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context: spatial soil information in Switzerland



NRP project PMSoil: DSM pilot study at regional scale

forest ZH

Greifensee
Lyss

• forest ZH — focus: soil acidification
⇒ CEC, pH, base saturation, Alex

• Greifensee and Lyss — focus: agricultural production
⇒ SOC, pH, silt, clay, stone content, water logging, soil depth

• 2.5D-approach: mapping soil properties for several depth layers



review of statistical approaches for DSM

geostatistics: external-drift kriging

only linear relations between response Y (s) and covariates x(s)

model building difficult for numerous x(s)

model structure easily interpretable

modelling prediction uncertainty

tree-based methods: random forest, quantile regression forest

complex relations between Y (s) and x(s)

model building straightforward

model structure not easily interpretable

modelling prediction uncertainty (quantregForest)
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review of statistical approaches for DSM

boosted geo-additive models (Hothorn et al., 2011):

complex relations between Y (s) and x(s)

model building straightforward (boosting)

model structure easily interpretable

modelling prediction uncertainty

⇒ main approach

⇒ comparison with external-drift kriging



model building strategy for external drift kriging

1. selection of initial set of covariates by LASSO

2. stepwise backward/forward covariate selection based on AIC
(REML fit)

3. stepwise backward selection based on AIC (REML fit) from model
expanded by first-order interactions between covariates

4. manual backward covariate selection by cross-validation

5. manual merging of levels of categorical covariates
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model building strategy for external drift kriging

1. selection of initial set of covariates by LASSO

2. stepwise backward/forward covariate selection based on AIC
(REML fit)

3. stepwise backward selection based on AIC (REML fit) from model
expanded by first-order interactions between covariates

4. manual backward covariate selection by cross-validation

5. manual merging of levels of categorical covariates

⇒



forest soil CECeff 0–20 cm legacy data

0 5 10 15 km

validation (298)
calibration (1059)



forest soil CECeff 0–20 cm: > 300 covariates

 

 
 

 

  
climate resolution

annual rainfall, temperature, … 
period 1961-1990                           25 m

soil, parent material
soil map 1:200‘000
geological map 1:50‘000

vegetation
forest type map 1:5'000
percentage of coniferous trees         25 m
SPOT5 mosaic                                10 m
UK-DCM2 image                             22 m
digital surface model (lidar)               2 m

terrain 
digital elevation model                   25 m
digital terrain model (lidar)              2 m



cross-validation results model building
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external validation results
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CECeff predictions by geo-additive model

0 5 10 15 km
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conclusions

• external-drift kriging tuned for optimal AIC overfits

• boosted geo-additive models and quantile regression forest pre-
dict more precisely than external drift-kriging

• external-drift kriging not better for modelling prediction uncer-
tainty?

• LASSO under-rated prediction approach?
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(residual) variogram log(CECeff 0–20 cm
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modelling prediction uncertainty: PIT histograms

initial LASSO model

histogram PIT cross−validation
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histogram PIT external validation
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modelling prediction uncertainty: PIT histograms

final geostatistical model

histogram PIT cross−validation
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cross-validation results model building
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external validation results
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cross-validation results model building

0.505 0.510 0.515 0.520

0.
27

6
0.

27
8

0.
28

0
0.

28
2

0.
28

4
pH 0−10 cm, agricultural soils Greifensee

root mean square error

co
nt

in
uo

us
 r

an
ke

d 
pr

ob
ab

ili
ty

 s
co

re initial LASSO model

reduced LASSO model

best main effects model



external validation results
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cross-validation results model building
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external validation results
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cross-validation results model building

0.34 0.35 0.36 0.37 0.380.
18

5
0.

19
5

0.
20

5
SOC 50−100 cm, agricultural soils Greifensee

root mean square error

co
nt

in
uo

us
 r

an
ke

d 
pr

ob
ab

ili
ty

 s
co

re initial LASSO model

reduced LASSO model

best main effects model



external validation results
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review of statistical approaches for DSM

boosted geo-additive models (Hothorn et al., 2011):

complex relations between Y (s) and x(s)

E [Y (s)|x(s)] =
∑
k

fenv,k(xk(s))

global

+ fs(s)

spatial

+
∑
l

f ∗
env,l(xl(s)) · f ∗

s,l(s)

local

model building straightforward (boosting)

model structure easily interpretable

modelling prediction uncertainty

⇒ main approach

⇒ comparison with external-drift kriging and random forest



criteria to assess probabilistic predictions

• for Gaussian stochastic processes kriging provides estimates of
mean and variance of conditional distribution of target Y (x′

j) given
the data Y (predictive distribution)

• denote cdf of predictive distribution by F̂Y (x′
j)|Y (y)

• probability integral transform PIT (Gneiting et al., 2007)

PITj = F̂Y (x′
j)|Y (yj)

• PIT has a uniform distribution on interval [0, 1] if predictive distri-
bution is ok

⇒ histogram of PITj should be flat



prediction intervals ok
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criteria to assess “sharpness” of F̂Y (x′)|Y (y)

• overall criterion to assess quality of probabilistic predictions

• predictive distribution is “sharp” if it is narrow (small variance) and
is centred on true value (no bias)
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criteria to assess “sharpness” of F̂Y (x′)|Y (y)

• measure for sharpness of predictive distribution for single predic-
tion site x′

j ∫
{F̂Y (x′

j)|Y (y)− I(yj ≤ y)}2dy

where I(A) is indicator function with value equal to 1 if A is true
and zero otherwise
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continuous ranked probability score

• continuous ranked probability score (CRPS) measures average
sharpness of predictive distributions for all sites of a data set

CRPS =
1

n

n∑
j=1

∫ ∞

−∞
{F̂Y (x′

j)|Y (y)− I(yj ≤ y)}2dy

• CRPS equal to integral over Brier score (BS = averaged MSEP for
predicting that observations yj do not exceed cutoff y)

BS(y) =
1

n

n∑
j=1

{F̂Y (x′
j)|Y (y)− I(yj ≤ y)}2

⇒ CRPS criterion of choice for assessing quality of probabilistic pre-
dictions (strictly proper scoring rule, cf. Gneiting et al., 2007)
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