Non-target effects of the nitrification inhibitors nitrapyrin and DMPP on soil microbial communities: perspectives utilizing total RNA sequencing. Lucas Horstmann¹, Erkin Gözdereliler¹, Louise Feld¹, Carsten Suhr Jacobsen¹, Lea Ellegaard-Jensen¹

¹Department of Environmental Science, Aarhus University, Roskilde, Denmark

Nitrification of excess NH_4^+ from fertilizer applications cause: NO₃⁻ leaching into groundwater

N₂O emissions into the atmosphere

Nitrification inhibitors such as nitrapyrin and DMPP block the initial step of nitrification ($NH_4^+ \rightarrow NO_2^-$)

What is the environmental risk of nitrification inhibitors for soil microbial ecosystems? - amoA project

Monitoring non-target effects through the analysis of total RNA

rRNA - taxonomic information about the active prokaryotic and eukaryotic microbial community

mRNA - information about actively transcribed genes

alpha diversity

decreased expression of

General stress response

10-		
1.0 -	Exopolyphosphatase 🔨	
0.5	related proteins	- G