimates!)

The G₂-flow

Spinorial reformulation

Let Σ_n be the complex spin representation of Spin_n .

Representation theory: $\Sigma_7 = \Sigma_7^{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$, $\dim_{\mathbb{R}} \Sigma_7^{\mathbb{R}} = 8$.

Basic facts:

- Spin₇ acts transitively on $S(\Sigma_7^\mathbb{R})\cong S^7$
- $ightharpoonup S(\Sigma_7^{\mathbb{R}}) \cong \mathrm{Spin}_7/\mathrm{G}_2$

1:1 Correspondence

$$\Omega \longleftrightarrow \text{spin structure}, g, \{\pm \varphi\}$$

Then

$$\mathcal{D}(\Omega) = 8 \int_{M} |\nabla^{g} \varphi|^{2} \operatorname{vol}_{g} + \int_{M} \operatorname{scal}^{g} \operatorname{vol}_{g}$$