Accurate digital mapping of rare soils

Colby Brungard¹, Budiman Minasny²

¹Department of Plants, Soils, and Climate, Utah State University, United States

²Faculty of Agriculture & Environment, The University of Sydney, NSW 2006, Australia

Machine learning for predicting soil classes in three semi-arid landscapes

Colby W. Brungard ^{a,*}, Janis L. Boettinger ^a, Michael C. Duniway ^b, Skye A. Wills ^c, Thomas C. Edwards Jr. ^d

Background: Soil class prediction from a DSM study, Wyoming, USA

U.S. Soil Taxonomy Subgroup Classes	Pedons ^a	% of total ^b	Producer's accuracy %	
Ustic Haplargid	26	46	86	
Ustic Torriorthent	21	37	83 J Maj	jority classes = good prediction
Badland	6	10	50	
Ustic Paleargid	2	4	0 - Min	ority/rare classes = poor prediction
Ustic Torrifluvent	2	4	0	
Total	57	100		

^a Total number of pedons per subgroup class.

^b Percent of total observations represented by each subgroup class.

Table modified from: Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards Jr., T.C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes, Geoderma, Volumes 239–240

Problem:

- Rare soil: a soil taxonomic class with few observations
- Accurate modeling of rare soils is needed for
 - Rare plant distribution (e.g., *Schoenocrambe suffrutescens*) (Baker et al., 2016)
 - Vineyard suitability (e.g. Terra Rossa)
 - Targeted land management (e.g., wetland restoration)
- However; rare soils are difficult to accurately predict

Why are some soils classes rare?

- Endemic soils
 - Soils restricted to a particular geographic area based on a unique combination of soil-forming factors (Bockheim, 2005)
 - Likely small areas, infrequently sampled
- Sampling issues
 - Biased sampling
 - Arbitrary study area boundaries

Why are rare soils difficult to predict?

- 1) Conceptual reasons
 - Different defining and predicting variables
 - we define soil classes with a set of soil profile variables, but try to model them with environmental variables
 - Soil classes difficult to separate in feature space

Soil Classes Difficult to Separate in Feature Space

Why are rare soils difficult to predict?

- 2) Practical reasons
 - Accurate classification requires many observations
 - A few classes have the majority of the observations
 - Good prediction accuracy
 - Rare soil classes (minority classes) have few observations
 - Poor prediction accuracy

Possible solutions to practical problems

• Decrease the number of classes

- Combine minor classes with similar classes or into 'other' class
 - Can exclude rare classes
 - Should be done for classes with fewer observations than covariates
- Use a weighting/cost scheme
 - Useful, but cannot produce class probability predictions (often most interesting)
- Increase number of observations in rare classes

How to increase observation numbers in rare classes?

- Expert knowledge
 - Case-based reasoning (Shi et al., 2004)
 - Expert knowledge used to generate synthetic observations
- Data-driven approach
 - Synthetic minority-class oversampling (e.g., SMOTE)
 - Synthetic observations generated by similarity to existing observations
 - Currently only for two-class problems (soil datasets are multiclass)

Synthetic minority-class oversampling for multi-class soil datasets - SIMONA

- Goal: Generate equal number of observations in each soil class
 - Synthetic samples similar to field samples in geographic and feature space
- An alternative algorithm from Abdi and Hashemi (2015) which only sampled the feature space

SIMONA - Synthetic minority class oversampling for multiclass soil datasets

- 1. Calculate weights for each minority class observation
 - Weights based on *n* surrounding points with matching class label. Weight higher for more surrounding observations with matching class labels
- 2. Randomly choose one minority class observation by weight
- 3. Extract all covariate values around observation in a *w*-meter buffer
- 4. Calculate similarity between observation and covariates with Gower's similarity index (including categorical variables)
- 5. Randomly choose one of the *p* most similar samples
- 6. Add to synthetic sample set
- Repeat until number of original + synthetic samples = the number of observations in the majority class

Preliminary Case Study

- Area: 296 km² North-central Wyoming, USA
- Elevation: ~ 1500 m
- Geology: mudstone, sandstone, conglomerate, limestone, shale and coal
- Climate: cool and dry
- Land use: oil, gas, coal production

Photo courtesy of elifino57: https://ssl.panoramio.com/user/6155411

Sampling

- 57 pedons
- 5 subgroup* classes
 - Imbalanced 83% of observations in two classes

U.S. Soil Taxonomy	Pedons ^a	% of total ^b	
Subgroup Classes	FEUUIIS	70 01 totai	
Ustic Haplargid	26	46	
Ustic Torriorthent	21	37	
Badland	6	10	
Ustic Paleargid	2	4	
Ustic Torrifluvent	2	4	
Total	57	100	

^a Total number of pedons per subgroup class.

^b Percent of total observations represented by each subgroup class.

* Subgroups according to US Soil Taxonomy

SIMONA

• Covariates: Plan curvature, Diffuse Insolation, Landsat band ratio 5/2, Catchment Slope

U.S. Soil Taxonomy	Original	Synthetic	Original +
Subgroup Classes			Synthetic
Ustic Haplargid	26	0	26
Ustic Torriorthent	21	5	26
Badland	6	20	26
Minor ^a	4	22	26
Total	57		104

^a Combined 3 minor classes with < = 2 observations

Modelling

- CART and Neural Network models
 - Original samples
 - Original + Synthetic samples
- Case weights
 - Original samples assigned high class weight (1)
 - Synthetic samples assigned low case weight (0.25)
- Model accuracy
 - Bootstrap sampling repeated 10 times
 - Overall accuracy
 - Карра
 - Confusion matrices

Results: Model Accuracy

Overall Accuracy*

Model	Original Samples	Original + Synthetic
CART	0.57	0.64
Neural Net	0.67	0.77

* mean of bootstrap sampling repeated 10 times

	Kappa*		
Model	Original Samples	Original + Synthetic	
CART	0.26	0.52	
Neural Net	0.43	0.70	

* mean of bootstrap sampling repeated 10 times

Results

• Confusion Matrices from bootstrap sampling (neural network model only)

• Accurate models have large diagonal and small off-diagonal values

Results: Spatial Prediction with only original samples

Results: Spatial Prediction with synthetic samples

Conclusions

- SIMONA (Synthetic minority class oversampling for multiclass soil datasets) is promising for increasing rare soil class prediction accuracy
 - Need to further test with independent validation data set
- May provide a means to increase prediction accuracy when additional field sampling is limited

References

- Abdi, L., and S. Hashemi. 2015. To combat multi-class imbalanced problems by means of over-sampling and boosting techniques. Soft Computing, 19:12. pp 3369-3385.
- Baker, J.B., Fonnesbeck, B.B., and J.L., Boettinger. 2016. Modeling Rare Endemic Shrub Habitat in the Uinta Basin Using Soil, Spectral, and Topographic Data. Soil Science Society of America Journal, 80. pp. 395–408
- Bockheim, J.G. 2005. Soil endemism and its relation to soil formation theory. Geoderma, 129. pp. 109–124
- Shi, X., Zhu, A-X., Burt, J.E., Qi, F., and D. Simonson. 2004. A Case-based Reasoning Approach to Fuzzy Soil Mapping. Soil Sci. Soc. Am. J. 68. pp. 885–894