PROWASTE PROTEIN-FIBRE FIBRE BIOREFINERY FOR SCATTERED MATERIAL STREAMS

2° Call: Project period: Topic:	2017 03/2018 - 12/2021 Biorefinery, side-stream valorisation, protein and dietary fibre
Keywords:	Side-stream, biorefining, protein, fibre, novel food and feed supplement
Coordinator:	Dr. Oskar Laaksonen, University of Turku, Finland Email: osanla@utu.fi
Project partners:	Research Unit: University of Turku, Finland: Center of Food and Fermentation Technologies (TFTAK), Estonia: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Germany; Wroclaw University of Environmental and Life Sciences, Poland. <u>Commercial partners:</u> Myssyfarmi Ltd, Finland: Regis Food Technology, Ltd, Poland: Polarforma Ltd, Finland: Bayerische Staatsbrauerei Weihenstephan, Germany.
Total funding:	742.000€
Website:	projects.au.dk/faccesurplus/research-projects-2nd- call/prowaste

BACKGROUND

Annually. European food industries produce million tons of barley (Hordeum vulgare) spent grains, rapeseed/canola (Brassica napus) press cakes, and oat (Avena sativa) hulls. These side-streams contain high amounts of nutritional components (proteins, dietary fibres, and carbohydrates) and other health-promoting ingredients (phenolic compounds). Currently, these materials are used mostly as animal feeds, which seriously undervalues their potential for value addition. With proper approach, food-grade compounds could be isolated and sold to the food processing market as a valuable nutrient supplement. The challenge is still to combine existing technologies to produce a robust, inexpensive, and effective process suitable for varying side-streams.

OBJECTIVE

The overall objective was to valorize food production side-streams to minimize waste generated from brewing and oil industries, and to produce additional nutrient for several food and feed products.

METHODOLOGY

COMPOSITIONAL INVESTIGATION. Chemical profiles of sidestream materials and corresponding pre-treated samples are systematically investigated using colorimetric and chromatographic methods.

BIOLOGICAL PRE-TREATMENT. Enzymatic and fermentation processes are developed to improve extractability of value compounds and degradation of undesired components from side-stream materials.

FRACTIONATION. Fractionation process for side-streams is developed and optimized. Protein fractionation focus on solubilization and enrichment of protein. Fibre preparations are obtained from the precipitates of various pretreatments, leading to products with a high content of dietary fibres.

Enzymatic treatment Photo: Center of Food and Fermentation Technologies (TFTAK)

Isoelectric precipitation Photo: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

RESULTS

• Chemical profiles of barley spent grains and canola press cakes are determined in detail:

Pre-treated samples for compositional analyses Photo: University of Turku

> Different dosages of barley spent grains in yogurt Photo: Wroclaw University of Environmental and Life Sciences

- Enzymatic pre-treatment effectively enhances nutritional value and content of health-beneficial components and promotes degradation of undesired compounds in the side-stream materials;
- Barley spent grain soluble protein content could be increased up to 80% with enzymatic pretreatment;
- Canola press cake soluble protein content has been increased through alkaline extraction up to 70%. With extra enzymatic pre-treatment step, the final soluble protein content is 80%;
- A low-cost but efficient approach is developed for valorisation of side-streams, providing an important technical guideline to the food industry.