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Background:  
Soil class prediction from a DSM study, Wyoming, USA 

U.S. Soil Taxonomy 
Subgroup Classes Pedonsa  % of totalb Producer’s accuracy 

% 

Ustic Haplargid 26 46 86 

Ustic Torriorthent 21 37 83 

Badland 6 10 50 

Ustic Paleargid 2 4 0 

Ustic Torrifluvent 2 4 0 

Total 57 100     

a Total number of pedons per subgroup class. 
b Percent of total observations represented by each subgroup class.   

Table modified from: Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards Jr., T.C.  2015. Machine learning for predicting soil classes in three semi-arid landscapes, Geoderma, Volumes 239–240 

Majority classes = good prediction 

Minority/rare classes = poor prediction 



Problem: 

• Rare soil: a soil taxonomic class with few observations 
• Accurate modeling of rare soils is needed for  

• Rare plant distribution (e.g., Schoenocrambe suffrutescens) (Baker et al., 2016)  
• Vineyard suitability  (e.g. Terra Rossa) 
• Targeted land management (e.g., wetland restoration) 
  

• However; rare soils are difficult to accurately predict 



Why are some soils classes rare? 

• Endemic soils 
• Soils restricted to a particular geographic area based on a unique 

combination of soil-forming factors (Bockheim, 2005) 
• Likely small areas, infrequently sampled 

• Sampling issues 
• Biased sampling 
• Arbitrary study area boundaries 

 



Why are rare soils difficult to predict? 

1) Conceptual reasons 
• Different defining and predicting variables 

• we define soil classes with a set of soil profile variables, but try 
to model them with environmental variables 

• Soil classes difficult to separate in feature space 



Soil Classes Difficult to Separate in Feature Space 



Why are rare soils difficult to predict? 

2) Practical reasons 
• Accurate classification requires many observations 

• A few classes have the majority of the observations 
• Good prediction accuracy 

• Rare soil classes (minority classes) have few observations 
• Poor prediction accuracy 

 



Possible solutions to practical problems 

• Decrease the number of classes 
• Combine minor classes with similar classes or into ‘other’ class 

• Can exclude rare classes 
• Should be done for classes with fewer observations than covariates 

• Use a weighting/cost scheme 
• Useful, but cannot produce class probability predictions (often most 

interesting) 

• Increase number of observations in rare classes 



How to increase observation numbers in rare 
classes? 
• Expert knowledge  

• Case-based reasoning (Shi et al., 2004) 
• Expert knowledge used to generate synthetic observations 

• Data-driven approach 
• Synthetic minority-class oversampling (e.g., SMOTE) 
• Synthetic observations generated by similarity to existing 

observations 
• Currently only for two-class problems (soil datasets are multi-

class) 



Synthetic minority-class oversampling for 
multi-class soil datasets - SIMONA 

• Goal: Generate equal number of observations in each soil 
class 

• Synthetic samples similar to field samples in geographic and 
feature space 

• An alternative algorithm from Abdi and Hashemi (2015) 
which only sampled the feature space  

 
 



SIMONA - Synthetic minority class oversampling 
for multiclass soil datasets 

1. Calculate weights for each minority class observation 
• Weights based on n surrounding points with matching class label. Weight higher for 

more surrounding observations with matching class labels 
2. Randomly choose one minority class observation by weight  
3. Extract all covariate values around observation in a w-meter buffer 
4. Calculate similarity between observation and covariates with Gower’s 

similarity index (including categorical variables)  
5. Randomly choose one of the p most similar samples 
6. Add to synthetic sample set 
7. Repeat until number of original + synthetic samples = the number of 

observations in the majority class 
 

 



Preliminary Case Study 
• Area: 296 km2 – North-central Wyoming, USA 
• Elevation: ~ 1500 m 
• Geology: mudstone, sandstone, conglomerate, limestone, shale and 

coal 
• Climate: cool and dry 
• Land use: oil, gas, coal production 

Photo courtesy of elifino57: https://ssl.panoramio.com/user/6155411 



Sampling 
• 57 pedons 
• 5 subgroup* classes  

• Imbalanced - 83% of 
observations in two classes 

* Subgroups according to US Soil Taxonomy 

U.S. Soil Taxonomy 
Subgroup Classes Pedonsa  % of totalb 

Ustic Haplargid 26 46 
Ustic Torriorthent 21 37 
Badland 6 10 
Ustic Paleargid 2 4 
Ustic Torrifluvent 2 4 

Total 57 100 
a Total number of pedons per subgroup class. 
b Percent of total observations represented by each subgroup class.   



SIMONA 
• Covariates: Plan curvature, Diffuse Insolation, Landsat band ratio 5/2, Catchment Slope 

U.S. Soil Taxonomy 
Subgroup Classes Original Synthetic Original + 

Synthetic 
Ustic Haplargid 26 0 26 
Ustic Torriorthent 21 5 26 
Badland 6 20 26 
Minora  4 22 26 

Total 57 104 
a Combined 3 minor classes with < = 2 observations 



Modelling 
• CART and Neural Network models 

• Original samples 
• Original + Synthetic samples 

• Case weights 
• Original samples assigned high class weight (1)  
• Synthetic samples assigned low case weight (0.25)  

• Model accuracy 
• Bootstrap sampling repeated 10 times 

• Overall accuracy 
• Kappa 
• Confusion matrices 



Results: Model Accuracy 
Overall Accuracy* 

Model Original Samples Original + Synthetic 
CART 0.57 0.64 
Neural Net 0.67 0.77 

* mean of bootstrap sampling repeated 10 times 

Kappa*  
Model Original Samples Original + Synthetic 
CART 0.26 0.52 
Neural Net 0.43 0.70 

* mean of bootstrap sampling repeated 10 times 



Results 
• Confusion Matrices from bootstrap sampling (neural network model only) 

• Accurate models have large diagonal and small off-diagonal values 

Actual 
  Badland Ustic Haplargid Ustic Torriorthent Minor 

Predicted 

Badland 1 0 0 1 
Ustic Haplargid 3 40 7 4 
Ustic Torriorthent 5 11 26 3 
Minor 0 0 0 0 

Actual 
  Badland Ustic Haplargid Ustic Torriorthent Minor 

Predicted 

Badland 21 0 3 0 
Ustic Haplargid 1 17 5 2 
Ustic Torriorthent 1 5 18 1 
Minor 0 3 2 21 

Original samples 

Original + synthetic 



Results: Spatial Prediction with only original samples 



Results: Spatial Prediction with synthetic samples 



Conclusions 
• SIMONA (Synthetic minority class oversampling for multiclass soil 

datasets) is promising for increasing rare soil class prediction accuracy 
• Need to further test with independent validation data set 

• May provide a means to increase prediction accuracy when additional 
field sampling is limited 
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