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Abstract

Deliverable 2.2a report on work carried out in Task 2.1 in Year 2 of the INTO-
CPS project. The objective in this is to give semantics to SysML to enable
it to be used as the entry-level modelling notation for the INTO-CPS tool
chain. This entails extracting structural information from SysML models and
carrying out some healthiness checks. We report on our approach to verify
the healthiness and well-formedness of an architectural design, expressed
using a profile of SysML. Our checks guarantee the conformity of component
connectors and the absence of algebraic loops, necessary for co-simulation
convergence. The checks are carried out using a combination of theorem
proving and model-checking using the Isabelle/HOL proof assistant and the
FDR3 refinement model checker.

We instantiate our approach by applying it to the engineering of mobile and
autonomous robot applications; current practice suffers from costly itera-
tions of trial and error, with hardware and environment in the loop. We
propose the adoption of an approach to simulation and co-simulation, where
designs, and (co-)simulations are traceable and amenable to verification. In
this approach, designs are composed of several constituent models whose
relationship is defined using our INTO-CPS SysML profile. Our approach
supports automatic generation of simulations, and validation and verification
beyond what can be achieved with simulation.
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Task Objectives

There were two objectives for Task 2.1 in Year 2:

1. To give semantics to SysML as a CPS process that captures the graph
dependencies in the Internal Block Diagram (IBD).

2. To define and implement a technique to check loops in the cycle of
dependencies.

We have established an approach to verify both healthiness and well-formedness
of an architectural design, expressed using a profile of SysML, as a prelude
to FMI co-simulation. We check the conformity of component connectors
and the absence of algebraic loops, necessary for co-simulation convergence.
Verification of these properties involves theorem proving and model-checking
using Fragmenta, a formal theory for representing typed visual models, with
its mechanisation in the Isabelle/HOL proof assistant, and the CSP process
algebra and its FDR3 model-checker.

We have instantiated this approach using RoboChart, a modelling notation
for robotic controllers.

1 Introduction

Cyber-physical systems (CPSs) are designed to actively engage with the phys-
ical world in which they reside. They tend to be heterogeneous: their sub-
systems tackle a wide variety of domains (such as, mechanical, hydraulic,
analogue, and a plethora of software domains) that mix phenomena of both
continuous and discrete nature, typical of physical and software systems,
respectively.

CPSs are often handled modularly to tackle both heterogeneity and complex-
ity. To effectively separate concerns, the global model of the system is decom-
posed into subsystems, each typically focussed on a particular phenomenon
or domain and tackled by the most appropriate modelling technique. Simu-
lation, the standard validation technique of CPSs, is often carried out mod-
ularly also, using co-simulation [40], the coupling of subsystem simulations.
This constitutes the backdrop of the industrial Functional Mockup Interface
(FMI) standard [8, 7] for co-simulation of components built using distinct
modelling tools.
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We present an approach to formally verify the well-formedness and healthi-
ness of SysML CPS architectural designs as a prelude to co-simulation. The
designs are described using INTO-SysML [5], a profile for multi-modelling
and FMI co-simulation. The well-formedness checks verify that designs com-
ply with all the required constraints of the INTO-SysML meta-model; this
includes connector conformity, which checks the adequacy of the connections
between SysML blocks (denoting components) with respect to the types of
the ports being wired. The healthiness checks concern detection of algebraic
loops, a feedback loop resulting in instantaneous cyclic dependencies; this is
relevant because a desirable property of co-simulation, which often reduces to
coupling of simulators, is convergence (where numerical simulations approx-
imates the solution), which is dependent on the structure of the subsystems
and cannot be guaranteed if this structure contains algebraic loops [40, 11].
The work presented here demonstrates the capabilities of our verification
workbench for modelling languages and engineering theories, which rests on
Fragmenta [4], a theory to formally represent designs of visual modelling
languages, and its accompanying mechanisation in the Isabelle proof assis-
tant [49], and the CSP process algebra [34] with its accompanying FDR3
refinement-checker [29].

Our contributions are as follows:

1. A novel SysML profile for architectural modelling of CPSs that tack-
les heterogeneity by providing support for multi-modelling and co-
simulation in compliance with the FMI standard.

2. An approach to statically check the adequacy of a SysML architectural
model for co-simulation, supporting connector conformity and algebraic
loops detection, by using a theorem prover and a model-checker.

3. A prototyping environment for Fragmenta [5], a mathematical the-
ory to represent typed visual models, based on the proof assistant Is-
abelle/HOL that enables model verification and transformation.

4. A CSP-based solution to the detection of algebraic loops, which is based
on a novel approach to represent graphs in CSP.

5. An evaluation of approaches to the detection of algebraic loops.

The report has three main sections. Sect. 2 gives some background on the
formalisms that we use. Sect 3 presents our approach to represent architec-
tural designs in INTO-SysML, highlighting verification of well-formedness,
and our approach for representing directed graphs in CSP and detecting
algebraic loops through refinement model checking. Finally, Sect. 4 instanti-
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ates our approach using RoboChart, a modelling technique for robotic con-
trollers.

2 Preliminaries

2.1 SysML and the INTO-SysML profile

The Systems Modeling Language (SysML) [50] is a general-purpose graphi-
cal notation for systems engineering applications, defined as an extension of
a subset of the Unified Modeling Language (UML) [30]. This extension is
achieved by using UML’s profile mechanism, which provides a generic tech-
nique for customising UML models for particular domains and platforms. A
profile creates a conservative extension of UML, refining its semantics in a
consistent fashion.

There are commercial and open-source SysML tools. These include IBM’s
Rational Rhapsody Designer,1 Atego’s Modeler,2 and Modeliosoft’s Mode-
lio.3 They support model-based engineering and have been used in complex
systems.

A SysML block is a structural element that represents a general system com-
ponent, describing functional, physical, or human behaviour. The SysML
Block Definition Diagram (BDD) shows how blocks are assembled into ar-
chitectures; it is analogous to a UML Class Diagram. A BDD represents
how the system is composed from its blocks using associations and other
composition relations.

A SysML Internal Block Diagram (IBD) allows a designer to refine a block’s
structure; it is analogous to UML’s Composite Structure Diagram, which
shows the internal structure of a class. In an IBD, parts are assembled to
define how they collaborate to realise the block’s overall behaviour.

The INTO-SysML profile [2] customises SysML for architectural modelling
for FMI co-simulation. It embraces the many themes of the INTO-CPS
project: tool interoperability, semantic heterogeneity, holistic modelling, and
co-simulation, and provides the modelling gateway for the INTO-CPS ap-
proach.

1See sysml.tools/review-rhapsody-developer/.
2See http://www.atego.com/de/products/atego-modeler/.
3See www.modelio.org/.
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It specialises blocks to represent different types of components, that is, con-
stituent models, of a CPS, constituting the building blocks of a hierarchical
description of a CPS architecture. A component is a logical or conceptual
unit of the system: software or a physical entity.

INTO-SysML comprises two diagram types, Architecture Structure Diagrams
(ADs) and Connection Diagrams (CDs), specialising SysML BDDs and IBDs.

In our examples, the constituent models are written in Robochart (described
in Section 2.5) and Simulink [46]. The latter, developed by MathWorks, is a
graphical programming environment for modelling, simulating, and analysing
multi-domain dynamic systems. Its primary interface is a graphical block
diagramming tool and a customisable set of block libraries.

2.2 Functional Mock-up Interface (FMI)

The Functional Mock-up Interface (FMI) [25] is an industry standard for col-
laborative simulation of separately developed models of CPS components: co-
simulation. The key idea is that, if a real product is assembled from com-
ponents interacting in complex ways, each obeying physical laws (electronic,
hydraulic, mechanical), then a virtual product can be created from models
of those physical laws and a model of their control systems. Models in these
different engineering fields are heterogeneous: they use different notations
and simulation tools.

The purpose of FMI is to support this heterogeneous modelling and simula-
tion of CPSs. FMI is used in a number of different industry sectors, including
automotive, energy, aerospace, and real-time systems integration. There is a
formal development process for the standard, and many tools now support
FMI.

An FMI co-simulation consists of Functional Mock-up Units (FMUs), which
are models encapsulated in wrappers, interconnected through inputs and
outputs. FMUs are slaves: their collective simulations are orchestrated by
a master algorithm. Each FMU simulation is divided into steps with bar-
rier synchronisations for data exchange; between these steps, the FMUs are
simulated independently.

A master algorithm communicates with FMUs through the FMI API, whose
most important functions are those to exchange data, fmi2Set and fmi2Get,
and that to command the execution of a simulation step, fmi2DoStep. The
FMI standard does not specify master algorithms, but places restrictions on

9
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Figure 1: Some fragments of metamodel of INTO-SysML.

the use of the API functions that constrain how a master algorithm can be
defined and how an FMU may respond. Formal semantics for FMI can be
found in [10, 14].

2.3 Fragmenta and its Isabelle Mechanisation

Fragmenta [4] is a graph-based theory to represent modularised (or frag-
mented) typed class models. It is based on the algebraic theory of graphs and
their morphisms [20]. Fragmenta represents designs of visual modelling
languages whose structure is defined by class metamodels (domain-specific
languages (DSLs)) and their resulting instance models. Its overall models
are a collection of sub-models called fragments. Type and instance models
are related through morphisms. A major novelty lies in Fragmenta’s prox-
ies : representatives of other nodes. A fragment is as a graph that supports
proxies.

Figure 1 portrays five fragments and one global fragment graph (GFG) from
INTO-SysML’s metamodel. It highlights how fragments build up on other
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fragments either in a bottom-up (through imports) or top-down (through
continues) fashion and the use of proxies for inter-fragment referencing. Im-
porting is bottom-up because the bigger fragments are built from smaller
ones. Continuation is top-down because it starts by specifying a summary
model (or a skeleton) with points of continuation, represented as proxies, to
be continued by other fragments. Fragment F PTypes is an increment to
F Common; node Type from F Common is referenced through the proxy
with same name; likewise in F Props with proxy NamedElement. Fragment
F AD, which summarises the metamodel of the INTO-SysML architecture
diagrams (ADs), is a continuing fragment; F VTypes continues F AD.

Fragmenta proposes two composition operators: (a) union composition
(∪F ) merges fragments without resolving the proxies, and (b) colimit com-
position (based on category theory) joins fragments by resolving the prox-
ies.

Further details are given in [4].

The theory introduces the following sets (see [4] for details):

• Fr , of well-formed fragments, requires that: (a) the underlying graph
is well-formed, (b) the inheritance hierarchy is acyclic, (c) the source
of composition relations has multiplicity 1 or 0 . . 1 and (d) proxies do
not inherit4. All fragments in Fig. 1 are members of Fr .

• GFGr , of acyclic GFGs: MM GFG (Fig. 1) ∈ GFGr .

• Mdl , of all well-formed models, requires that the model’s fragments are
disjoint. A model M is a tuple (GFG , fd), made up of a GFG ∈ GFGr
and a total function fd : NsGFG→Fr mapping GFG nodes to fragments.
INTO-SysML’s metamodel, partially described in Fig. 1, is a member
of Mdl .

• F1 →F F2, of all well-formed fragment morphisms, which impose the
required graph commuting constraints in the setting of fragments.

• FrTy , of well-formed typed fragments FT = (F ,TF , ty); F and TF
are instance and type fragments, respectively: F ,TF ∈ Fr , and ty ∈
F →F TF .

• FrTyConf , of conformant fragments, a subset of FrTy , imposes the
following constraints on instances: abstract nodes may not have di-
rect instances, containments are not shared, instance relations satisfy
metamodel multiplicities, and instances of containments form a forest.

4A local check that ensures the compositionality of Fragmenta’s union operator.
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• MdlTy , of all well-formed typed models MT = (M ,TM , ty), where M
and TM are instance and type models (M ,TM ∈ Mdl), and the type
morphism is conformant: (UFs M ,UFs TM , ty) ∈ FrTyConf , where
UFs makes a single fragment out of the union of model fragments.

Fragmenta’s Isabelle mechanisation5 provides a verification and transfor-
mation environment for metamodel designs. One can check that:

• The individual fragments of both model and metamodel are locally
consistent and well-formed. For fragment F Common of Fig. 1, for
instance, we need to prove `F Common ∈ Fr 6; likewise for the re-
maining fragments.

• GFGs are well-formed also. For GFG of Fig. 1: `MM GFG ∈ GFGr .

• Overall models and metamodels are also consistent and well-formed.
For the metamodel INTO SysML of Fig. 1: ` INTO SysML ∈ Mdl .

• Instance models conform to the constraints imposed by the type model.

Section 3.1 gives further details on INTO-SysML inside Fragmenta/Isabelle.

2.4 CSP and FDR3

The CSP process algebra [34] describes communicating processes and interaction-
driven computations. CSP’s major structuring concept, the process, repre-
sents a self-contained component made up of interfaces to enable interaction
with a multitude of environments.

Processes communicate by transmitting information along channels. A CSP
channel carries messages and has, therefore, a set of associated events, corre-
sponding to all messages that may be transmitted. Process expressions are
built using a number of operators, which include:

• Event prefixing, expressed as e −→P , describes a process that expects
event e and then behaves as process P .

• External choice, P1 @ P2, gives the environment the choice of events

offered by P1 and P2. Replicated external choice @ i : N • P(i)
composes the resulting processes using external choice.

5Available at https://github.com/namalio/Fragmenta
6Such membership predicates are represented in Isabelle as functions to booleans and

they capture the well-formedness constraints associated with a Fragmenta set.
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• Internal choice, P1 uP2, non-deterministically chooses to act like P1 or
P2.

• Parallel composition, P1 ‖
A

P2, executes the two processes in parallel

synchronising on the set of events A.

FDR3 [29] is CSP’s refinement checker. It checks refinement according to
CSP’s denotational models (including traces, failures and failures-divergences),
and other properties, including deadlock and livelock-freedom, and determin-
ism.

2.5 RoboChart

RoboChart [47] is a diagrammatic notation tailored to the design of robotic
systems. RoboChart models use Harel-style statecharts [31], but crucially,
also include constructs that embed concepts of robotic applications. They are
used to structure models for abstraction and reuse. Moreover, the statecharts
use an action language that is both timed and probabilistic.

A RoboChart design centres around a robotic platform and its controllers.
Communication between controllers can be either synchronous or asynchronous,
but communication between state machines inside a controller is synchronous.
The operations in a state machine may be given interface contracts using
preconditions and postconditions, may be further defined by other state ma-
chines, or may come from a domain-specific API formalised separately. The
formal semantics of RoboChart is mechanised in CSP [47].

As a simple example, we consider a Rover robot inspired by that in [32]. It
is an autonomous vehicle equipped to detect certain chemicals. It randomly
traverses a designated area, sniffing its path with its onboard analysis equip-
ment. If it detects a chemical source, it turns on a light and drops a flag as
a marker.

A robotic system is specified in RoboChart by a module, where a robotic
platform is connected to one or more controllers. A robotic platform is mod-
elled by variables, events, and operations that represent built-in hardware
facilities. The ChemicalDetector module for our example is shown in Fig-
ure 2; it has a robotic platform Rover and controllers DetectAndFlagC and
LightC.

The named boxes on the border of Rover declare events. The lightOn and
lightOff events request that the built-in light is switched one way or the other.

13
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Figure 2: RoboChart module

The sensor events l and r record the detection of a wall on one side or the
other. The alarm represents the detection of a chemical source by the built-in
sensor.

The variables ls and as of Rover record its linear and angular speeds. The
move(l,a) operation commands the Rover to move with speeds l and a; it is
part of the RoboChart API. The operations LoadFlag() and ReleaseFlag(),
on the other hand, are not in the RoboChart API, since they are particular
to this example. They are declared, but not further defined.

The two controllers DetectAndFlagC and LightC define the behaviour of
Rover. DetectAndFlagC controls the events left, right, found, and flagged
(see the bordered boxes), thereby interacting with Rover and LightC. These
events are associated with l, r, and alarm of Rover, and activate of LightC, as
indicated by the arrows, whose directions define information flow. So, when
Rover finds a chemical, it sends an alarm to DetectAndFlagC. LightC uses
events lon, loff, and activate to communicate with Rover and DetectAnd-
FlagC.

In Sect 4, we propose a way of considering RoboChart models in the context
of a variation of the INTO-SysML profile. In Section 4.4, we give a semantics
based on the FMI API for the co-simulation specified in SysML.

14
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Figure 3: INTO-SysML AD

3 Checking SysML Models for Co-Simulation

3.1 Architectural Modelling in INTO-SysML

The INTO-SysML profile [5] introduces specialisations of SysML blocks (known
as stereotypes) to represent different types of CPS components, constituting
the building blocks that enable a hierarchical description of the CPS ar-
chitectures that we need. A component is a logical or conceptual unit of
the system, corresponding to a software or a physical entity. The profile’s
component constructs comprise: System, EComponent (encapsulating com-
ponent) and POComponent (part-of component). A system is decomposed
into subsystems (represented as EComponents), which are further decom-
posed into POComponents. EComponents and POComponents may be
further classified as Subsystem (a collection of inner components), Cyber

(an atomic unit that inhabits the digital or logical world) or Physical (an
atom unit pertaining to the physical world). Furthermore, their characteris-
ing phenomena may be classified as discrete or continuous.

Currently, INTO-SysML comprises two diagram types: architecture diagrams
(ADs) and connections diagrams (CDs), specialising SysML block defini-
tion and internal block definition diagrams, respectively. They are as fol-
lows:

• ADs (see Fig. 3) describe a decomposition in terms of the types of sys-
tem components and their relations. They emphasise multi-modelling:

15
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Figure 4: INTO-SysML CD

certain components encapsulate a model built using some modelling
tool (such as VDM/RT [44], 20-sim [38] or Open Modelica [27]).

• CDs (see Fig. 4) are AD instances. They convey the configuration of
the system’s components, highlighting flow and connectedness.

drain

source

Tank

Valve!

!

Figure 5: Water Tanks
system.

The water tanks system, sketched in Fig. 5, is used
as one of our running examples. A source of water
fills a tank whose water outflow is controlled by a
valve; when the valve is open the water flows into
the drain. The valve, managed by a software con-
troller, is opened or closed depending on the tank’s
water level. We also consider a variant of this sys-
tem with the drain connected to the tank.

Fig. 3 portrays the architectural model of water
tanks, built using INTO-SysML’s Modelio imple-
mentation7. The AD is as follows:

• The overall system (WaterTankSys) comprises two major subsystems,
WaterTank and Controller, which are EComponents: they encapsu-
late separate models. WaterTank deals with continuous phenomena
modelled in Open Modelica. Controller is discrete and modelled in
VDM/RT.

• WaterTank has three physical sub-components: Source, Tank and

7Available from http://forge.modelio.org/projects/intocps-modelio34.
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Drain: they are POComponents (part-of of a subsystem).

• Enumeration ValveState captures the valve’s state. Unit types FlowRate

and Height, built from reals, deal with flow rates and water levels.

• Each component provides flow ports to enable communication and the
flow of material; the outputs indicate the inputs ports on which they
depend.

CD of Fig. 4 describes the system instance (WTSys) composed of one Water-

Tank (WT) with its sub-components. The Controller instance (C) receives
the water height from WT and, in return, directs WT to open or close the
valve.

3.2 Well-formedness Checking using Fragmenta/Isabelle

INTO-SysML’s metamodel and the instance model of Fig. 5 are represented
according to the Fragmenta [4] graph-based theory in the Isabelle proof as-
sistant. Fragmenta constructs overall models as a collection of fragmented
sub-models. It can be used to represent designs of visual modelling languages
whose structure is defined by class metamodels. Currently, there is a mech-
anisation of Fragmenta in the Isabelle proof assistant8. The fragmented
metamodels of the INTO-SysML profile are available from [5].

Fig. 7 gives the Fragmenta representation of CD in Fig. 4 and Fig 6 is
the metamodel of INTO-SysML CDs; the correspondence from CD to meta-
model, entailed by the type morphism, is represented as labels with numbers.
In Fig. 7, the proxies reference elements from the AD of Fig. 3, nodes labelled

8This is available from: https://github.com/namalio/Fragmenta
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Figure 7: INTO-SysML CD of water tanks system (Fig. 4) in Fragmenta

4 correspond to the connectors of the CD, and those labelled 5 correspond
to ports.

From the Fragmenta base sets of Section 2.3, we build a set of well-formed
INTO-SysML models INTO Mdls , catering for all profile-specific invariants.
The AD invariants are: (i) there is one system block, (ii) EComponents are
not nested, and (iii) POComponents are contained by EComponents. The
CD invariants are: (iv) instance ports are correctly typed with respect to
AD flow ports, (v) connection’s flow types correspond to types consistent
with the ports being connected (conformity of connectors), and (vi) the CD
satisfies multiplicities imposed by AD.

The model M WTs is subject to the following checks:

• Fragments of AD and CD are well-formed: `F AD ∈ Fr , `F CD ∈
Fr .

• The model’s GFG is well-formed: `GFG WTs ∈ GFGr .

• Overall model is well formed: `M WTs ∈ Mdl .

• M WTs must be a valid INTO-SysML model. Given a type morphism
ty (illustrated in Fig 7), we prove: `(M WTs , ty) ∈ INTO Mdls , which
entails `(M WTs , INTO SysML, ty) ∈ MdlTy .

18



D2.2a - Foundations of SysML (Public)

u1

u2

y1

y2 u3

A

B

Figure 8: A topology without algebraic loops

u1 y1

u2
A B y2

Figure 9: A topology with an algebraic loop

These are the checks required for any INTO-SysML model.

3.3 Fragmenta/Isabelle as a Transformation Engine

To enable usage of model-checkers, Fragmenta/Isabelle is used as a trans-
formation engine in the algebraic loops check, which finds cycles in a topology
of dependencies in instantaneous component communication.

Fig. 8 portrays a self-cycle component that is algebraic loop free. Output y1
of A is connected to A’s input u2, but this does not entail an algebraic loop.
The topology in Fig. 9, on the other hand, contains an algebraic loop.

Finding algebraic loops equates to detecting cycles in a directed graph de-
scribing port dependancy relations. An edge between two ports indicates that
the target node is instantaneously dependent on the source. This constitutes
a port dependancy graph (PDG), illustrated in Fig. 11, which portrays a PDG
with an algebraic loop corresponding to the variant INTO-SysML model that
connects the Drain to the Tank (dwo to win).

The Isabelle mechanisation introduces a function that produces a PDG from
a INTO-SysML model. The resulting PDG, obtained from the ports and
connections of CD and the internal dependancies between output and input
port types of AD, is derived from both metamodel and model. Another
function takes the PDG and produces the CSPm specification to be checked
in FDR3.
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sw win wout dwi

wlwlowlivowtvitvi

dwo

Figure 10: PDG derived from M WTs

sw win wout dwi

wl wlo wli vo wtvi tvi

dwo

Figure 11: PDG with algebraic loop

3.4 Algebraic Loop Verification using CSP

We represent graphs in CSP and detect cycles on them via a traces-refinement
check executed in the FDR3 refinement checker9. This is illustrated with the
PDG of Fig. 12, containing labelled edges and numbers assigned to nodes
with outgoing edges. We represent edges as CSP channels and nodes as CSP
processes. Representation is oriented towards the edges of the graph as that
suits CSP’s communication model based on channels. Hence, each edge of
the graph is represented as a CSP channel:

channel sw win,win wout ,wout dwi , tvi wout ,
wtvi tvi , vo wtvi ,wli vo, . . .

The overall graph is a CSP process constructed from sub-processes represent-
ing each node. The node processes are an external choice of CSP prefixed
expressions for each edge that starts at the node. They offer the events on
the corresponding channel and then behave as the process at the end of the
edge. An edge to a sink node (no outgoing edges) results in a transition to

9https://www.cs.ox.ac.uk/projects/fdr/
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dwi
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sw_win win_wout

wout_dwivi1_wout
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Figure 12: A PDG with labelled nodes and edges
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SKIP . The main process is the external choice of all sub-processes. The
process for PDG of Fig. 12 is:

PortDependancyGraph =
letP(1) = sw win −→ P(2)
P(2) = win wout −→ P(3)
P(3) = wout dwi −→ SKIP
...

within@ i : 1..9 • P(i)

Cycles are detected through traces refinement. The abstract CSP process to
be refined defines all finite paths whose size is at most the number of edges
in the graph (those that can be built by combining the graph’s edges):

edges = {sw win,win wout ,wout dwi , tvi wout ,wtvi tvi , vo wtvi , . . .}
Limited =

letLimited0(E ,n) =

ifn > 0 then @ e : E • e −→ Limited0(E ,n − 1) u SKIP else STOP

withinLimited0(edges, 9)

The traces refinement check to be executed in FDR3 is then:

assertLimited vT PortDependancyGraph

All counter-examples are cycles. The function toCSP of Fragmenta/Isabelle
(Section 3.3) yields CSP specifications as outlined above. For the PDG
of Fig. 12, FDR3 gives no counter-examples; for Fig. 11 FDR3 yields one
counter-example.

3.5 Evaluation

FDR3 is a tool based on model-checking, a verification technique whose draw-
back is scalability. We compare our CSP approach to detect algebraic loops
(Section 3.4) against one approach based on Alloy [35] and one graph algo-
rithm [36], to gauge scalability.

3.6 Experimental Setup
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PDG

Alloy

CSPm

toAlloy

toCSP

GraphML

WaterTanksn

WaterTanks_loopn

ℕ
toGraphML

Figure 13: The experi-
ment’s generation functions

Scalability is evaluated against growing PDGs
based on the water tanks running example
(Fig. 5). We keep adding tanks to a base water
tanks systems to produce systems of cascading
water tanks having two versions: one with al-
gebraic loops (drain is connected to first tank)
and one without (as per Fig. 5).

The generation of files to execute in ei-
ther FDR3, Alloy 410 or the implementation of Johnson’s algorithm in
JGraphT [36]11, involves Isabelle functions that yield PDGs given the num-
ber of tanks. We then define functions from PDGs to the abstract syntax of
CSP (as per Section 3.4), Alloy (see below) and Graph ML12 as per diagram
of Fig. 1313. This relies on Isabelle’s code generation. Pretty printing and
file outputting is done by an ML program that builds up on the Isabelle
generated ML.

The graph checks and data collection were performed by a Java program
that reads the files and calls either Alloy 4 (using the minisat SAT solver),
FDR3 or JGraphT, executed on a MacBook Pro with a 2.5 GHz Intel core
i7 processor and 16GB RAM memory. The resulting data was subject to a
statistical analysis carried out in the R statistical package [53].

3.7 The Alloy Model

Alloy [35] is a declarative modeling language based on first-order logic with
transitive closure. It is used for data modelling and provides an automatic
bounded analysis of a model. Our Alloy model of PDGs is based on the
signature Port :

abstract sig Port {tgt : set Port}{tgt 6= this}

Above, we declare a set of Port instances (abstract says that Port has no
instances of its own and that all its instances belong to its extensions (sub-
sets)) with the relation tgt between Ports declared to be non-reflexive: the
tgt of some Port cannot be itself (this).

10http://alloy.mit.edu/alloy/download.html.
11A Java library of graph algorithms https://github.com/jgrapht/jgrapht.
12A standard for graphs exchange that enables a direct representation of PDGs http:

//graphml.graphdrawing.org/.
13The Isabelle file that performs the generation, the actual generated files, and the Java

code that runs the three approaches, can be found at http://bit.ly/1WKTIC7.
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The actual nodes of the PDG of Fig. 12 extend Port:

one sig sw , win , wout , dwi , wl , wlo , wli , vo , wlvi , tvi

extends Port {}

Above, the nodes are singletons (constraint one) that subset Port (extends).

The following Alloy fact defines the edges of the graph:

fact {sw.tgt = win

win.tgt = wout

wout.tgt = dwi

no dwi.tgt . . . }
assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, each edge is declared through relation tgt: sw.tgt =win says that there
is an edge from sw to win (operator . is the relational image), win.tgt =wout

says that there is an edge from win to wout, and no dwi.tgt says that dwi has
no outgoing edges (set is empty).

Finally, we assert the acyclicity of the relation tgt representing the PDG and
declare the command to check the assertion:

assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, the assertion says that there can be no elements (operator no) in
the set resulting from the intersection (operator & ) of the relation’s tran-
sitive closure (^tgt) with the identity relation (iden). The check command
includes a scope declaration: the analysis should consider at most 10 PDG
nodes.

3.8 Comparisons

The plots of Fig. 14 and 15 depict the data obtained from running the ex-
periments. They display the number of nodes of the analysed graph in the
abscissa and the duration of the check (in seconds) in the ordinate.

Fig. 14 shows that there is an overwhelming difference in favour of CSP
against Alloy. CSP’s maximum duration is 8.58s , Alloy’s is 652.59s . The
two approaches start to diverge with small to medium size graphs (number
of nodes > 17). The p-value, obtained from the paired data plotted in Fig. 14
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Algebraic loops: Alloy vs CSP
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Figure 14: Alloy vs CSP
Algebraic loops: CSP vs Johnson Algorithm
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using the Wilcoxon statistical test14, of < 2.2−16 (< 0.001) indicates a very
large difference. We derived estimates of functions that fit the data of both
Alloy and CSP to yield estimates of time complexity: Alloy has complexity
O(Exp), whereas CSP has complexity O(n3) (n is number of nodes of the
graph).

Fig. 15, on the other hand, shows that Johnson’s algorithm performs sub-
stantially better than CSP. The former’s maximum duration is 0.02s , CSP’s
is 164.98s . The p-value of < 2.2−16 (< 0.001) signals a very large difference.
The estimated function that fits the data endorses the algorithm’s linearity

14It is a non-parametric test that compares the two sampled distributions without as-
suming that they follow the normal distribution.
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claim.

3.9 Discussion

The work presented here statically checks an architectural design of a CPS
in preparation for co-simulation. This is done at the high-level architectural
design to provide early warnings of any issues so that the appropriate reme-
dial action can be taken. It is a preliminary check (done before delving into
the details of global co-simulation and local modelling and analysis of each
component) to ensure that the models to be co-simulated are, among other
things, free of connector inconformities and algebraic loops. These checks are
performed using the Isabelle proof assistant and the FDR3 model-checker;
both constitute an intimate part of our verification toolset.

We present a profile of SysML (originally defined in [5]), designed as a
DSL, for architectural modelling of CPSs supporting multi-modelling and
FMI co-simulation. The profile embodies an implicit systems decomposi-
tion paradigm driven by multi-modelling: the overall system architecture
is a decomposition of subsystems (E-components), encapsulating their own
models, which are further decomposed into POComponents to give an ac-
count of the inner structure of each subsystem. The profile enables a holistic
algebraic loop analysis that considers the inner details of each subsystem.
Guidance on the definition of SysML models for multi-modelling is provided
in [24], aiding CPS engineers in modelling a CPS architecture both holisti-
cally and in a decomposed form suitable for co-simulation.

The profile’s design caters for FMI co-simulation. The E-component subsys-
tems of the architecture result in FMI’s Functional Mock-up Units (FMUs)
to be co-simulated; FMUs are generated by the corresponding modelling
framework.

The profile’s DSL design was brought to life by Fragmenta and its accom-
panying Isabelle mechanisation. Fragmenta/Isabelle, built as part of the
work presented here, constitutes a prototyping environment built on top of
Fragmenta’s mathematical theory that provides reasoning and transfor-
mation capabilities for metamodels and their instances. As we demonstrate,
it can be used in real-world settings; ideally, however, Fragmenta designs
should be specialised and optimised as part of fully fledged visual modelling
environments. We also highlight how a model-driven engineering technology,
with a mathematical foundation, is used to solve practical problems related
with CPSs.
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The algebraic loops healthiness check is performed on a graph describing
the instantaneous dependencies between ports extracted from INTO-CPS
architectural models; external port connections are derived from the CD
and internal ones from the AD. Internal and external port dependencies
of the INTO-SysML model must be consistent with the underlying model
equations.

It is interesting to contrast the two model-based approaches to check alge-
braic loops. Alloy represents a graph directly (Section 3.7) as a relation
between nodes; the property to check is stated as an ordinary relational cal-
culus formula. The CSP approach (Section 3.4), on the other hand, is edge-
oriented to suit CSP’s communication model based on channels; a graph is
the communications established between nodes (CSP processes) chosen from
the environment (external choice); the property is expressed in an ingenious,
but less evident way: through an abstract process and a traces refinement
check. The life of a graph is simply the possible paths (communications) that
can be chosen from the environment.

FDR3 and Alloy 4 are both based on model-checking; however, the CSP
solution outperforms Alloy overwhelmingly. Alloy’s exponential time com-
plexity is attributed to the complexity of SAT whose worst-case time com-
plexity is exponential [48, 41]; the Alloy solution resorts to the transitive
closure, a computationally demanding operation (specialised algorithms do
it in O(n3)). An important factor in CSP’s lower O(n3) time complexity lies
in the use of traces refinement, founded on the simplest denotational model
of CSP and with the least expensive time complexity (polynomial according
to [37]).

The outstanding performance of Johnson’s algorithm in our experiment just
endorses its linear claim [36]. It is interesting to explain the oscillation por-
trayed in Fig. 15. The algorithm’s complexity bound is O((n + e)(c + 1)),
where n is the number of nodes, e the number of edges and c the num-
ber of cycles. In our experiment, a graph with a cycle (obtained from
WaterTanks loopn) is always followed by one without a cycle, hence, the
oscillation.

Our CSP solution is beaten by Johnson’s algorithm, but it is used in our
verification approach, which employs FDR3 for more sophisticated checks of
FMI co-simulations [3, 15]. It is difficult for general-purpose model-checking
to outperform specialised algorithms taking advantage of problem specifici-
ties.

The experimental setup varies size but not structure, which remains essen-
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tially the same throughout the different water tanks systems. However, as the
results show, this is enough to expose differences; furthermore, as discussed
above, the obtained results are consistent with theoretical results.

3.10 Related Work

Feldman et al [23] generate FMI model descriptions from Rhapsody SysML
models and FMUs from statecharts to enable integration with continuous
models. Unlike our work, this does not define a profile embodying a paradigm
designed for multi-modelling and FMI-co-simulation; furthermore, formal
static checks covering connector conformity and absence of algebraic loops
are not covered. Pohlmann et al [52] propose a UML-based DSL for real-time
systems; FMI FMUs are generated from model components described as real-
time statecharts; our work specialises the SysML block diagrams, a standard
notation for architectural modelling, and supports multi-modelling.

Our application of the Fragmenta theory presented in [4] required an
extension to the Isabelle/HOL theory of [4], developed to prove that pa-
per’s main theorem. This extension builds an infrastructure to support
automated verification and transformation for visual modelling languages.
Fragmenta/Isabelle constitutes a prototyping environment supporting all
the novel aspects of Fragmenta, namely: a formal theory of proxies and its
verified theory of decomposition and the support for fragmentation strategies.
To our knowledge, this is the first prototyping environment based on a proof
assistant that provides formal reasoning and transformation capabilities for
visual models.

The approach to connector conformity used here is based on typing. It
supports sub-typing according to the inheritance relations specified in the
metamodel; for instance, in INTO-SysML, natural numbers may be used
when integers are expected because the metamodel says that the former is
a subtype of the latter. This is checked as part of Fragmenta’s typing
morphisms. This is different from the connector compatibility of [19], which
performs validations based on interface contracts, a relation between allowed
inputs and outputs [67].

Broman et al [11] require that FMI component networks are algebraic-loop
free as a pre-condition to the deterministic composition results of their FMI
master algorithms, proposing port-dependency graphs as a means to perform
such checks. Unlike the work presented here, [11] does not study different
approaches to detect algebraic loops; it suggests algorithms that topologically
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sort a graph, which yield an error if the graph has a cycle. Our algebraic
loop analysis provides actual cycles as feedback to designers.

3.11 Conclusions on Checking SysML Models

We presented our approach to check a SysML model in preparation for co-
simulation. This involves checking the consistency and well-formedness of
the INTO-SysML model, which involves checking the conformance of the
model with respect to its metamodel based on Fragmenta’s representation.
The actual checks are carried out using Fragmenta’s Isabelle mechanisa-
tion, ensuring, among other things, connector conformity. We then showed
how the INTO-SysML models could be transformed into other modelling
languages to perform a check for the absence of algebraic loops using Frag-
menta’s Isabelle mechanisation as a transformation engine. We presented
a novel CSP approach to detect algebraic loops by checking a traces refine-
ment in FDR3. Our evaluation highlighted how our CSP approach based on
refinement-checking performs well when compared with an Alloy SAT-based
model-checking approach, but that it falls well short of a special-purpose
graph algorithm. The work presented in this report is done in tandem with
the effort on the formal semantics of FMI in CSP [3, 15].

Our contributions are as follows: (a) the SysML profile for architectural
modelling of CPSs in a setting of multi-modelling and co-simulation that
conforms to the FMI standard, (b) our approach to check the adequacy of a
SysML model for co-simulation using a theorem prover and a model-checker,
(c) the fact that we bring the theory for the representation of visual models
presented in [4] into a practical setting to solve a real-world problem in an
automated fashion based on Fragmenta’s Isabelle mechanisation, which
required enriching the Isabelle mechanisation presented in [4], (d) our CSP-
based solution to the detection of algebraic loops, which is based on a novel
approach to represent graphs in CSP, and (e) our evaluation of approaches
to the detection of a algebraic loops.

Specialised algorithms for topological sorting are also able to disclose alge-
braic loops to a designer. For example, the Modelica tools use variants of
an efficient algorithm from Tarjan for strong component analysis [65]. We
choose exploit our verification tools directly.
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4 Multi-modelling of Robots in SysML

For the development of robotic controllers, we propose the combined use of
RoboChart with the notation of a simulation tool for continuous systems: any
of Simulink, 20-sim, or OpenModelica, for instance. For illustration, we con-
sider here control-law diagrams used in Simulink. The goal is to support the
addition of detailed models for the robotic platform and for the environment.
To identify these constituent models and their relationships, we propose to
adapt the INTO-SysML profile.

A RoboChart module includes exactly one robotic platform, for which it
gives a very abstract account. As already said, a RoboChart robotic platform
defines just the variables, events, and operations available. In many cases, the
operations are left unspecified, or are described just in terms of their effect
on variables. In our ChemicalDetector module, for example, the operation
move is specified just in terms of its effect on the variables ls and as of
the robotic platform. There is no account of the actual laws of physics that
control movement.

In a Simulink model, on the other hand, we can define the expected effect of
the operations on the actual behaviour of the robot by capturing the laws of
physics. In addition, we can also capture physical features of the environment
that have a potential effect on the robot. To integrate the models, however,
they need to share and expose events and variables. It is the purpose of the
SysML model to depict the multi-models and their connections.

Next, we present the extensions (Sect. 4.1) and restrictions (Sect. 4.2) to
the INTO-SysML profile that we require, mainly for the specification of
RoboChart and Simulink model composition. They are mostly confined
to the Architecture Structure Diagrams. Some are of general interest, and
some support the use of RoboChart as a constituent model, in particular. In
Sect. 4.3 we explain how we expect the resulting INTO-SysML profile to be
used.

4.1 Extensions to INTO-SysML

The extensions are outlined in Table 1, and the restrictions later in Table 2.
Both tables identify if the changes are specific to the needs of multi-models
involving RoboChart diagrams, or if they are more generally useful for cyber-
physical systems and, therefore, could be included in the original INTO-
SysML profile.
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# Description INTO-
SysML/RoboCalc

E1 The components of the System block can
include LComponent blocks.

Both

E2 We can have specialisations of LCom-

ponent blocks with stereotypes Envi-

ronment and RoboticPlatform to group
models for the environment and for the
robotic platform.
We can have any number of Environment
blocks, but at most one block Robotic-

Platform. These blocks can themselves
be composed of any number of LCompo-

nent or EComponent blocks.

INTO-SysML may be ex-
tended to include an En-

vironment block; how-
ever, RoboticPlatform

should be RoboChart-
specific.

E3 The type of a flow port optional. RoboChart-specific
E4 The Platform of an EComponent is a

String and can include any simulation
tools. Alternatively, RoboChart and
Simulink need to be admitted.

RoboChart-specific

Table 1: Overview of proposed extensions to the INTO-SysML profile

Figure 16 presents the definition of the Architecture Structure Diagram for
the multi-models for the chemical detection system. The block Chemi-
calDetector represents the RoboChart module in Figure 2. The interface
of a RoboChart module is defined by the variables and events in its robotic
platform, which become ports of the SysML block that represents the mod-
ule. The blocks Arena, WallSensor, MobilityHw, and ChemDHw represent
Simulink models.

The first extension (E1) is about new LComponent blocks, which can be used
to group models of the robotic platform or of the environment. They are
logical blocks: they do not correspond to an actual component of the co-
simulation. In our example, the LComponent block Rover represents the
models for the robotic platform. It is composed of three EComponent blocks,
representing Simulink models for the hardware for wall sensing, mobility, and
chemical detection.

In fact, it is possible to define Rover as a RoboticPlatform block using the
extension E2. On the other hand, we have just one EComponent that models
one aspect of the environment, namely, Arena.
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Figure 16: Chemical Detector Architecture Structure Diagram

Event-based communications are required in RoboChart, so we propose in
E3 that ports may not carry any values. For instance, in our model, left and
right are events of the robotic platform, as defined in RoboChart. As already
said, they represent an indication of the presence of a wall from the sensors
in the robotic platform. They carry no values.

The INTO-SysML profile does not include operations on blocks. This is due
to the fact that blocks are intended to inform FMI model descriptions. The
FMI standard considers interactions to be in the form of typed data passed
between FMUs; this data is shared at each time step of a simulation. As such,
the profile does not natively support the concepts of event-based or operation-
based interactions. The new typeless ports representing RoboChart events
are, therefore, handled by encoding event occurrence using real numbers 0.0
and 1.0.

Finally, the extension E4 includes extra values, namely, RoboChart and
Simulink, for defining the platform of an EComponent block.

For the Connection Diagram, no changes to the INTO-SysML profile are
required, except that we can have instances of LComponent blocks as well.
For our example, the diagram is shown in Figure 17.
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Figure 17: Chemical Detector Connection Diagram

4.2 Restrictions on INTO-SysML

As for the restrictions in Table 2, we have in R1 and R2 constraints on flow
ports of System and LComponent blocks. Basically, a System block, Chemical
Detection System in our example, is unique and can have no ports.

An LComponent block, like Rover in Figure 16, cannot have ports either.
Since it is the EComponent blocks that represent multi-models, only they can
contribute with inputs and outputs. For this reason, it does not make sense
to include extra ports in an LComponent block, which just groups multi-
models.

We recall that a cyber component models software aspects of the system.
They could be specified using RoboChart and its abstraction facilities, which
are tailored for mobile and autonomous robotic systems. So, R3 requires that
there is just one cyber component: the RoboChart module that is comple-
mented by the Simulink diagrams. In our example, this is the ChemicalDe-
tector block.

For simulation, parameters and inputs need an initial value as enforced by
R4. For a parameter, this is the default value used in a simulation, unless an
alternative is provided. For the inputs, these are initial conditions that define
the first set of outputs in the first step of the simulation. In our example,
the initial values for position and direction, for instance, are (0.0,0.0) and
(1.0,1.0). So, initially, the robot is stationary at a corner of the arena.
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# Description INTO-SysML /
RoboCalc

R1 There is exactly one System block and it
cannot have flow ports.

Both

R2 An LComponent block has no ports. Both
R3 In a diagram, we can have only one ECom-

ponent of ComponentKind cyber that
must have Platform as RoboChart.

RoboChart-specific

R4 When the kind of a variable is parameter
and when the Direction of a FlowPort

with a type is in, its initial value must be
defined.

Both

R5 Ports of a RoboChart block should be
connected to the robotic platform, and
not to the environment.

RoboChart-specific

R6 No use of POComponent is needed, if
Simulink is used. If textual continuous
models are adopted, these blocks can be
used.

RoboChart-specific

R7 Typeless ports of a RoboChart block can
be connected only to ports of type real of
a Simulink block.

RoboChart-specific

Table 2: Overview of proposed restrictions to INTO-SysML profile

A controller can only ever sense or influence the environment using the sen-
sors and actuators of the robotic platform. With R5, we, therefore, require
that there is no direct connection between the controller and the environment.
For example, Arena, representing a Simulink model of the environment, has
an output port walls, that identifies as a 4-tuple the distances from the cur-
rent position to the walls in the directions left, right, front, and back. This
port is connected to the input port of the same name in WallSensor. It is
this component that provides ports wleft and wright connected to the input
ports l and r of ChemicalDetector.

We note that FMI does not have vector (array) types. So, strictly speaking,
instead of ports with vector types, we should have separate ports for each
component of the vectors. The inclusion of vectors in the FMI standard is,
however, expected. We, therefore, make use of them in our example.

We require with R6 that no POComponent is included. For further detail in the
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Figure 18: MobilityHw Simulink Diagram

models, we use RoboChart and Simulink, which are both diagrammatical. Of
course, if only a textual continuous model is available, POComponent blocks
can improve readability of the overall architecture of the system.

The only restriction relevant to a Connection Diagram is R7. Only ports of
compatible types can be connected; compatibility between RoboChart and
Simulink types is as expected. On the other hand, as already said, events
in the RoboChart model that do not communicate values are represented by
typeless ports of its SysML block. These ports can be connected to ports
of a Simulink block representing a signal of type real. The values 0.0 and
1.0 can be used to represent the absence or occurrence of the event, for
example.

The Simulink model for MobilityHw is shown in Figure 18. The input ports
of MobilityHw, namely, ls, as, slope, and walls (see Figure 16) correspond
to the input ports of the same name in the Simulink diagram. Moreover, the
output ports gpspos and gpsdir correspond to the output ports current -
position and current direction of the Simulink diagram.

The Simulink diagram consists of two main sybsystems: rotate takes an angle
and a vector as input and provides as output the result of rotating the vector
by the given angle; and accelerate takes a linear speed (ls) and a slope and
calculates the necessary acceleration profile to reach that velocity taking the
slope into account. Essentially, given an initial position and initial direction,
angular and linear speeds as and ls, a slope, and the distances walls to
obstacles, the model calculates the movement of the robot. Restrictions over
the speed are established by the block limit velocity. Restrictions over the
position are described by the block Switch, which sets the speed to zero if
there is a wall in front of the robot.
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4.3 Use of INTO-SysML with RoboChart

In addition to the proposed required changes to the INTO-SysML profile,
there are some specific issues to consider when defining a multi-model for
RoboChart using the INTO-SysML profile. We outline these below.

Given a RoboChart module, the corresponding EComponent block has a par-
ticular form. First of all, it must have: kind as cyber; the Platform as
RoboChart; and the ModelType as discrete. This is illustrated in Fig-
ure 16.

The variables of the RoboChart robotic platform become output ports. In
our example, the variables ls and as of the Rover in Figure 2 become output
ports of ChemicalDetector in Figure 16. The variables record the speeds
required by the controller. This is used to define the behaviour of the mobility
hardware.

The events of the RoboChart robotic platform are part of the visible be-
haviour of the RoboChart module. For this reason, they become flow ports
in the cyber EComponent. In our example, we have events l, r, alarm, lightOn
and lightOff in the block ChemicalDetector of the Architecture Structure Di-
agram in Figure 16, just like in the Rover of the module in Figure 2.

In the RoboChart module, the definition of the direction of the events is from
the point of view of the software controllers. In the Architecture Structure
Diagram, the point of view is that of the hardware and the environment. So,
their directions are reversed. For instance, the Rover in Figure 2 can send
the events l and r to the controller DetectAndFlagC indicating the presence
of a wall on the left or on the right. In ChemicalDetector, however, these
are input events. The relevant part of the hardware itself is modelled by the
EComponent WallSensor, where the matching events wleft and wright are
indeed outputs.

Operations of the RoboChart robotic platform, on the other hand, are not
part of the visible behaviour of the module. So, they are not included.
For instance, move, LoadFlag and ReleaseFlag are not in the EComponent

Rover.

The flow ports of the cyber EComponent become flow ports of at least one
of the EComponent blocks that represent the robotic platform. It is possible,
however, that there are extra flow ports for communication between the
models of the robotic platform and of the environment. In our example, for
instance, an extra flow port slope is used for the environment model Arena to
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inform the hardware model MobilityHw of the inclination of the floor, which
has an effect on its control of movement to achieve the targeted speed.

4.4 Semantics

A CSP semantics for INTO-SysML is already defined in [2]. Our semantics
here is different in two ways: it considers extensions and restrictions described
above, and it is based on events that represent calls to one of three functions
of the FMI API: fmi2Set, fmi2Get, and fmi2DoStep. In contrast, the se-
mantics in [2] identifies events with flows. It gives a simulation view of the
model, where behaviour proceeds in steps, but a data flow is one interac-
tion. In FMI, a flow is established by a pair of calls to fmi2Set and fmi2Get

functions.

As a consequence of our approach here, our semantics is useful to define
specifications for FMI simulations. In [14], we present a CSP semantics for
such simulations that can be automatically generated from a description of
the FMUs and their connections, and a choice of master algorithm. Our
semantics can be used to verify the correctness of those models.

The CSP process that defines the semantics of an INTO-SysML model uses
communications on the following channels.

channel fmi2Get : FMI 2COMP × PORT ×VAL× FMI 2STATUSF
channel fmi2Set : FMI 2COMP × PORT ×VAL× FMI 2STATUS
channel fmi2DoStep : FMI 2COMP × TIME ×NZTIME × FMI 2STATUSF

The types of these channels match the signature of the corresponding FMI
API functions. FMI 2COMP contains indices for each of the used instances of
EComponent blocks, which represent FMUs in the INTO-SysML profile.

PORT contains indices, unique to each EComponent instance, to identify
ports, which represent input and output variables of the FMU. VAL is the
type of valid values; we do not model the SysML or the FMI type system.
For ports corresponding to a RoboChart event, special values (perhaps just
0 and 1) represent absence or presence of an event occurrence. VAL must
include these values.

In FMI, there is one fmi2Get and one fmi2Set function for each data type.
We, however, consider just one generic channel for each of them, since the
overall behaviour of these functions is the same.

FMI 2STATUS and FMI 2STATUSF contain flags returned by a call to the
API functions. In our model, all calls return the flag fmi2OK , indicating
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EComponent(ec) = let

Init(setup) =
(9var : setup • fmi2Set .ec.var .InitialValues(ec, var).fmi2OK −→ SKIP)

TakeOutputs(outs) =
sync −→ (9var : outs • fmi2Get .ec.var?x .fmi2OK −→ SKIP)

DistributeInputs(inps) =
sync −→ (9var : inps • fmi2Set .ec.var?x .fmi2OK −→ SKIP)

Step = sync −→ fmi2DoStep.ec?t?ss.fmi2OK −→ SKIP

Cycle = TakeOutputs(Outputs(ec)); DistributeInputs(Inputs(ec)); Step; Cycle

within
Init(Parameters(ec) ∪ Initials(ec)); Cycle

Figure 19: CSP model of an EComponent block

success. So, the scenarios that it defines do not cater for the possibility of
errors.

Finally, the types TIME and NZTIME define a model of time, using natural
numbers, for instance. In the case of NZTIME , it does not include 0, since
fmi2DoStep does not accept a value 0 for a simulation step size.

In what follows, we use the above channels to define CSP processes that cor-
respond to EComponent instances (Section 4.5), and to co-simulations defined
by a Connection Diagram for a System block (Section 4.6).

4.5 EComponent instances

The process EComponent(ec) that defines the semantics of an EComponent

block instance of index ec is specified in Figure 19. Its behaviour is de-
scribed by an initialisation defined by the process Init , followed by a process
Cycle.

We use functions Parameters , Inputs , Outputs , and Initials , which, given
an index ec, identify the parameters, input and output ports, and input
ports with initial values, of the block instance ec. Instances of the same
EComponent block have the same parameters, inputs, outputs, and input
ports with initial values.
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In Init , the parameters and the input ports are initialised using values defined
by a fifth function InitialValues , which, given a block ec and a parameter or
input port var , gives the value of the parameter or the initial value of the
port. Initialisation is via the channel fmi2Set .

Cycle defines a cyclic behaviour in three phases for an EComponent. It contin-
uously provides values for its outputs, as defined by TakeOutputs(Outputs(ec)),
takes values for its inputs, as defined by DistributeInputs(Inputs(ec)), and
then carries out a step of simulation, as defined by Step. The channel
fmi2Get is used to produce the values of the outputs, fmi2Set to take input
values, and fmi2DoStep to mark a simulation step. We use two functions
Outputs and Inputs that define the output and input ports of a given ECom-

ponent ec.

TakeOutputs(Outputs(ec)) offers all the outputs var in Outputs(ec) via the
channel fmi2Get in interleaving (9). The particular value x output is not
defined (as indicated by the ? preceding x ). This value can be determined
only by a particular model (in RoboChart or Simulink, for instance) for the
EComponent. A channel sync is used to mark the start of the outputting
phase.

DistributeInputs(Inputs(ec)) is similar, taking the inputs in Inputs(ec) via
fmi2Set . Finally, Step, after accepting a sync, takes an input via fmi2DoStep
of a time t and a step size ss , and terminates (SKIP).

In the semantics of a co-simulation, defined in the next section, we use the
parallel composition (J...K) below of instances of EComponent(ec) for each
EComponent block instance. The processes EComponent(ec) synchronise on
sync to ensure that they proceed from phase to phase of their cycles in lock
step.

BlockInstances = (Jsync K ec : FMI 2COMP • EComponent(ec)) \ {sync}
The communications on sync, however, are hidden (\). Therefore, as already
indicated, the collective behaviour of the block instances is specified solely
in terms of communications on the FMI API channels.

4.6 Co-simulation

A Connection Diagram for a System block instance characterises a co-simulation
by instantiating blocks of the Architecture Diagram and defining how their
ports are connected. So, we define the semantics of the System block in-
stance as a co-simulation specified by the CSP process CoSimulation defined
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Connections = let

Init = 9ec : FMI 2COMP •

(9 var : Initials(ec) • fmi2Set .ec.var?x .fmi2OK −→ SKIP)

Step =‖ c : ConnectionIndex • [AC (c)]Connection(c)

Cycle = Step; Cycle

within
Init ; Cycle

Figure 20: CSP model of a Connection Diagram

in the sequel. We note that the instances of LComponent blocks plays no role
in the co-simulation semantics, since these blocks do not represent any ac-
tual component of a co-simulation, but just a logical grouping of constituent
models.

Besides BlockInstances above, CoSimulation uses the process Connections
shown in Figure 20. This is defined in terms of a parallel composition (

f
)

Step of processes Connection(c) that define each of the connections c in a
Connection Diagram, identified by indices in a set ConnectionIndex .

The Init process defines that, first of all, the variables corresponding to
input ports of each component ec are initialised. Afterwards, Connections is
defined by Cycle, which continuously behaves like Step.

A Connection(c) process takes an output from the source port of the con-
nection and gives it to the target port. In our example, we can, for instance,
give the connection between the ports wright of WallSensor and r of Chem-
icalDetector the index 3. In this case, Connection(3) is as follows, where
WallSensor and ChemicalDetector are the indices in FMI 2COMP for these
EComponent block instances, and WSwright and CDr are variables corre-
sponding to wright and r.

Connection(3) = fmi2Get .WallSensor .WSwright?x .fmi2OK−→
fmi2Set .ChemicalDetector .CDr .x .fmi2OK −→ SKIP

Connection(3) ensures that the value x output via wright is input to the r
port.

In the parallel composition in Step, each process Connection(c) is associated
with an alphabet AC (c), which includes the communications over fmi2Get

39



D2.2a - Foundations of SysML (Public)

and fmi2Set that represent the connection it models. In our example, AC (3)
contains all communications over fmi2Get with parameters WallSensor and
WSwright , and over fmi2Set with parameters ChemicalDetector and CDr .
These alphabets ensure that if there are several connections with the same
source port, they share the output in the port by synchronising on that
communication. In our example, the output Awalls of Arena is shared be-
tween the processes for the connections between Arena and WallSensor and
between Arena and MobilityHw.

Finally, the semantics for the co-simulation defined by a Connection Diagram
for a System instance is the parallel composition below.

CoSimulation = BlockInstances J FMIGetSet K Connections

The processes synchronise on communications on the set FMIGetSet con-
taining the union of the alphabets of the Connection(c) processes.

If there are ports that are not associated with a connection, their correspond-
ing communications via fmi2Set or fmi2Get are not included in FMIGetSet .
These communications are restricted only by the process BlockInstances . In
our example, the ports lightOn and lightOff are not connected to any other
ports. Their outputs are visible to the environment of the chemical detection
system, but not connected to any other modelled components.

The behaviour defined by CoSimulation specifies cyclic simulation whose
steps contains three phases: all outputs are taken in any order, used to provide
all inputs, also in any order, and then the time advances via a simulation
step of each multi-model. As already said, a CSP semantics for an FMI
co-simulation is available [14]. With that, CoSimulation can be used as a
specification to validate an FMI co-simulation where the FMUs correspond
to the EComponent block instances and must be orchestrated as indicated in
the connection diagram.

4.7 Related work

Dhouib et al. describe a UML profile for a graphical domain-specific language
for robotics [18] that supports model development and automatic platform-
independent code generation. Their language is designed for modelling and
reasoning about non-functional properties. Lima et al. also propose a model-
based engineering approach to robotic systems [60] in their UML-based com-
ponent framework. A variety of inter-component communication patterns are
involved; however, the semantics for component controllers are not defined.
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RoboChart is a domain-specific language for designing and verifying robot
controllers; it is small and has a well-defined semantics to support sound
generation of formal models and their simulations.

There are (famously) many different semantics for UML state machines [21].
Kuske et al. [42] give semantics for UML class, object, and state-machine
diagrams using graph transformation. Rasch and Wehrheim [55] use CSP to
give semantics for extended class diagrams and state machines. Davies and
Crichton [16] also use CSP to give semantics for UML class, object, state-
chart, sequence, and collaboration diagrams. Broy et al. [12] present a foun-
dational semantics for a subset of UML2 using state machines to describe the
behaviour of objects and their data structures. RoboChart state machines
have a precise semantics in CSP in the spirit of [55] and [16]; however, for the
sake of compositionality, RoboChart state machines do not include history
junctions and inter-level transitions.

UML 2.0 includes a timing diagram, a specific kind of interaction diagram
with added timing constraints. The UML-MARTE profile [63] provides richer
models of time based on clocks, including notions of logical, discrete, and con-
tinuous time. The Clock Constraint Specification Language (CCSL) provides
for the specification of complex timing constraints, including time budgets
and deadlines. This is accomplished with sequence and time diagrams; it is
not possible to define timed constraints in terms of transitions or states.

UML-RT [62] encapsulates state machines in capsules; inter-capsule com-
munication is through ports and is controlled by a timing protocol with
timeouts. More complex constraints, including deadlines, are specified only
informally.

The work in [54] defines a semantics for a UML-RT subset in untimed Cir-
cus [68]. An extension to UML-RT is considered in [1] with semantics
given in terms of CSP+T [69], an extension of CSP that supports anno-
tations for the timing of events within sequential processes. The RoboChart
timed primitives are richer and are inspired by timed automata and Timed
CSP [61].

Practical work on master algorithms for use in FMI co-simulations includes
generation of FMUs, their simulations, and hybrid models [6, 51, 22, 17].
FMUs can encapsulate heterogeneous models; Tripakis [66] shows how com-
ponents based on state machines and synchronous data flow can be encoded
as FMUs. In our approach, we have a hybrid co-simulation, but each ECom-

ponent is either discrete or continuous. Extensions to FMI are required
to deal with that [10].
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Savicks [58] shows how to co-simulate Event-B and continuous models using
a fixed-step master algorithm. Savicks does not give semantics for the FMI
API, but supplements reasoning in Event-B with simulation of FMUs within
Rodin, the Event-B platform, applying the technique to an industrial case
study [59]. The work does not wrap Event-B models as FMUs, and so it
does not constitute a general FMI-compliant co-simulation. Here, we do
not consider the models of FMUs, but plan to wrap CSP-based models of
Simulink [13] and RoboChart [47] to obtain CSP-based FMUs models that
satisfy the specification in [14].

4.8 Conclusions on Multi-Modelling of Robots

We have extended and restricted the INTO-SysML profile to deal with mobile
and autonomous robotic systems. For modelling the controller(s), we use
RoboChart. For modelling the robotic platform and the environment, we use
Simulink. We have also given a behavioural semantics for models written in
the profile using CSP. The semantics is agnostic to RoboChart and Simulink,
and captures a co-simulation view of the multi-models based on the FMI
API.

Our semantics can be used in two ways. First, by integration with a seman-
tics of each of the multi-models that defines their specific responses to the
simulation steps, we can obtain a semantics of the system as a whole. Such
semantics can be used to establish properties of the system, as opposed to
properties of the individual models. In this way, we can confirm the results of
(co-)simulations via model checking or theorem proving, for example.

There are CSP-based formal semantics for RoboChart [47] and Simulink [13]
underpinned by a precise mathematical semantics. Our next step is their
lifting to provide an FMI-based view of the behaviour of models written in
these notations. With that, we can use RoboChart and Simulink models as
FMUs in a formal model of a co-simulation as suggested here, and use CSP
and its semantics to reason about the co-simulation. For RoboChart, for
example, the lifting needs to transform inputs of values 0.0 and 1.0 on ports
for typeless events to synchronisations.

It is also relatively direct to wrap existing CSP semantics for UML state
machines [55, 16] to allow the use of such models as FMUs in a co-simulation.
In this case, traditional UML modelling can be adopted.

Secondly, we can use our semantics as a specification for a co-simulation. The
work in [14] provides a CSP semantics for an FMI co-simulation; it covers
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not only models of the FMUs, but also a model of a master algorithm of
choice. The scenario defined by an INTO-SysML model identifies inputs and
outputs, and their connections. The traces of the FMI co-simulation model
should be allowed by the CSP semantics of the INTO-SysML model.

There is no support to establish formal connections between a simulation
and the state machine and physical models (of the robotic platform and the
environment). The SysML profile proposed here supports the development
of design models via the provision of domain-specific languages based on
familiar diagrammatic notations and facilities for clear connection of models.
Complementarily, as explained above, the semantics of the profile supports
the verification of FMI-based co-simulations.

There are plans for automatic generation of simulations of RoboChart mod-
els [47]. The semantics we propose can be used to justify the combination of
these simulations with Simulink simulations as suggested above.

Within INTO-CPS, we plan to contribute to the robot case study and pilot
projects.‘
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