

SPATIAL HIGH-RESOLUTION MAPPING OF NATIONAL EMISSIONS

Air Pollution 2018

19 - 21 June 2018, Naples, Italy

Ole-Kenneth Nielsen, Marlene Plejdrup & Henrik Bruun Department of Environmental Science Aarhus University

Acknowledgements

- > The Irish EPA for funding of the project as part of the Climate Research Call 2015 – Air Science
- > The Irish emission inventory team for sharing expert knowledge on the Irish emission inventory and national circumstances
- > The Steering Committee for valuable comments and advice regarding methodology and data availability
- Stakeholders and data providers for highly appreciated discussions, cooperation and sharing of data

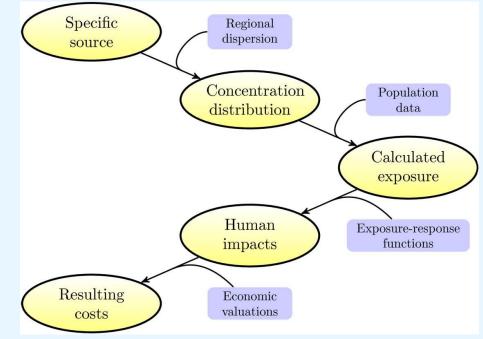
Motivation

- Spatial emissions is a key element in assessing human exposure to air pollution through use of dispersion modelling
- > High quality spatial emission mapping is crucial for the quality, applicability and reliability of modelled air pollution levels, estimated human exposure, incurred health effects and related costs
- > Useful for policy makers on both national and local level in decision making and prioritising of environmental measures
- > Enable more detailed regulation, implementing measures targeting areas where emissions are highest, allowing for more cost-effective initiatives on local, regional and national scale

Applications of the research

- > Methodology can benefit other countries, which embark development of high-resolution spatial emission distributions
- > Applicable for national, regional and local scale
 - > Often a higher resolution is wanted for smaller areas
- > Scenarios can be run for specific sectors or areas
- > Important information for policy makers in decisions of implementation of environmental policies and measures
- Allows for a more detailed regulation, implementing spatially differentiated measures, allowing for more costeffective initiatives

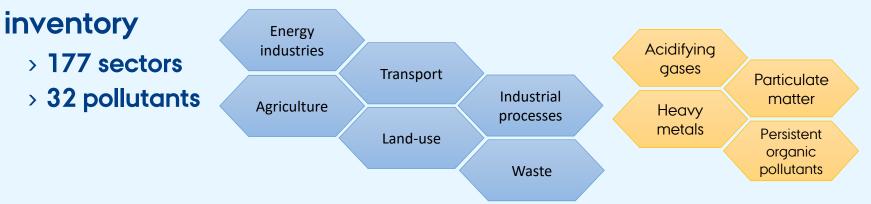
19-21 June 2018


Applications of the research

 Important information for policy makers in decisions of implementation of environmental policies and measures

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUS UNIVERSITY


 Allows for a more detailed regulation, implementing spatially differentiated measures, allowing for more cost-effective initiatives

The spatial emission model

- Complete spatial emission mapping on 1 km x 1 km
 resolution for the Irish Exclusive Economic Zone
 ~500.000 km²
- > State-of-the-art integrated database system focusing on performance optimisation
- > Includes all sectors and all pollutants in the Irish emission

The spatial emission model

- > Model setup focusing on user-friendliness and performance optimisation
 - Able to handle large data amounts and run complex calculations at high speed
 - > Easy to update and include new sources and pollutants
 - > Link to official emission reporting tables to ensure consistency
 - > Simple user interfaces minimise risks of user-introduced errors

The spatial emission model

- > Based on the most detailed data available regarding both emissions and spatial conditions
- > Integrates official statistics with a large number of spatial datasets
 - > Official statistics as the Irish emission inventory, and censuses of population, housing and agriculture
 - > Spatial datasets as diverse as land cover, road network, building use and heat demand

19-21 June 2018

Methodology

> Point sources

- > Plant specific data
 - > Emissions
 - > Fuel consumption
 - > Address/location of facilities
- Data sources, e.g. E-PRTR, ETS, annual environmental reports, industry associations,

> Area sources

- Small point sources with common characteristics, but too numerous to be handled individually, e.g. households
- > Lines sources, e.g. roads and railways
- > Surface sources, e.g. agricultural fields

> Combination of point and area sources

> E.g. the chemical industry sector covers both large plants with plant specific data and small plants, that are treated as an area source

Methodology

> Spatial distribution keys (GeoKeys) are used for emission allocation

> Normalised tables holding shares of national total emission for a given sector, a given pollutant and a given year

> GeoKeys are based on integration of spatial data

- > Official statistics by administrative units
 - > Agricultural census
 - > Transport survey
- > Spatial proxy data
 - > Population density
 - > Road network
- > Selection or exclusion of specific areas
 - > Emissions from grazing animals only allocated to agricultural areas
 - > Emissions from residential coal combustion not in areas where the use of smoky coal is legally banned

Criteria for selection of spatial data

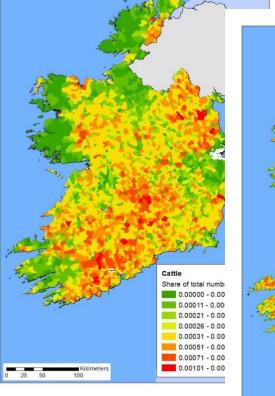
- > Coverage
 - > Preferably cover the entire domain
- > Accuracy of spatial data
 - > Position
 - > Attribute data
 - > Level of detail
 - > Update frequency
 - > Time for latest update
 - > Local or national data rather than international or global data
- > Applicability as spatial proxy

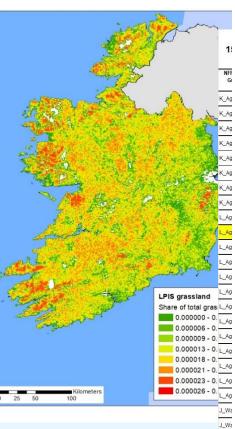
> Integrate spatial data sets to improve the spatial distribution

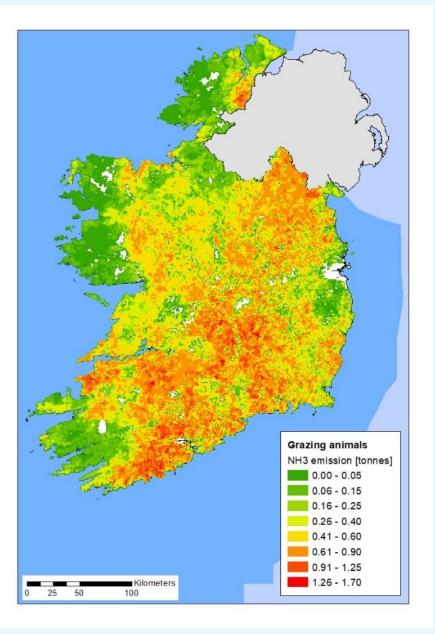
> Detailed data covering part of the domain with less detailed data covering the entire domain

Data integration

- Integration of spatial data sets can improve the spatial distribution
 - > Include detailed data covering part of an emission sector
 - > Combining point and area sources in a common GeoKey
 - > Statistics and spatial data
 - > Integrating regional statistics with spatial maps
 - > Include detailed data covering part of the domain
 - > Mileage data for part of the road network integrated with a simple road network covering the entire domain
 - > Spatial data sets describing different features relevant for a single emission source
 - Identification of cultivated organic soils via integration of the Land Parcel Identification System (LPIS) and soil map including organic soils

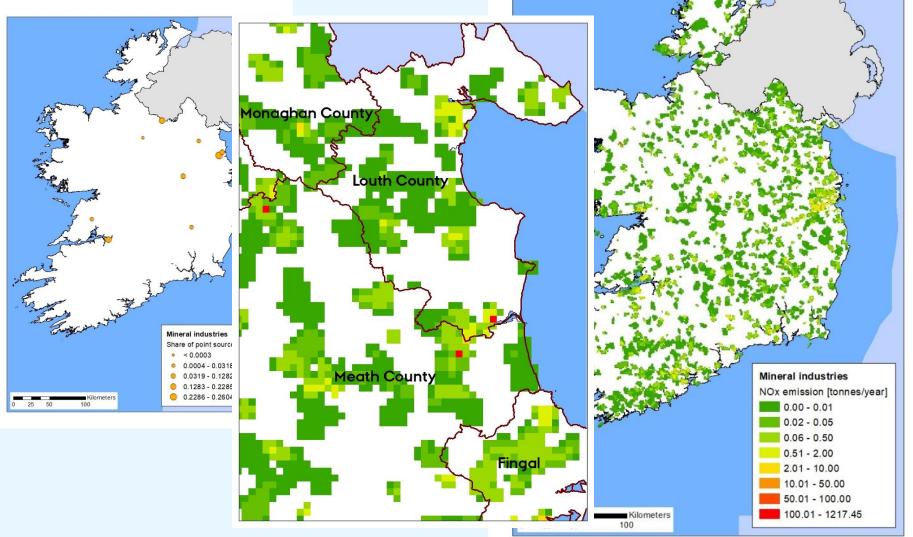

DEPARTMENT OF ENVIRONMENTAL SCIENCE




Ole-Kenneth Nielsen

19-21 June 2018

Data integration

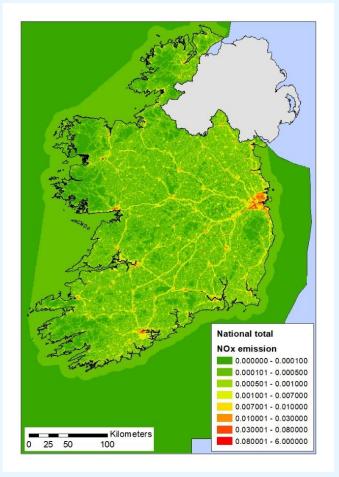

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUS UNIVERSITY

Ole-Kenneth Nielsen

19-21 June 2018

Data integration


19-21 June 2018

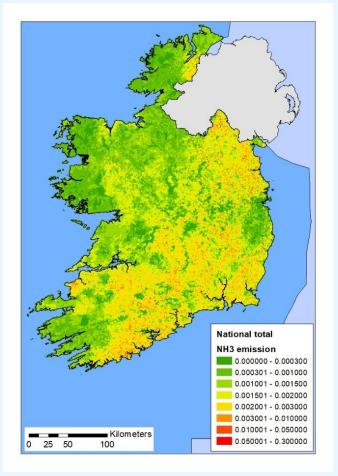
Results

- > Spatial emissions on a resolution of 1 km x 1 km
- > National total or sector level
- > Identification of emission hotspots
- > Gridded emissions for reporting to the Convention on Long-Range Transboundary Air Pollution

DEPARTMENT OF ENVIRONMENTAL SCIENCE

Results

 Main sources of NOx emissions are road transport and large combustion plants


Ole-Kenneth Nielsen

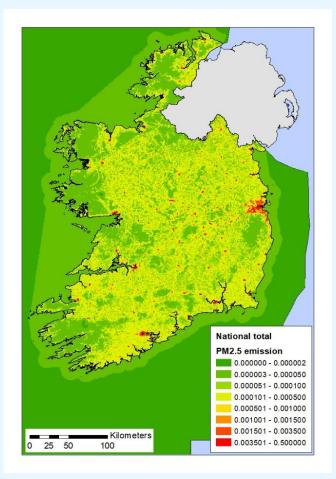
Data is available for downloaded on the project webpage www.MapElre.dk

19-21 June 2018

Results

Main sources of NH3 emissions are manure management and agricultural soils

Ole-Kenneth Nielsen


Data is available for downloaded on the project webpage <u>www.MapElre.dk</u>

>

19-21 June 2018

Results

Main sources of PM2.5 emissions are small combustion plants using coal, wood or peat

Ole-Kenneth Nielsen

Data is available for downloaded on the project webpage www.MapElre.dk

>

19-21 June 2018

19

Conclusions

- > Detailed spatial emission inventories on a resolution of 1 km
 - x 1 km have ben developed for all major pollutants
- > Detailed sectorial breakdown enables detailed GeoKeys
- > Identification of emission hotspots
- Solid foundation to further assess the human exposure and the deposition of harmful substances to vulnerable nature
- Methodology can be used as an example for others embarking on developing a detailed spatial emission inventory
- Still room for improving the GeoKeys and development of time-series to capture changes in spatial patterns
- Gridded emissions for reporting to the Convention on Long-

19-21 June 2018

> Questions?

> Thank you for your attention