MAPPING DRAINAGE CLASSES IN DENMARK BY MEANS OF DECISION TREE CLASSIFICATION

Anders Bjørn Møller, Bo Vangsø Iversen, Amélie Beucher and Mogens Humlekrog Greve

METHODS

Decision tree classification (C5.0)

1702 soil profiles; 31 predictor variables

Boosting vs. bagging

Differentiated costs vs. equal costs for misclassifcation

All predictor variables vs. selected predictor variables

Probability bagging vs. ordinary bagging

Cost matrix for misclassification

		Predicted DC				
		1	2	3	4	5
Reference DC	1	0		2	3	4
	2	1	0	1	2	3
	3	2		0		2
	4	3	2		0	1
	5	4	3	2	1	0

BOOSTING OPTIMIZATION

ANDERS BJØRN MØLLER

BAGGING OPTIMIZATION

30 repetitions.

Times when each model had the best performance as measured by...

Model	Best Accuracy	Best Kappa	Best MAE	Best RE
Undifferentiated costs, all variables	9	5	6	5
Undifferentiated costs, selected variables	0	0	0	0
Differentiated costs, all variables	12	14	7	15
Differentiated costs, selected variables	8	9	8	6
Probability bagging, all variables	7	2	15	4
Probability bagging, selected variables	0	0	0	0

MODEL PERFORMANCE

	Boosting	Bagging	Boosting	Bagging
	Validation	Validation	Cross	Cross
	sample	sample	validation	validation
Accuracy	0.508	0.520	0.471	0.488
Kappa	0.313	0.330	0.259	0.281
MAE	0.672	0.656	0.757	0.749
RE	0.572	0.553	0.642	0.636

PREDICTOR USAGE

Top 5		
	Boosting	Bagging
Predictor	Mean (Range)	Mean (Range)
Wetlands	71.2 (2.1 - 98.4)	68.9 (1.2 - 100.0)
Slope to channel network	72.7 (5.6 - 100.0)	65.8 (3.4 - 100.0)
Clay content (100 - 200 cm)	69.5 (16.3 - 92.5)	65.7 (4.9 - 100.0)
Land use	93.6 (14.7 - 100.0)	63.2 (3.3 - 100.0)
Geology	76.0 (36.6 - 100.0)	63.1 (11.1 - 100.0)

ANDERS BJØRN MØLLER

DSM WORKSHOP 01 JULY 2016

7

ANDERS BJØRN MØLLER

MODEL UNCERTAINTY VS. PREDICTION ERROR

ANDERS BJØRN MØLLER

CONCLUSIONS

Best model:

- Bagging.
- All prediction variables.
- Differentiated costs for misclassification.

Boosting not improved by differentiated costs for misclassification.

Similar results from boosting and bagging.

Poorer performance with reduced number of predictors.

Top 5 variables: Wetlands, Slope to the channel network, Clay content (100 – 200 cm), Land use and Geology.

Model uncertainty related to prediction error.

Thank you 🕲

