Macropores and earthworm species affected by agronomic intensification

PAUL HENNING KROGH & GUÉNOLA PÉRÈS

Background
• Biopore formation has been shown to be a pertinent result of earthworm burrowing activity and it contributes to soil hydrology: water retention and water drainage.
• The detrimental consequences of a weakened bio-functionality have been stressed in the EU Soil Strategy and hydrology in particular is affected by threats to soil biodiversity.

Methods
Earthworm burrow distribution, numbers and diameter of cross-section, was quantified at 10, 20, 30, 50 and 100 cm horizontal layer intervals down the soil profile and correlated with the earthworm community consisting of 12 species dominated by the endogeics Aporrectodea caliginosa and Aporrectodea chlorotica and the anecics Aporrectodea longa and Lumbricus centralis.

Results
Medium-small macropores in the ploughing layer with diameters (Ø) less than 5 mm were significantly more abundant in permanent grassland compared to conventional rotation system with annual crops. An intermediate system with 3 years of grass and 3 years with annual crops was also intermediate between the two other systems. At 30 cm’s depth we found no large macropores, Ø>7 mm, in the system with annuals, but increasingly more in rotations with grass. Addition of frequencies of macropores with Ø>7 mm retains the significant difference between annual and the permanent grass system. Moreover, all the large burrows, Ø>2.5 mm Ø, follow this pattern and are significantly more numerous in permanent grass to annuals (P<3%).

At depth 100 cm total number of macropores were more abundant in the annual crops compared with permanent grass (P=5%), due to a larger number of macropores Ø<7 mm.

Conclusions
• The anecics Nicrodrilus giardi (Savigny, 1926), Aporrectodea longa and Lumbricus centralis contribute to the large macropores above 5 mm Ø, in all the soil depths.
• A characteristic profile of large macropores is created by the agricultural techniques, so the permanent grassland will have more macropores at the top of the soil, potentially forming water-drainage channels.

Contact: phk@dmu.dk

XVI International Colloquium on Soil Zoology and Biology, 6-10 Aug. 2012