Crop sequence and nutrient acquisition: Optimized use of soil resources via complementary root growth?

Miriam Athmann
Institute for Crop Science and Resource Conservation, Agroecology and Organic Farming Group, University of Bonn, mathmann@uni-bonn.de
Nutrient acquisition from the subsoil

Topsoil:
- Low penetration resistance
- High nutrient concentration

Subsoil:
- High penetration resistance
- Low nutrient concentration

Mobilization
Nutrient-Hotspot:
Drilosphere

Mineralisation
Taproots generate biopores: Access paths to the subsoil

Crop residues

Redelivery
- Root exudates
- Root residues
- Earthworm cast

Fibrous roots create fine pores in the upper subsoil
Optimizing the crop sequence for subsoil resource use

1. Influence soil structure via taprooted precrops and anecic earthworms

2. Study root and shoot growth by following crops

Pictures: U. Perkons
Precrop yield and nutrient uptake

Different letters: significant differences (Tukey-Test, α<0.05). Precrops grown 2007-2009, Data from 2009.
Precrop yield and nutrient uptake

Different letters: significant differences (Tukey-Test, $\alpha<0.05$). Precrops grown 2007-2009, Data from 2009.
II. Modeling on the field scale with 100 weather scenarios

Model: SIMPLACE coupled with R-SWMS, weather generator LARS-WG

Yield of following crops

<table>
<thead>
<tr>
<th>Precrop</th>
<th>Weather conditions</th>
<th>Main Crop</th>
<th>Cereal grain yield (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012: Abundant precipitation</td>
<td>Spring wheat</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010: Dry spell in June</td>
<td>Spring wheat</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>2014: Nov-June dry</td>
<td>Spring barley</td>
<td>a</td>
</tr>
</tbody>
</table>

Different letters: significant differences (Tukey-Test, α<0.05)

Seidel et al. 2019, Soil and Tillage Research; Kautz et al. 2015, GPW
Conclusion

With deeprooting precrops, yield stability and thus static resilience is increased - through structural and microbial changes in the subsoil.

Graph from Döring et al. 2015, Journal of the Science of Food and Agriculture
Different letters: significant differences (Tukey-Test, $\alpha<0.05$). Crops were grown 2018 and 2019, only 2019 data is shown.
Thank you for your attention!