

Predicting soil depth using a survival analysis model

Quentin Styc and Philippe Lagacherie

INRA, Laboratoire d'étude des Interactions Sol Agrosystème Hydrosystèmes, Montpellier, France

The problem

Maps of soil depth to bedrock (Lithic or Paralithic contact) are much in demand with the users → included in GSM specs, (Arrouays et al, 2014)

- Observations of soil depth are often « right censored »
 - 55% in the French Soil monitoring network (Lacoste et al, 2016)
 - 61% in The Languedoc Roussillon Soil database (Vaysse & Lagacherie, 2015)

Maximal observation depth (MOD) Soil depth to bedrock (SD)

SD > MOD

How to use right-censored soil depths in DSM?

The 7th Global Workshop on Digital Soil Mapping

Aarhus (Denmark) 28 june -1
rst July 2016 ${\scriptstyle 2}$

Three alternatives

Deleting right-censored soil depths from the input of DSM models (« just ignore them »)

 Decensoring right-censored soil depths before modelling («soil depth is x cm below »)

Applying a DSM model tailored for using such inputs

The 7th Global Workshop on Digital Soil Mapping

Aarhus (Denmark) 28 june -1rst July 2016 3

Using Survival Analysis models

- Survival Analysis : branch of statistics for analyzing the expected duration of time until one or more events happen (*Wikipedia*)
- A lot of right censored data in survival analysis

Random Survival Forest (Ishwaran et al, 2008)

- Ensemble tree method for the analysis of right censored survival data
- Share the general principle of Random Forests (Breiman et al, 2001)
- Main Specificities
 - The node splitting rule is based on the log-rank test
 - The estimates are survival functions (or Cumulative hazard functions)

The 7th Global Workshop on Digital Soil Mapping

Aarhus (Denmark) 28 june -1rst July 2016 5

Study area: La Peyne valley (50 km²)

Soil covariates

 10 meter DEM derived covariates (MrVBF, MrRTF, TWI, TPI, TRI, Slope, plan Curvature, Terrain Roughness)

MrVBF 0.01 1.21 2.41 3.61 4.81

A .

MrVBF

1:25,000 soil map

The test

- Comparing Random Survival Forest with Quantile Random Forest (Meinshauzen, 2008) using exact-valued soil depths
- two alternatives using exact valued soil depths only
 - "Just ignore ": calibrate from 223 exact valued soil
 - "Decensore first" (calibrate from 223 exact values + 1049 decensored soil depths)
 - > Adding 30 cm to the maximal observation depth (Lacoste et al, 2016)
 - Estimated soil depth = median soil depth over the sites with soil depths exceeding the maximal observation depth
- Validation from 25% of the set of exact valued samples left out (bootstrapped 20 times)
- Visual inspection of the predicted map

DSM models Performances

SD prediction	R²	RMSE	Bias	PICP
methods	Mean (Std)	Mean (Std)	Mean (Std)	Mean (Std)
"just ignore"	0,11 (0,10)	44 (5)	-8 (6)	87 (5)
Decensoring 1	0,15 (0,10)	43 (3)	13 (5)	89 (3)
Decensoring 2	0,15 (0,10)	44 (4)	12 (5)	68 (6)
Rand Surv. For	0,93 (0,04)	12 (3)	-3 (1)	80 (5)

The 7th Global Workshop on Digital Soil Mapping

Scatter plot of residuals for RSF (validation)

Predicted Map of soil depth obtained with SRF

Aarhus (Denmark) 28 june -1rst July 2016 $_{
m 11}$

The 7th Global Workshop on Digital Soil Mapping

Conclusions

- Calibrating a DSM model with the sites having exact values of soil depth (1 site/21 ha) obtained weak results in the Peyne valley
- Adding right censored soil depths after decensoring increases the density of sites (1 site/4 ha) but not significantly the prediction performances
- Using survival Random Forest provided good results

Need to be tested elsewhere

The 7th Global Workshop on Digital Soil Mapping

Aarhus (Denmark) 28 june -1rst July 201612