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1 Introduction
Solar cells is one of the key technologies in the transition towards an electricity system
based on renewable sources. The technology has matured significantly in the last decades,
with monocrystalline silicon solar cells recently exceeding 25% in efficiency [1]. As con-
ventional cells approach the Schockley Quessier (SQ) limit [2], exotic concepts enabling
efficiencies beyond the SQ limit become increasingly relevant. One such concept is upcon-
version. Upconversion is the process where two, or more, long wavelength (low energy)
photons are merged into one short wavelength (high energy) photon. Conventional solar
cells are based on a semi conductor material, typically silicon, where the current is gen-
erated as an incoming photon (from the sun) excites an electron from the valence band
to the conduction band. If the photon energy is not sufficient to bridge the band gap,
the process will not occur. For silicon roughly 20% of the energy in the incoming solar
radiation is below the band gap (see figure 1.1a) and thus intrinsically lost. However, if
an upconverter is integrated into the solar cell, this restriction no longer applies.

This PhD project is part of the SunTune project, which aims at increasing the efficiency of
solar cells by tuning the spectrum of the Sun. Currently, upconversion is the process of
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(a) Intensity of solar radiation as a function of wavelength.
The colors indicate the part of the spectrum that can be
utilized by a silicon solar cell (blue), the part suitable
for direct upconversion by Er3+ (red) and the part which
would would need to be downconverted first (yellow).
The arrows indicate the up- (red/blue) and downconver-
sion (yellow/red) steps.

(b) Selected energy levels in
Er3+, reproduced from [3].
Radiative transitions are in-
dicated by solid lines while
non-radiative transitions are
marked by dashed, gray lines.

Figure 1.1: Spectral tuning of solar radiation with upconversion via Er3+. Absorption of
1550 nm photons (below the band gap of silicon) , corresponding to the 4 I15/2 →4 I9/2
transition, leads to the non-radiative decay 4 I9/2 →4 I11/2 followed by the emission of a
980 nm photon (above the band gap of silicon) in the radiative 4 I11/2 →4 I15/2 decay.
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4 CHAPTER 1. INTRODUCTION

main interest, but downconversion will also be studied in the future. The conveniently
spaced energy levels of the 4f electronic states in the Er3+ ion makes it an ideal candidate
for an upconverter material to be used with a silicon solar cell. The concept of spectral
tuning with Er3+ is illustrated in figure 1.1. The upconversion process is nonlinear, scal-
ing with the intensity to a power n ≥ 1. At moderate intensities n ≈ 1.6 [3] implying
that the efficiency of the upconversion process can be improved by increasing the inten-
sity. Focusing of the sunlight by conventional lenses is impractical and too expensive,
so other options must be explored. Localized surface plasmon resonances (LSPRs) in
metal nanoparticles has proven to be a very efficient path to obtain a strong, local field
enhancement [4]. Localized surface plasmons are collective excitations of the free elec-
trons in metal nanoparticles. The LSPR frequency depends not only on the geometry of
the nanoparticle(s) [5], but also on the dielectric environment [6] and, for small nanopar-
ticles, the material [7]. Manipulation of these parameters allows tuning of the plasmon
frequency from visible to mid-infrared [8] implying that a resonance at λ ≈ 1500 nm, so
as to match absorption in Er3+, is indeed possible. A key element in the design process
for both plasmonic devices and solar cells is optical modeling, which has been the main
theme in my work so far. When the structures are not too small, quantum effects can be
neglected [9], and the problem is reduced to solving Maxwell’s equations. A variety of
methods have been developed for this purpose, many more than what can be accounted
for here. I have mainly worked with the transfer matrix method (TMM) and the finite ele-
ment method (FEM). As part of this work, contributions have been made to a few papers

• Harish Lakhotiya et al, Plasmonically enhanced upconversion of 1500 nm light via triva-
lent Er in a TiO2 matrix (accepted by APL)

• Sanjay K. Ram et al, Light-trapping properties of quasi-periodic uniaxial nanowrinkle sur-
face for thin film silicon solar cells (submitted to ACS Nano)

• Søren Møller et al, Thickness and wavelength dependence of pulsed femtosecond laser-
induced damage thresholds in Ge2Sb2Te5 (in preparation)

Related to the paper on nanowrinkles, I did an oral presentation at the EU PVSEC confer-
ence on a combined light trapping and upconversion concept [29]. In addition, the first
SunTune paper of my own is currently in preparation

• E. H. Eriksen et al, Particle-particle interactions in randomly distributed metal nanoparti-
cles, the two particle model (in preparation)

The progress report is structured as follows. Starting from the Maxwell equations a num-
ber of important relations are derived in chapter 2. As a TMM implementation was carried
out as part of this work, chapter 3 presents TMM in some detail. Chapter 4 outlines the
basic concepts of FEM focusing not on implementation details, but on the application in
this project. Finally, a few examples of optical modeling of actual structures are discussed
in chapter 5. The main conclusions are summarized in chapter 6 and an outlook on future
work is presented.



2 Maxwell’s Equations
In this chapter a number of important equations are derived starting from Maxwell’s
equations in differential, microscopic form

∇ · E =
ρ

ϵ0
(2.1)

∇ · B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇× B = µ0

(
J + ϵ0

∂E
∂t

)
, (2.4)

where E/B is the electric/magnetic field, ρ/J the charge/current density and ϵ0/µ0 the
vacuum permittivity/permeability.

2.1 Macroscopic form

To describe the macroscopic response of a material, is it helpful define the auxiliary fields

D = ϵ0E + P (2.5)

H =
1
µ0

B − M, (2.6)

where P is the polarization field and M is the magnetization field. The bound charge/current
densities are related to the auxiliary fields as

ρbnd = −∇ · P (2.7)

Jbnd = ∇× M +
∂P
∂t

= Jmag + Jpol . (2.8)

The total charge/current density is the sum of the bound part and any free contributions.
With these definitions, Maxwell’s equations can be cast into their macroscopic form

∇ · D = ρ f ree (2.9)
∇ · B = 0 (2.10)

∇× E = −∂B
∂t

(2.11)

∇× H = J f ree +
∂D
∂t

. (2.12)

Of particular importance are time harmonic fields, e.g. fields of the form1

V(r, t) = V(r)e−iωt. (2.13)

1Engineers tend to use the opposite sign convention in the exponential function.

5
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Inserting the time harmonic ansatz, equation (2.13), for the E, D, B, and H fields into
equations (2.9) to (2.12), their time harmonic form is obtained

∇ · D = ρ f ree (2.14)
∇ · B = 0 (2.15)
∇× E = iwB (2.16)
∇× H = J f ree − iωD. (2.17)

Before the macroscopic Maxwell equations can be applied, a description of the material
response is required. The equations specifying the response are called constitutive rela-
tions. If the response is linear, the constitutive relation are

D = ϵE, H =
1
µ

B, (2.18)

where ϵ/µ is the permittivity/permeability of the material. In optics it is common to
work with the refractive index n rather than ϵ and µ. Their relation is

ϵµ = (ϵ0µ0) ϵrµr =

(
n
c0

)2

, (2.19)

where ϵr/µr is the relative permittivity/permeability and c0 the speed of light in vacuum.

2.2 The wave equation

Maxwell’s equations, in the form equations (2.14) to (2.17), are a set of coupled, first-order
differential equations. They can be decoupled by taking the curl of equation (2.16) and
inserting equation (2.17),

∇×
(

1
µ
∇× E

)
= iω (∇× H) = iω

(
J f ree − iωD

)
(2.20)

Assuming that no external currents are present so that J f ree is solely due to a material
response following Ohms law, equation (2.20) can be rewritten as

∇×
(

1
µ
∇× E

)
= iω (σ − iωϵ) E = ϵ0

(
ϵr + i

σ

ωϵ0

)
ω2E. (2.21)

Defining the the complex permittivity

ϵ̃ = ϵ0

(
ϵr + i

σ

ωϵ0

)
(2.22)

so as to take into account the combined effect of bound charges and conduction current
[10], equation (2.21) is reduced to

∇×
(

1
µ
∇× E

)
− ϵ̃ω2E = 0. (2.23)

This is the wave equation for the electric field. It will be the defining differential equation
for the formulation of all boundary value problems in this work.
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2.3 Assumptions

In this work, all media will be assumed isotropic, non-magnetic and the displacement
field will be assumed linear. Hence the relevant constitutive relations are

D = ϵE, H =
1
µ0

B, (2.24)

with ϵ being a (complex) scalar. If the permittivity is complex (conductor), the refractive
index will be complex too. Since the non-magnetic assumption implies µr = 1, the relation
between permittivity and refractive index, equation (2.19), simply becomes

ñ =
√

ϵ̃r = n + iκ. (2.25)

It is assumed that no free charges/currents are present except for those accounted for
by the complex permittivity. Also, all fields are assumed time harmonic and complex
notation is used. To get the field value at time t, multiply by e−iωt and take the real part.

2.4 Boundary conditions

Boundary conditions for the interfaces between different media can be derived directly
from Maxwell’s equations. The standard approach is to convert them into integral form
by applying the divergence theorem and Stokes’s theorem, after which they are applied
to an infinitesimal Gaussian pillbox at the boundary surface between the two media. A
derivation can be found in e.g. [11]. The result reads

(D2 − D1) · n̂ = σs (2.26)
(B2 − B1) · n̂ = 0 (2.27)

n̂ × (E2 − E1) = 0 (2.28)
n̂ × (H2 − H1) = Ks (2.29)

where n̂ is the surface normal vector and σs/Ks the surface charge/current density.

2.5 Polarization conventions

In this work, the main problem of interest is plane waves,

E(r) = E0eik·r, (2.30)

incident upon a sample. The sample plane is chosen as the xy-plane so that a wave prop-
agating along the z-axis will be normally incident. The wave vector is chosen as

k f /b = ñ (±ẑ cos θ + x̂ sin θ) k0, (2.31)

where θ is the polar angle with respect to the sample surface normal n̂ and the indices f /b
indicate forward/backward propagation (for which the ± symbol should be interpreted
as +/− respectively). With these definitions the plane of incidence, spanned by n̂ and k,
will be the xz-plane. An arbitrary polarization state can be decomposed into components
with the E-field perpendicular (s-polarization) and parallel (p-polarization) to the plane
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Figure 2.1: Plane wave incident on an interface between two different media. Directions
of the E (blue) and H (red) fields are indicated for (a) s- and (b) p-polarization. The am-
plitudes of the incident E0, reflected Er and transmitted Et waves are related through the
complex Fresnel coefficients (see section 3.1).

of incidence as illustrated in figure 2.1. In the case of s-polarization, the E-field will be in
the y-direction. The H-field can be derived from the E-field using equation (2.16),

H =
1

iωµ0
(∇× E) =

E
ωµ0

(−x̂kz + ẑkx) =
Eñ

c0µ0
(∓x̂ cos θ + ẑ sin θ) . (2.32)

For p-polarization, the H-field is in the y-direction. Equation (2.17) allows the evaluation
of the E-field from the H-field,

E =
−1
iωϵ

(∇× H) =
−H

ωϵ0ñ2 (−x̂kz + ẑkx) =
−Hc0µ0

ñ
(∓x̂ cos θ + ẑ sin θ) . (2.33)

Writing out the explicit expressions for the E- and H-fields, one must decide whether the
sign of the backward traveling wave should be based on the relative phase of (1) the E-
field or (2) the H-field. For s-polarization there is agreement in the literature to choose
convention (1),

E = +Eŷ, H =
ñE

c0µ0
(∓x̂ cos θ + ẑ sin θ) (s-pol). (2.34)

For p-polarization on the other hand, the textbooks are split almost evenly [12]. Since
in this work the E-field is of main interest, convention (1) will be adapted also for p-
polarization2,

H = ±Hŷ, E =
Hc0µ0

ñ
(x̂ cos θ ∓ ẑ sin θ) (p-pol). (2.35)

When ñ is constant (which is true everywhere except at the boundaries), the p-polarized
field can be expressed in terms of the amplitude of the E-field as

H = ± Eñ
c0µ0

ŷ, E = E (x̂ cos θ ∓ ẑ sin θ) (p-pol). (2.36)

Since equation (2.36) is not valid at the boundaries, equation (2.35) must be applied when
boundary conditions are evaluated.

2As a side bonus, this choice implies rs = rp (see section 3.1) at normal incidence in accordance with
expectation (at normal incidence s-/p-polarization are physically equivalent).



3 Transfer Matrix Method(s)
In this chapter the standard transfer matrix method (TMM) is outlined along with a num-
ber of extensions. The incentive for presenting TMM in detail is twofold. First, the TMM
method is used to calculate the background field used in the scattered field calculations
presented in chapter 4. Secondly, TMM provides the foundation of the angular TMM
extensions [13, 14], based on which a future publication is planned.

3.1 Fresnel equations

The Fresnel equations describe the reflection and transmission of electromagnetic waves
at a planer interface as shown in figure 2.1. Applying Maxwells equations, the complex
coefficients of transmission/reflection for the electric field can be derived

ts =
2ñi cos θi

ñi cos θi + ñj cos θj
, rs =

ñi cos θi − ñj cos θj

ñi cos θi + ñj cos θj
(3.1)

tp =
2ñi cos θi

ñj cos θi + ñi cos θj
, rp =

ñi cos θj − ñj cos θi

ñj cos θi + ñi cos θj
. (3.2)

along with Snell’s law
ñi sin θi = ñj sin θj. (3.3)

The energy reflectance/transmittance is the ratio between the z-components of the inci-
dent and the reflected/transmitted intensity. They are related to r, t as

R = |r|2, T = |t|2γ (3.4)

where the polarization dependent factor γ is

γs =
Re
[(

nj cos θj
)∗]

Re
[
(ni cos θi)

∗] , γp =
Re
[
n∗

j cos θj

]
Re
[
n∗

i cos θi
] . (3.5)

3.2 The transfer matrix method

The standard transfer matrix method treats a monochromatic, coherent, plane wave in-
cident upon stack of planar, homogeneous layers. At any point in the stack, the electric
field can be represented as a super position of a forward and a backward traveling wave,

E(r) = E f eik f ·r + Ebeikb·r. (3.6)

For notational convenience, the amplitude of the forward/backward propagating wave
will be denoted v and w respectively. Expressing the amplitudes as a vector, the traversal
of the stack can be expressed as a matrix equation(

v0

w0

)
= S

(
v
w

)
, (3.7)

9
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where S is the stack scattering matrix. As a simple example, consider a wave traveling
through a layer indexed by i. The forward traveling wave is shifted in phase by

βi =

(
2πdini

λ0

)
cos θi (3.8)

where the (complex) angle θi is calculated from Snells law, equation (3.3). Likewise the
backward traveling wave is shifted by −βi,

v = v0eiβ (3.9)
w = w0e−iβ. (3.10)

Expressed in the form of equation (3.7), the layer propagation matrix is

Li = L(βi) =

(
exp(−βi) 0

0 exp(βi)

)
. (3.11)

Next, consider an interface between layers i and j. By matching the amplitudes at each
side of the interface, the relations

v = v0ti,j + wrj,i (3.12)
w0 = wtj,i + v0ri,j (3.13)

are obtained with ri,j and ti,j being the (complex) Fresnel coefficients derived in section 3.1
when going from layer i to layer j. Rearranging terms,

v0 =
1

ti,j

(
v − wrj,i

)
(3.14)

w0 =
1

ti,j

(
w(ti,jtj,i − ri,jrj,i) + vri,j

)
. (3.15)

Expressed in the form of equation (3.7), the interface matrix is

Ii,j =
1

ti,j

(
1 −rj,i

ri,j ti,jtj,i − ri,jrj,i

)
. (3.16)

The scattering matrix for the an arbitrary layer stack is constructed by matrix multiplica-
tion of the element matrices. For a stack of m layers

S = I0,1L1I1,2 . . . Lm−1Im−1,m. (3.17)

3.2.1 Reflection/transmission coefficients

The (complex) reflection/transmission coefficients of the complete stack can be derived
directly from the scattering matrix. First, consider light incident from the left. In this case,
the wave traveling backward on the right side of the structure (w) must be zero. Dividing
by the incident field v0, the matrix equation reads

(
1
r

)
= S

(
t
0

)
, (3.18)
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where r/t denote the reflectance/transmittance coefficients defined as

r =
w0

v0
=

S21

S11
, t =

v
v0

=
1

S11
. (3.19)

Next, consider light incident from the right. In this case the wave traveling forward on
the left side of the structure (v0) must be zero. Dividing by the incident field w, the matrix
equation reads (

0
t′

)
= S

(
r′

1

)
, (3.20)

where r′/t′ denote the back-reflectance/transmittance coefficients defined as

r′ =
v
w

= −S12

S11
, t′ =

w0

w
=

det S
S11

. (3.21)

Combining equations (3.19) and (3.21), the scattering matrix can be expressed in terms of
the reflection/transmission coefficients,

S =
1
t

(
1 −r′

r tt′ − rr′

)
. (3.22)

Note the similarity with equation (3.16). It implies that the scattering matrix can be inter-
preted as an effective interface matrix for the complete structure.

3.3 Incoherence

In the standard transfer matrix method (TMM), the light is assumed to be perfectly co-
herent. While this can be a reasonable assumption some light/structure combinations,
the assumption is not generally true. If the layer thickness is large compared to the co-
herence length of the light, the coherent assumption breaks down. Even if this is not the
case, imperfect interfaces and/or variations in layer thicknesses can cause loss of coher-
ence. A number of different approaches have been proposed to extend TMM to deal with
incoherence. This section provides a brief overview.

3.3.1 Phase averaging method

Loss of coherence basically means that the relative phase information between successive
reflections is lost. This effect can be emulated in the TMM simulations by adding a ran-
dom offset δ to the phase shift βi obtained when a layer is traversed,

βi → βi + δ, δ ∈ [0 : δmax] . (3.23)

Evaluating the relevant quantities, typically R and T, for a number N of offsets, the inco-
herent values are obtained by calculating the average value [15],

TPAM =
N

∑
i=1

Ti

N
. (3.24)

The number N should be large enough that convergence is obtained. A faster convergence
can be obtained by choosing the values of δ equally spaced rather than randomly [16].
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By varying the parameter δmax in equation (3.23) between 0 (perfect coherence) and π

(complete incoherence), semi-coherence can be simulated too. Example calculations are
shown in figure 3.1. A disadvantage of the phase averaging method (PAM) is that the
computation time is increased by a factor of N. How large a value of N is needed depends
of the problem, but typically N ≈ 30 is required [15] when the values of δ are chosen
equidistantly.

3.3.2 Gaussian filter method

Real light sources are not perfectly coherent, nor monochromatic. The coherence length l
of a wave train is related to the line width ∆λ as [17]

∆λ =
λ2

l
. (3.25)

Assume that the the relevant quantities, typically R and T, have been evaluated using
TMM across some spectral range. The final line width, ∆λ, of the light source can then be
taken into account by applying a Gaussian filter [18]

g(λ) =
1√
2πσ

e−
λ2

2σ2 with σ =
2
π

λ2

l
. (3.26)

The limit l → ∞ corresponds to perfect coherence (e.g. the filter does nothing), while
the limit l → 0 implies complete incoherence. By varying l, semi-coherence can be simu-
lated [19]. Example calculations are shown in figure 3.2. In terms of computation, a large
overhead is introduced if the target variable is the response at a single wavelength only.
However, if a frequency sweep is needed anyway, only a minor overhead (the scan must
be extended in each end) is present.

3.3.3 Absolute square method

While the methods presented in section 3.3.2 and section 3.3.1 are direct extensions of
TMM, the absolute square method (ASM) is different in that it considers the amplitude(s)
of the intensity field U = |E2| rather than the electric field [20]. The basic idea, however,
is the same. The equivalent of equation (3.7) is(

V0

W0

)
= S̄

(
V
W

)
(3.27)

where V, W are the amplitudes of the forward/backward propagating intensity field and
a ¯bar is used to distinguish the incoherent scattering matrix from the coherent one. Simi-
larly, by making the the substitutions r → r̄ ≡ |r|2 and t → t̄ ≡ |t|2 in equation (3.22), the
incoherent scattering matrix is obtained

S̄ =
1
t̄

(
1 −r̄′

r̄ t̄t̄′ − r̄r̄′

)
=

(
|S11|2 −|S12|2

|S21|2 |det(S)|2+|S12S21|2
|S11|2

)
. (3.28)

At the last equality sign, equations (3.19) and (3.21) were used to relate r, t to the corre-
sponding coherent scattering matrix S. Equation (3.28) makes it possible to calculate the
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Figure 3.1: Transmittance from a Fabry-Perot etalon (glass slab) with n = 4 as a function
of thickness in units of λ = λ0/n. The coherent calculations predict perfect transmit-
tance when d equals an integer times λ/2 due to destructive interference between front
and backside reflections. The incoherent calculations predict a constant transmittance.
Applying PAM, results for semi-coherent light can be obtained. For the PAM results the
number in the legend denotes δmax in units of π.

incoherent scattering matrix from the its coherent equivalent. From equation (3.11) the
incoherent layer propagation matrix is obtained

L̄i = L̄(βi) =

(
| exp(−βi)|2 0

0 | exp(βi)|2
)

. (3.29)

The incoherent interface matrix follows from equation (3.16),

Īi,j =
1

|ti,j|2

(
1 |rj,i|2

|ri,j|2 |ti,jtj,i|2 − |ri,jrj,i|2
)

. (3.30)

As in TMM, the scattering matrix for an arbitrary (now incoherent) layer stack is con-
structed by matrix multiplication of the element matrices,

S̄ = Ī0,1L̄1Ī1,2 . . . L̄m−1Īm−1,m. (3.31)

The analysis leading the to front/back reflection and transmission coefficient is practically
equivalent to the TMM case, the results are

r̄ =
W0

V0
=

S̄21

S̄11
, t̄ =

V
V0

=
1

S̄11
(3.32)

r̄′ =
V
W

= − S̄12

S̄11
, t̄′ =

W0

W
=

det S̄
S̄11

. (3.33)
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Figure 3.2: Transmittance from a 0.5 mm glass substrate, nsubst = 1.5, with an anti re-
flection (AR) coating (nAR =

√
nsubst, design wavelength 1000 nm) as a function of wave-

length. The coherent calculation show strong oscillations due to interference with the
backside reflection from the thick glass substrate, while the incoherent calculation pre-
dicts a constant transmittance. Applying ASM, a calculation was carried out treating the
AR coating coherently and the substrate incoherently. The result agrees perfectly with
the result obtained by GFM assuming a coherence length of 10 µm.

with equation (3.4) replaced by

R = r̄, T = t̄γ. (3.34)

In the case of coherent layer(s) embedded inside the incoherent stack, equation (3.28) can
be applied to the scattering matrix of the coherent layer(s) to obtain the effective incoherent
interface matrix. The mixed coherent/incoherent case is thus reduced to the incoherent
one. Note that this trick allows ASM to treat an arbitrary stack of mixed coherent and
incoherent layers. Since ASM supports direct evaluation of the case of complete inco-
herence, it serves as an obvious benchmark for the convergence of the of PAM and GFM
towards the incoherent limit. Example calculations are included in figures 3.1 and 3.2.

3.4 Implementation

Numerous implementations of TMM exist. Among the most powerful, both in terms
of usability and flexibility, is the Python package tmm by Steve Byrnes [12]. However,
driven by (1) the need to interface with other programs (e.g. COMSOL) and (2) the need
to extend the basic TMM functionally, a new implementation was forged as a part of this
work. The implementation is written in Python (object oriented) and it includes all of the
TMM extensions discussed in this chapter. An alpha version is available from pypi under
the package name tmmpy. Figures 3.1 and 3.2 were created using tmmpy.

https://pypi.python.org/pypi/tmmpy


4 The Finite Element Method
The finite element method (FEM) is a numerical technique for obtaining approximate
solutions to boundary value problems. FEM has been around since the 1940s, and today
the method is applied in a variety of fields including structural analysis, fluid dynamics
and electromagnetics. Many great books are available on the subject, both legible [21]
and comprehensive [22]. In this chapter a brief introduction to the basic principles of
FEM is given and the differential equations and boundary conditions used in this work
are presented.

4.1 Basic principle(s)

Modern FEM implementations are based on either the Ritz variational method or the
Galerkin method. Both are classical methods for solving boundary value problems. The
basic idea is to expand the unknown solution in some basis after which the boundary
value problem is converted into a linear system of equations for the (unknown) expansion
coefficients. A very important step in the process is the choice of basis. For most one
dimensional problems it is possible to find appropriate basis functions, but for problems
in two and three dimensions such functions might not be readily available. The core
idea of FEM is to overcome this obstacle by splitting the domain into smaller parts called
elements. Instead of using complicated basis functions defined on the complete domain Ω,
simple basis functions (typically low order polynomials) defined on each element Ωn ∈ Ω
are used. Applying the Galerkin or the Ritz method for each element and summing over
all elements, a linear system of equations is obtained. The process of constructing this
system, including the enforcement of boundary conditions, is referred to as assembly. The
FEM can thus be summarized in three main steps

• Discretization of the domain into elements

• Assembly of the linear system of equations

• Solution of the system

Since an actual FEM implementation has not been carried out as part of this work, details
on the assembly process is beyond the scope of this progress report. Instead the reader is
referred to [22]. The discretization and solution steps on the other hand are performance
critical and must be hand tuned. A few comments of these steps are provided in the
following paragraphs.

4.1.1 Discretization

The discretization (or meshing) step is of uttermost importance. It affects the required
memory, the computation time and the accuracy of the solution. In general terms, a
higher mesh resolution improves the accuracy of solution at the cost of increased mem-
ory consumption and computation time. However, the mesh quality is just as important.

15
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A higher mesh quality implies obtaining a higher accuracy without increasing the num-
ber of mesh elements. The generation of high quality meshes is a science of its own, but
typical tricks include (1) enforcing physical boundaries in the mesh construction and (2)
increasing the number of elements in regions where gradients are expected to be high.
For the simulation of electric fields, the so-called Nédélec elements are preferred. They
enforce tangential continuity across element interfaces, e.g equation (2.28) is enforced au-
tomatically. In addition, as the mesh should always be fine enough to resolve the field
oscillation, at least 6 elements per wavelength should be present. In this work the COM-
SOL mesh generator was used to generate tetrahedral meshes of second order Nédélec
elements. Since the wavelength depends linearly on the refractive index n, the mesh res-
olution was scaled accordingly as illustrated in figure 4.1a. Additionally, as illustrated in
figure 4.1b, the mesh resolution was increased along the boundary of metal nanoparticles,
as a high field gradient is expected in this region.

(a) Interface between air and a naked silicon
substrate. Due to the high value of the n for
silicon, the mesh is much more dense in the
substrate (blue).

(b) Gold sphere in vacuum. As a high field
gradient is expected close to the sphere, the
mesh resolution is increased at the sphere
surface (blue).

Figure 4.1: Examples of custom mesh generation.

Solution

Solving the linear system of equations is the final and typically the most time consuming
step. The FEM system matrix is sparse and often symmetric. The solver should always be
chosen to exploit such properties. The process of solving large, sparse, linear systems of
equations is a standard linear algebra operation for which efficient solvers are freely avail-
able [23]. Two classes exist, direct and iterative solvers. Direct solvers solve the problem in
one step, often by LU decomposition. The advantage of direct solvers are their stability,
while the trade-off is a high memory consumption. For very large problems, the memory
consumption might exceed the available amount of RAM, and one is forced to employ
an iterative solver instead. Iterative solvers start from some solution guess and refines it
iteratively. The advantage of iterative solvers is the reduced memory usage, but it comes
at the cost of stability. Not all iterative solvers arrive at the same solution, and often they
do not even converge.
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4.2 Scattered field formulation

The wave equation, equation (2.23), was derived in section 2.2. It is the core differential
equation for all FEM calculations carried out in this work. Since it implies solving for the
total field, it is referred to as the full field formulation.
A slightly different approach designed specifically for scattering problems is the scattered
field formulation. To illustrate the basic idea, consider a structure with some scattering
element(s). In the absence of the scattering element(s), the background structure is char-
acterized by some permittivity function ϵ̃B. The background field EB is then defined as
the solution to the wave equation

∇×
(

1
µ0

∇× EB

)
− ϵ̃Bω2EB = 0. (4.1)

Applying the superposition principle, the full field E can be written as

E = EB + ES (4.2)

where ES is the scattered field due to the presence of the scattering element. Inserting
equation (4.2) into equation (2.23) and solving for the scattered field, the scattered field
formulation is recovered

∇×
(

1
µ0

∇× ES

)
− ϵ̃ω2ES = −∇×

(
1
µ0

∇× EB

)
+ ϵ̃ω2EB. (4.3)

In the scattered field formulation, the field which is solved for the is not the total field
E, but the scattered field ES. Contrary to the full field formulation, the source term (the
right hand side) is not zero. To clarify the meaning of the source term, equation (4.1) is
substituted into equation (4.3),

∇×
(

1
µ0

∇× ES

)
− ϵ̃ω2ES = (ϵ̃ − ϵ̃B)ω2EB. (4.4)

From equation (4.4) it is clear that the background field acts as a source of excitation in
regions where EB ̸= 0 and ϵ̃ ̸= ϵ̃B.

4.3 Boundary conditions

To complete the formulation of a boundary value problem, boundary conditions (BCs)
must be supplied in addition to the differential equation. The basic principles of the BCs
used in this work are outlined in this section.

4.3.1 Perfect Conductor

For a perfect electric/magnetic conductor (PEC/PMC), the internal electric/magnetic
field is zero. In this case, equations (2.26) to (2.29) are reduced to

D · n̂ = σs (PEC) (4.5)
E × n̂ = 0 (PEC) (4.6)
B · n̂ = 0 (PMC) (4.7)

H × n̂ = Ks (PMC), (4.8)
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where σs/Ks is the induced charge/current on the surface. The PEC BC can be used to
approximate metallic objects, the advantage being to avoid meshing the internals of the
object. Additionally, the PEC/PMC BC can be used to represent symmetry planes for the
electric/magnetic field.

4.3.2 Scattering Boundary Condition

In scattering problems, it is often of interest to simulate objects embedded in infinite space.
Since infinite space cannot be simulated explicitly, open boundaries are needed. One ap-
proach to obtain such behavior is the scattering boundary condition (SBC). As an example,
consider a plane wave propagating along the z-direction incident upon a planar boundary
in the xy-plane. Since the normal derivative

∂

∂z
E(r) = ikzE(r) (4.9)

is known at all points of the boundary, an exact BC can be applied. However, the unknown
scattered field is rarely a plane wave propagating in a particular direction. Setting θ = 0,
an approximate condition is obtained

∂

∂z
E(r) ≈ iñk0E(r). (4.10)

This is the first order SBC for planar boundaries. It absorbs normally incident plane waves
perfectly, but as θ increases the absorption decreases. At grazing incidence, all light is
reflected. Higher order SBCs and SBCs for other types of surfaces can be constructed by
requiring the field to (approximately) satisfy the Sommerfeld radition condition [24]. Details
on such derivations are found e.g. in [22]. In the models considered in this work, only the
first order SBC for planer surfaces has been used. While a second order SBC is available
in COMSOL, the first order implementation was found to provide the best stability for
the problems considered.

4.3.3 Perfectly Matched Layer

Like the SBC, the perfectly matched layer (PML) is a construction designed to emulate
an open boundary. However, the PML is not an actual BC, but rather a fictitious ab-
sorber with a perfectly matched interface. Mathematically, the PML can be interpreted as
a coordinate stretching in complex space [25], physically as an anisotropic absorber [26].
In continuum space, the interface matching ensures zero reflection for any plane wave,
independent of incidence angle. Upon entering the PML, the wave is attenuated in the
direction normal to the PML surface implying that back reflections are avoided (provided
that the PML is thick enough). In continuum space, the PML is thus truly reflectionless,
but unfortunately this property does carry over to discretized space [22]. Since numerical
methods (like FEM) work in discretized space, PMLs will not be reflectionless, but they
are still one of the best options. In particular, the combination of a PML and a SBC will
result in low reflections across a wide range of angles. The trade-off compared to just
using a SBC is that the PML must be meshed, e.g. the domain size is increased. In the
simulations in this work a PML thickness of ∼ λ/2 was found to be sufficient.
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4.3.4 Wave port

In the full field formulation, the excitation must be supplied through a BC, when no exter-
nal charge/current densities are present. An example of a BC providing such excitation
is the wave port. Consider a wave port parallel to the xy-plane located at z = z0. The
excitation will be in the form of a plane wave propagating in the +z direction. Assuming
that the port is located sufficiently far away from the structure of interest, higher-order
modes are attenuated and only the dominant reflected mode reaches to port. In this case,
the total field at the port can be expressed as

E(r) = E f eik f ·r + Ebeikb·r (4.11)

where the first term represents the excitation and the second term the reflected wave. The
normal derivative can be expressed as

∂E(r)
∂z

= iñk0

(
E f eik f ·r − Ebeikb·r

)
= −iñk0

(
E(r)− 2E f eik f ·r

)
, (4.12)

which can be enforced as a BC. Equation (4.12) is a simple example of an input port. An
output port can be constructed simply by setting E f = 0. The usage of the port condi-
tion equation (4.12) is limited by the assumption of higher-order modes being attenu-
ated. However, the condition can be extended to include higher-order modes, provided
that their form is known in advance [22].

4.4 Probes

The immediate result of a FEM calculation is the field distribution across the entire geom-
etry. This result is typically too large to save directly, so instead the quantities of interest
are ”measured” using probes. Examples of probes are reflection/transmission coefficients

R = 1 − 1
P0

∫
Ωinc

(⟨S⟩ · n̂)dA, T =
1
P0

∫
Ωout

(⟨S⟩ · n̂)dA (4.13)

where Ωinc/Ωout denote incoming/outgoing surfaces to which n̂ is a normal vector, ⟨S⟩ is
the time averaged poynting vector and P0 the power incident through Ωinc. For plasmonic
particles the absorption, extinction and scattering cross sections are probed,

σsct =
1
I0

∫
δV

(⟨Srel⟩ · n̂)dA, σabs =
1
I0

∫
V

QhdV, σext = σsct + σabs. (4.14)

Here V denotes the volume of the particle, δV the surface, ⟨Srel⟩ the relative, time averaged
poynting vector and Qh the power dissipation density. In the scattered field formulation
⟨Srel⟩ is simply the time averaged poynting vector calculated for the scattered field.

4.5 Implementation

Implementing a full FEM code is a complex and time demanding task. While open source
projects exist that address this challenge, e.g. FEniCS [27], their accessibly and/or flexi-
bility remains inferior to commercial software. In this work the COMSOL Multiphysics
software [28] was used for all FEM calculations.



5 Results
While most of the initial work have been of an explorative nature, e.g. setting up simu-
lation environments and validating calculations for simple structures, some simulations
of real structures have been carried out. Due to space limitations, all cannot be presented
here. Instead, two examples have been selected based on the state of progression in terms
of publication(s). The first example considers the light trapping properties of nanowrin-
kles for which the first paper has been submitted [31] and a number of additional papers
are in preparation. In the second example a new two particle model for simulating random
arrays of plasmonic nanoparticles is presented. A paper on upconversion applying the
”old” one particle method has been already accepted [32], and the first SunTune paper of
my own will be on the two particle model.

5.1 Nanowrinkles

When designing a solar cell reducing the thickness of the absorber implies lower material
costs and shorter deposition times [30] thus decreasing the overall cost. The drawback
is reduced absorption. This problem can be addressed by light trapping. As the word-
ing suggests, the idea is to trap the light inside the structure. Since the light cannot (or
only rarely) escape, it bounces around passing the absorber layer multiple times increas-
ing the effective path length and thereby the absorption. Light trapping can be achieved
by fabricating the solar cell on top of a textured substrate. The fabrication of precisely
controlled textures on nanoscale, e.g. by electron beam lithography (EBL), is an expen-
sive process with a low throughput. A cheaper alternative is self assembled nanostruc-
tures such as nanowrinkles, which can be fabricated as illustrated in figure 5.1. Since the

Figure 5.1: Fabrication of nanowrinkles. First, a thin gold film is deposited on pre-
stretched thermoplastic (a), which is subsequently clamped and annealed above the glass
transition temperature (b) so that nanowrinkles form on the surface (c). Next, a PDMS
mold (d) is used to transfer the wrinkles to a UV-lacquer coated glass (e), which will serve
as the solar cell substrate (f). Reproduced from [31].

20
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manufacturing process is simple and requires no expensive equipment, the production
of nanowrinkles is cheap and easily scalable. Furthermore, the size of the nanowrinkles
can be tuned, e.g. by varying the gold layer thickness. In an upcoming publication [31]
the light trapping performance of the nanowrinkles shown in figure 5.2 is assessed.

Figure 5.2: Topology of the surface of four nanowrinkle samples measured by Atomic-
Force Microscopy (AFM). The size of the nanowrinkles was varied by changing the thick-
ness of the gold layer from 5 nm (a) to 10 nm (b), 15 nm (c) and 20 nm (d). Accordingly
the samples are denoted NW5, NW10, NW15 and NW20.

5.1.1 Model

The geometrical model of the nanowrinkle structure was created by stacking the layers
conformally. The cross sectional FIB SEM images (shown for the NW20 sample in fig-
ure 5.3a) confirm that this assumption is reasonable. The surface template was taken as a
2D slice through the corresponding AFM measurement. A 2D (rather than 3D) model was
chosen to limit computation time and memory consumption. The resulting 2D geometry
is shown in figure 5.3b.

To emulate the quasi periodic nature of the surface, a number of separate simulations with
periodic BCs were carried out with different surface templates, and the target variables

(a) FIB image reproduced from [31]. (b) Conformal model geometry.

Figure 5.3: Geometry of the NW20 sample. The slices in (a), (b) are not the same.
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Figure 5.4: Sketch of the FEM model. To obtain a symmetric structure, the initial structure
is mirrored in the z-axis. Applying appropriate PECs/PMCs (dashed lines), the simula-
tion domain is reduced to the non-shaded area. The top and bottom of the structure is
truncated by PMLs backed by SBCs (red lines) to avoid unintended reflections. The struc-
ture is excited by a monochromatic plane wave propagating in the positive z-direction
using a wave port BC (blue line).

were calculated as the mean across all simulations. To obtain a broadband spectrum,
simulations were carried out in steps of 2 nm from 300–900 nm. The resulting data were
smoothed using a Gaussian kernel corresponding to a coherence length of 20 µm to fil-
ter out diffraction effects, as discussed in section 3.3.2. The FEM model is sketched in
figure 5.4.

5.1.2 Results

The simulated spectra are compared to the measured ones in figure 5.6. For the flat solar
cell, the agreement is good. The slight discrepancy between model and experiment can
be attributed to production uncertainties (layer thicknesses/uniformity) and variations
in material parameters (the complex refractive index). The refractive indexes were mea-
sure by ellipsometry for all materials except silver, which was taken from the literature.
Overall, the simulated data for the NW5 sample are also in reasonable agreement with
simulation. However, the measured peak locations differ somewhat from the simulated
ones, implying that the layer thicknesses used in the simulation might be inaccurate. In
case of the NW20 sample, the general tendency of increased absorption for long wave-
lenghts (λ > 600 nm) is predicted by the model, but the measured absorption is much
higher than predicted. Besides non-idealities in the simulation parameters, a possible ex-
planation could be additional scattering not accounted for by the model due to the non-
uniformity of the nanowrinkles in the y-direction. Since the simulations are carried out
in 2D (xz-plane), the nanowrinkles are implicitly assumed to be perfectly homogeneous
in the y-direction.

The spatial power dissipation density is illustrated in figure 5.6 for different wavelengths.
At the lowest wavelength (λ = 475 nm) all the light is absorbed in the intrinsic silicon layer
before reaching the back reflector. As the wavelength increases, the extinction coefficient
of silicon decreases, and the light trapping caused by the nanowrinkles becomes more im-
portant. At highest wavelength (λ = 775 nm) only very weak absorption is observed in the
flat sample. In the nanowrinkle sample on the other hand, hot-spots of high absorption
are distributed across the sample. The hot-spots cause an overall increased absorption
compared to the flat cell in agreement with figure 5.5.
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Figure 5.5: Comparison of measured (solid lines) and simulated data (lines + dots). For
the nanowrinkle samples, the polarization average is plotted.

Figure 5.6: Power dissipation density in the NW20 (a-d) and the flat (e-h) solar cells. The
light is incident along the positive z-direction, e.g. from below. The dashed white lines
indicate the interfaces between (from below) glass/IWO, IWO/silicon and ITO/silver.

5.1.3 Outlook

An obvious extension of this work would be to construct a 3D model of the nanowrinkle
sample(s) to assess the effect of non-uniformity in the y-direction. To limit the need for
computational resources, the 3D model could be evaluated on a smaller domain, maybe
2.5 × 2.5 µm2, and, as a starting point, at a single wavelength.

In other upcoming papers the angular dependence of the absorption is considered in
detail. For these papers it would be natural to carry out the corresponding calculations at
oblique incidence. At oblique incidence the symmetries exploited so far will no longer be
present. Revoking the PEC/PMC BC along the z-axis and replacing the outer PEC/PMC
BCs by flouqet BCs, simulations at oblique incidence can be carried out.
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5.2 The two particle model

For a random arrangement of plasmonic metal nanoparticles, the average particle-particle
coupling will be small provided that the mean center-to-center distance is large enough.
In this quasi-single particle case, an approximate result can be obtained by considering a
single particle alone in infinite space. The simplicity of this one particle model combined
with its ability to predict main trends has made it a popular choice [7]. In a recent SunTune
paper on plasmonically enhanced upconversion [32], the one particle model was used to
predict the position of the plasmon resonance for randomly distributed truncated gold
nanocones on a TiO2 film on a SiO2 substrate. While it succeeded in predicting the main
trends, some features, in particular a peak splitting behavior, remained unaccounted for.
In an upcoming paper, an extension of the one particle model with an additional parti-
cle, e.g. a two particle model, will be proposed as an improved approximation taking into
account the nearest-neighbor particle-particle interaction.

The models are compared to experimental data previously published in [32]. The samples
were fabricated on a quartz substrate onto which a 100 nm film of TiO2:Er3+ was deposited
by radio-frequency magnetron sputtering. The gold cylinders were fabricated on top of
the film by EBL in 2 × 2 mm2 regions. Three series of samples were fabricated. The sets
are named S4k, S6k and S8k according to their particle density of 4000, 6000, and 8000
particles per 100 × 100 µm2. SEM images of a sample from each series are shown in
figure 5.7a-c. The particle height was 50 nm for all samples. A TEM image of a fabricated
particle is shown in figure 5.7d.

a) b)

c) d)

Figure 5.7: SEM images of a samples from each series, S4k (a), S6k (b) and S8k (c). TEM
image of a gold nanoparticle with a diameter of 147 nm (d).
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5.2.1 Models

The model geometry was constructed as simple planar layers with the gold nanoparti-
cle(s) on top. The nanoparticle is modeled as a truncated cone with top radius 0.9 times
the bottom radius in qualitative agreement with the TEM image, figure 5.7d. A sketch
of the FEM model is shown in figure 5.8. Since the analytical solution for the structure
in the absence of the nanoparticle(s) is known, the scattered field formulation was used.
The background field was evaluated using TMM and injected into COMSOL through a
custom interface, tmmpy_bridge, which was created as part of this work.
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Figure 5.8: Sketch of the FEM model for (a) the one particle model and (b) the two par-
ticle model. The particle radius r and center-to-center distance d (only relevant for the
two particle model) are indicated. The red boundaries indicate SBCs. Applying an ap-
propriate BC (PEC/PMC) along the symmetry axis (dashed line), the simulation domain
is reduced to the non-shaded region.

5.2.2 Model comparison

For the model comparison, a particle with r = 135 nm was chosen. Calculated extinction
cross section spectra for the one particle model and two particle models with different
center-to-center distances d are compared in figure 5.9 for the case of s-polarization, e.g.
the electric field is perpendicular to axis connecting the two particles. For p-polarization,
no significant coupling is observed. When d is small, the plasmonic peak is blueshifted,
but as d increases the blueshift decreases until the peak is aligned with the one parti-
cle peak at d ≈ 580 nm. Next, the peak is redshifted and around d ≈ 900 nm a new,
blueshifted peak is formed while the amplitude of the redshifted peak decreases. At d ≈
1100 nm, the amplitudes of the two peaks are similar in magnitude. Upon increasing d
further, the redshifted peak dies out, and the previous peaks movements repeat periodi-
cally while simultaneously the curve converges towards the one particle model curve.

To illustrate the significance of the values of d where a resonance sharpening/splitting
is observed, the phase difference between the background field and the scattered field
emitted by a single particle is plotted in figure 5.10. From the phase plot it is clear that
the peak sharpening occurs when the second particle is placed close to the zero phase
shift line, e.g. where the background field and the scattered field interfere constructively.
Similarly, the peak splitting occurs when the second particle is placed close to the π phase
shift line, e.g. when the background field and the scattered field interfere destructively.
Admittedly the agreement is not perfect (the particle positions are not exactly on the 0/π

lines). However, a perfect agreement was not expected either. The interference condi-
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Figure 5.9: Comparison of one (dashed line) and two (solid lines) particle models for
different particle separations (a). At some distances a sharpening of the resonance is ob-
served (b), while at others the resonance peak splits into two (c).

tions based on a single particle simulation does not take into account any particle-particle
coupling effects, so some deviation is expected. On the other hand, the qualitative agree-
ment imply that the peak splitting/sharpening is primarily due to the radiative coupling
between neighboring particles and the incoming field. This conclusion is similar to the
observations by [4].

Figure 5.10: Phase difference between the y-component of background field and the scat-
tered field in units of π in space for z=0, λ = 1290 nm (upper panel) and as a function of
excitation wavelength for z=y=0 (lower panel). The data in the upper/lower panels coin-
cide along the white, horizontal lines. White/black shadings indicate particle positions
for which peak sharpening/splitting is observed in the two-particle simulations.
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5.2.3 Results

In figure 5.11a-c the extinction cross sections calculated using the one and two particle
models respectively are compared to experimental data. To highlight the difference be-
tween the two models, the two particle model results are shown for s-polarization rather
than a polarization average. For each sample series, d was chosen as the mean particle
distance. The peak splitting observed experimentally is reproduced neatly by the two
particle model. While the curves do not match perfectly in absolute numbers (the vertical
shift might be due to scattering effects which remain unaccounted for), the features on the
experimental curves agree well with the two particle model. The fitted peak position(s)
as a function of particle diameter is shown in figure 5.11d-f. Considering the simplicity
of the two particle model, the agreement with the experimental data is remarkably good.
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Figure 5.11: Comparison of one (M1, dashed line) and two (M2, solid lines) particle mod-
els with experimental data (symbols). In the upper panel, the samples considered are S4k
with 345 nm diameter (a), S6k with 315 nm diameter (b) and S8k with 270 nm diameter
(c). In the lower panel peak position(s) as a function of diameter are shown for the S4k
(d), S6k (e) and S8k (f) samples.

5.2.4 Outlook

To obtain a better agreement with the experimental data, obvious extensions would be to
take into account the actual particle distribution (or some approximation to it) rather than
simply the mean distance and/or to consider polarization averaged calculations. It would
also be very interesting to look at samples with larger values of d to verify experimentally
if the peak splitting occurs periodically as predicted by the two particle model.



6 Conclusion
Applying TMM and FEM, optical simulations have been carried out successfully for a
number of different structures. A modeling framework has been developed which enable
modeling of thin film structures by TMM (tmmpy) and provides integration with COM-
SOL (tmmpy_bridge), so that thin film structures with scattering elements can be treated
with ease. Since this is exactly the type of structures typically encountered in SunTune,
these tools provide a solid foundation for the construction of future optical models in
SunTune regi.

6.1 Outlook

One of the main objectives of this PhD project is optical simulation of the complete solar
cell complex, including any up- and downconverter elements. Since the complete geom-
etry is too large to be treated using FEM directly, an alternative method must be applied.
Some work has been done on a variation of TMM taking into account the angular intensity
distribution building on the concepts of [13, 14]. The basic idea is to divide the complete
structure into blocks, process each block by the most efficient method available (into some
matrix representation), after which the blocks are assembled to determine the response
of the complete structure. In future work, the method will be finalized and published in
a separate paper.

While the simulation of periodic arrangements of nanoparticles is relatively straightfor-
ward (it is sufficient to treat a single unit cell), the problem of treating random arrange-
ments is more involved. For prediction of the plasmonic resonance frequency, the random
arrangement is often approximated by considering a single particle alone in the world. As
an improved approximation, a two particle model was presented in section 5.2. In future
work it would be interesting to consider alternative options for including more particles.
One possible approach would be to expand the field around each particle in spherical
vector wave functions (SVWFs), after which scattering from other identical particles can
be included via the addition theorem for SVWFs. In recent publications, e.g. [33], this
approach has been successfully applied to simulate thousands of particles.

A three month stay abroad at the Fraunhofer-Institut für Solare Energiesysteme (ISE) has
been planned. A paper has previously been published from ISE on upconversion en-
hancement using a Bragg structure [34]. The initial work was focused on structures which
could be manufactured in their lab. During my stay, I will be extending this work to more
exotic structures. The focus will be on optimizing the upconversion quantum yield from
a more theoretical point of view without taking into account immediate, experimental
limitations. The expected outcome is a joint publication.
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