

Digital land resource mapping (DLRM) to address information and capacity shortages in developing countries

Anthony Ringrose-Voase, Mark Thomas, Gerard Grealish, Mike Wong, Agustin Mercado, Gina Nilo, Mark Glover, Trevor Dowling

CSIRO Agriculture, CSIRO Land and Water, ICRAF, Bureau of Soil & Water Management www.csiro.au

Australian Government

Australian Centre for International Agricultural Research

Land resource information required to underpin evidence-based land use planning

- Choice of alternative crops
- Necessity for alternative cropping systems e.g. agroforestry
- Choice of land management practices to overcoming limitations
- Identification of areas prone to degradation

Chronic shortage of capability to survey land resources

- DLRM offers a new paradigm for providing information
 - More efficient use of experts

Digital Land Resource Mapping (DLRM)

including Digital Soil Mapping (DSM)

Based on 4 pillars:

1. Statistically-based sampling strategy

Cabulig River Catchment, N Mindanao, Philippines 20 m digital elevation model – 220 km²

Digital land resource mapping of upland catchments | Anthony Ringrose-Voase

Cabulig River Catchment, Northern Mindanao Stratification into physiographic regions

CSIR

Cabulig River Catchment, Northern Mindanao Stratification into landform units using topographic position index

Cabulig River Catchment, Northern Mindanao Stratified random selection of "seed" sites

Digital land resource mapping of upland catchments | Anthony Ringrose-Voase

500m transect site $\longrightarrow \checkmark$

Random transect

150m Transect sites at 30m 3m Seed site

Digital elevation model (DEM, 20m cells)

100 m

1. Statistically based sampling strategy

Stratified random sampling

- Statistically valid
- Sites located by field teams using GPS
 - No need for pedologist to choose 'representative' sites in the field
- Landscape understanding improved by
 - Strata that are recognisable to pedologist
 - Transects along toposequences

Digital Land Resource Mapping (DLRM) including Digital Soil Mapping (DSM)

Based on 4 pillars:

- 1. Statistically-based sampling strategy
- 2. Simplified site and soil profile methods

2. Site and soil profile methods

DLRM – Simplified site and soil profile methods

- Emphasis on taking soil samples at every site
- Simplified description at each sample site
 - Can be done by non-expert
 - Chip trays and photographs allow checking by expert

Digital Land Resource Mapping (DLRM) including Digital Soil Mapping (DSM)

Based on 4 pillars:

- 1. Statistically-based sampling strategy
- 2. Simplified site and soil profile methods
- 3. Rapid soil analysis

3. Soil analysis using MIR spectroscopy

Some MIR calibration results from Cabulig catchment

SOIL PROPERTY	r ²	RPD*		
Organic carbon	0.90	3.1	Analytical	
pH (CaCl ₂)	0.87	2.8	Good	ALTINA _
Clay content	0.80	2.2	Good	
CEC	0.78	2.1	Good	
Exchangeable K	0.57	1.5	Indicator	Q across 0
Olsen P	0.38	1.3	Poor	

- * Residual Prediction Deviation
- Local calibration using conventional analyses of samples from seed sites
- Having soil measurements at all sites reduces reliance on inferring soil properties from 'soil type'
 - Less need for pedologist in field for soil classification

Digital Land Resource Mapping (DLRM) including Digital Soil Mapping (DSM)

Based on 4 pillars:

- 1. Statistically-based sampling strategy
- 2. Simplified site and soil profile methods
- 3. Rapid soil analysis
- 4. Mapping of soil and land properties using statistical models

4. Mapping of soil and land properties

Digital soil maps of each soil property

- Terrain attributes (from 20 m DEM) used as spatial covariates
- Uses Cubist
 - Random 20% transects removed for external validation
 - Bootstrapping with 50 iterations
 - Final estimate is mean of iterations
 - Uncertainty maps show 90% confidence interval of the iterations

Cabulig River catchment Northern Mindanao

- pH (CaCl₂) 0-10 cm
 - External correlation 0.76
 - External concordance 0.86

Cabulig River catchment Northern Mindanao

- Soil depth
 - External correlation 0.37
 - External concordance 0.59

Survey organisation and local field teams

A partnership to improve survey efficiency

Survey organisation

- Reconnaissance survey
 - Develop landscape model
- Design statistically-based sampling
- Design simplified site description sheets
- Train local field teams
- MIR analysis of samples from all sites
 - Calibration using standard laboratory analysis of samples from a small subset of sites
- Produce maps of soil properties using spatial prediction

Local field teams

- Provide local knowledge
 - Geography, land use, social/cultural expectations
- Liaise with local officials, land owners and other stakeholders
- Majority of field work
 - Locate sample sites using GPS
 - Simplified soil profile descriptions
 - Sample all layers at all sites
- Sample preparation
- On-going interpretation of outputs after completion to assist land use planning & agricultural extension

Thank you

CSIRO Agriculture

Anthony Ringrose-Voase Research Project Leader

- t +61 2 6246 5956 +63 915 663 7130
- e anthony.ringrose-voase@csiro.au
- w www.csiro.au

CSIRO Agriculture www.csiro.au

