Mapping soil properties at regional scale by robust external drift kriging

Andreas Papritz¹, Madlene Nussbaum¹, Kay Spiess¹; Marielle Fraefel², Andri Baltensweiler², Lorenz Walthert²; Armin Keller³, Urs Grob³; Sanne Diek⁴

¹Department of Environmental Systems Science, ETH Zurich; ²Swiss Federal Institute for Forest, Snow and Landscape Research WSL; ³Swiss Soil Monitoring NABO, Agroscope; ⁴Remote Sensing Laboratories, University of Zurich; Switzerland

papritz@env.ethz.ch

context: spatial soil information in Switzerland

NRP project PMSoil: DSM pilot study at regional scale

- forest ZH focus: soil acidification
 ⇒ CEC, pH, base saturation, Al_{ex}
- Greifensee and Lyss focus: agricultural production
 ⇒ SOC, pH, silt, clay, stone content, water logging, soil depth
- 2.5D-approach: mapping soil properties for several depth layers

geostatistics: external-drift kriging

- ${\displaystyle \textcircled{\circ}}$ only linear relations between response $Y({m s})$ and covariates ${m x}({m s})$
- ${}^{\textcircled{\mbox{\scriptsize \emph{O}}}}$ model building difficult for numerous x(s)
- model structure easily interpretable
- modelling prediction uncertainty

geostatistics: external-drift kriging

- ${\displaystyle \textcircled{\circ}}$ only linear relations between response $Y({m s})$ and covariates ${m x}({m s})$
- $oxed{ {eta}}$ model building difficult for numerous $oldsymbol{x}(oldsymbol{s})$
- model structure easily interpretable
- modelling prediction uncertainty

tree-based methods: random forest, quantile regression forest

- O complex relations between $Y(m{s})$ and $m{x}(m{s})$
- model building straightforward
- 😢 model structure not easily interpretable
- C modelling prediction uncertainty (quantregForest)

boosted geo-additive models (Hothorn *et al.*, 2011):

- O complex relations between Y(s) and $\boldsymbol{x}(s)$
- model building straightforward (boosting)
- model structure easily interpretable
- modelling prediction uncertainty
- \Rightarrow main approach
- \Rightarrow comparison with external-drift kriging

1. selection of initial set of covariates by LASSO

- 1. selection of initial set of covariates by LASSO
- 2. stepwise backward/forward covariate selection based on AIC (REML fit)

- 1. selection of initial set of covariates by LASSO
- 2. stepwise backward/forward covariate selection based on AIC (REML fit)
- 3. stepwise backward selection based on AIC (REML fit) from model expanded by first-order interactions between covariates

- 1. selection of initial set of covariates by LASSO
- 2. stepwise backward/forward covariate selection based on AIC (REML fit)
- 3. stepwise backward selection based on AIC (REML fit) from model expanded by first-order interactions between covariates
- 4. manual backward covariate selection by cross-validation

- 1. selection of initial set of covariates by LASSO
- 2. stepwise backward/forward covariate selection based on AIC (REML fit)
- 3. stepwise backward selection based on AIC (REML fit) from model expanded by first-order interactions between covariates
- 4. manual backward covariate selection by cross-validation
- 5. manual merging of levels of categorical covariates

climate

resolution

25 m

annual rainfall, temperature, ... period 1961-1990

soil, parent material

soil map 1:200'000 geological map 1:50'000

vegetation

forest type map 1:5'000	
percentage of coniferous trees	25 m
SPOT5 mosaic	10 m
UK-DCM2 image	22 m
digital surface model (lidar)	2 m

terrain

digital elevation model	25 m
digital terrain model (lidar)	2 m

log(cec_eff) 0-20 cm

root mean square error

cec_eff [mmolc/kg] 0-20 cm

cec_eff [mmolc/kg] 0-20 cm

CEC_{eff} predictions by geo-additive model

- external-drift kriging tuned for optimal AIC overfits
- boosted geo-additive models and quantile regression forest predict more precisely than external drift-kriging
- external-drift kriging not better for modelling prediction uncertainty?
- LASSO under-rated prediction approach?

Tomislav Hengl INHABER

Discussion - Gestern um 14:08

Your opinion!

15 Stimmen - Abstimmungsergebnis öffentlich sichtbar

MLA will probably replace kriging

I still feel more conf. about krigining

It can not be compared (both are OK)

We have to do more comparison

+1

Kommentar hinzufügen...

part of this works was supported by the Swiss National Science Foundations under grant no 406840_143096

initial LASSO model

final geostatistical model

soil depth [cm], agricultural soils Greifensee

pH 0-10 cm, agricultural soils Greifensee

pH 0-10 cm, agricultural soils Greifensee

pH 50–100 cm, agricultural soils Greifensee

root mean square error

pH 50–100 cm, agricultural soils Greifensee

SOC 50–100 cm, agricultural soils Greifensee

root mean square error

SOC 50–100 cm, agricultural soils Greifensee

boosted geo-additive models (Hothorn *et al.*, 2011):

O complex relations between Y(s) and x(s)

- model building straightforward (boosting)
- model structure easily interpretable
- modelling prediction uncertainty
- \Rightarrow main approach
- \Rightarrow comparison with external-drift kriging and random forest

criteria to assess probabilistic predictions

- for Gaussian stochastic processes kriging provides estimates of mean and variance of conditional distribution of target $Y(x'_j)$ given the data Y (predictive distribution)
- denote cdf of predictive distribution by $\widehat{F}_{Y(\boldsymbol{x}'_i)|\boldsymbol{Y}}(y)$
- probability integral transform PIT (Gneiting et al., 2007)

$$\mathsf{PIT}_j = \widehat{F}_{Y(\boldsymbol{x}_j')|\boldsymbol{Y}}(y_j)$$

- PIT has a uniform distribution on interval $\left[0,1\right]$ if predictive distribution is ok
- \Rightarrow histogram of PIT_j should be flat

criteria to assess "sharpness" of $\widehat{F}_{Y(\boldsymbol{x}')|\boldsymbol{Y}}(y)$

- · overall criterion to assess quality of probabilistic predictions
- predictive distribution is "sharp" if it is narrow (small variance) and is centred on true value (no bias)

- measure for sharpness of predictive distribution for single prediction site $\boldsymbol{x}_{i}^{\prime}$

$$\int \{\widehat{F}_{Y(\boldsymbol{x}_{j}')|\boldsymbol{Y}}(y) - I(y_{j} \leq y)\}^{2} dy$$

where I(A) is indicator function with value equal to 1 if A is true and zero otherwise

• continuous ranked probability score (CRPS) measures average sharpness of predictive distributions for all sites of a data set

$$\mathsf{CRPS} = \frac{1}{n} \sum_{j=1}^{n} \int_{-\infty}^{\infty} \{\widehat{F}_{Y(\boldsymbol{x}_{j}')|\boldsymbol{Y}}(y) - I(y_{j} \leq y)\}^{2} dy$$

 CRPS equal to integral over Brier score (BS = averaged MSEP for predicting that observations y_i do not exceed cutoff y)

$$BS(y) = \frac{1}{n} \sum_{j=1}^{n} \{ \widehat{F}_{Y(\boldsymbol{x}_{j}')|\boldsymbol{Y}}(y) - I(y_{j} \le y) \}^{2}$$

⇒ CRPS criterion of choice for assessing quality of probabilistic predictions (strictly proper scoring rule, cf. Gneiting *et al.*, 2007)

References

- Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. *Journal of the Royal Statistical Society Series B*, **69**(2), 243–268.
- Grob, U., Ruef, A., Zihlmann, U., Klauser, L., and Keller, A. (2015). Agroscope-Bodendatenarchiv : Bodendaten aus Bodenkartierungen 1953–1996. Agroscope Science 14, Agroscope Reckenholz, Zürich. http://www.agroscope.ch/publikationen/07703/07705/index.html?lang=de.
- Hothorn, T., Müller, J., Schröder, B., Kneib, T., and Brandl, R. (2011). Decomposing environmental, spatial, and spatiotemporal components of species distributions. *Ecological Monographs*, **81**(2), 329–347.