Digital soil mapping using data
with different accuracy levels
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Soll profile data are key to DSM

- They are used to calibrate solil prediction models
that predict soil properties from covariates

- They are used to condition predictions to nearby

observations using Kkriging
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But soll profile data are not without error

- Lab data can have substantial measurement errors
- There are quality differences between labs

- Field data (‘educated guesses’) tend to be less
accurate than lab data

- Many soil ‘observations’ are measured indirectly
(such as through soil spectroscopy, e.g. PLSR)

- Some of us make use of pseudo-observations

- In future the use of volunteered soil information
(crowd-sourcing) will grow, but these data may not

be very reliable e~
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Quality of lab data: look and shudder
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The geostatistical approach can account
for measurement errors (KED case)

p
Z(s) =m(s) +¢(s) = 2 Bi-xi(s) + &(s)
j=0

Y(s;) = Z(s;) +6(s;)

1

measurement errors with mean vector u
and variance-covariance matrix V

Z(s0) = E[Z(s)|Y (s) = y(sp), i =1-+n]
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Result that goes back to Delhomme (1978)

B=X(C+V)'X)XT(C+V) Ny —n)
Var(B—pB) = XT(C+V)"1x) !
Z(sg) = (xg + XXT(C+V)™1 X)L (xg = XT(C+ V) 1cy))T
(C+V) Ty —-w

Var (Z(SO) — Z(SO)) = Coo — Cp - (C+ V)L ¢y
+(xo = XT(C+V) eI XT(C+ V) 1X)?
(xg — X'(C+ V) cyp)
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Example: mapping topsoil clay content for
Namibia

LPKS = LandPKS database, field estimates of soil texture (by texture class)

AFSP = Africa Soil Profiles database (merge of numerous legacy soil datasets)
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AFSP data four accuracy levels (depending on source credibility)

LPKS data accuracy based on variability within soil texture class

(GSIF TT2tri function in R)
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Clay content
standard deviation (%)

® 09-18
@ 19-25
o 26-3.0
© 31-40
® 41-119

|:\ admin boundary

Iennval ial e

Beta GLS
(without

Beta GLS
(including
uncertainty) | uncertainty)

Intercept 8.596

ASSDAC3 -0.063 -0.057

VBFMRG5 -0.0075 -0.0073

TO3MSD3 0.227 0.208
. REML variogram

20-

1 I I 1
0 5000 10000 15000
h (m)



Resulting maps: meaningful differences
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This was just an illustrative example,
possible extensions:

- Include (known) systematic differences between
sub-datasets

- Include unknown systematic differences by
representing these as random errors that are
perfectly correlated within a sub-dataset

- Include serial correlation between errors
(instrument drift, anchoring effect)

- Take different soil data accuracy levels into account
for variogram estimation (including its uncertainty,
using a Markov chain Monte Carlo approach)

- Estimate part of the measurement error parameters

(i.e. elements of u and V) from the data
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Also important and challenging:
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- How to include differences in soil data
accuracies in machine-learning algorithms?

- One possibility iIs to assign weights, but how
large should these weights be?
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Concluding remarks

- Soll measurements are not error-free

- Measurement error can be taken into account in
DSM, so why don’t we do it?

- Perhaps it is because often we do not know how
accurate the soil measurements are?

- But this is not true for data such as derived from soill
spectroscopy, and why don’t we routinely send
replicates to the laboratory (without telling the lab)?

- We can do so much better. And we should. Is there
anyone in this room who has not wasted valuable
time on trying to fit models to ‘poor’ (rubbish) data?
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