National mapping of GHG and non-GHG emissions sources

Stakeholder workshop

Ole-Kenneth Nielsen, Marlene Plejdrup, Henrik Bruun, Jesper Christensen & Steen Gyldenkærne November 28, 2018 Dublin

Acknowledgements

- The Irish EPA for funding of the project as part of the Climate Research Call 2015 – Air Science
- > The Irish emission inventory team for sharing expert knowledge on the Irish emission inventory and national circumstances
- > The Steering Committee for valuable comments and advice regarding methodology and data availability
- Stakeholders and data providers for highly appreciated discussions, cooperation and sharing of data
 - SEAI, CSO, Irish rail, National Transport Authority / Transport for Ireland / Transport Infrastructure Ireland, University College Dublin (David Kelleghan)

Introduction to the project

- > This project is to map emissions for all the pollutants under the scope of the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the Framework Convention on Climate Change (UNFCCC)
- > The goal was to develop a spatial and temporal model that is linked to the Irish emission inventory, using the best available spatial and temporal datasets for specific emission categories
- > More information is available at the project website

www.MapElre.dk

Presentation of Aarhus University

- Aarhus University (AU) was founded in 1928 and today it has several world class research fields
- > Key figures 2017
 - > Staff: 7825 full-time equivalents
 - > Students: 33,120
 - > Bachelor's degree graduates: 4368
 - > Master's degree graduates: 5917
 - > Approved PhD dissertations: 452
 - > Turnover: 876 million EUR
- The research, teaching and advisory activities related to natural science and technology is based in the Faculty of Science and Technology (ST)

Presentation of Aarhus University

AARHUS UNIVERSITY **ARTS**

BUSINESS AND SOCIAL SCIENCES

HEALTH

SCIENCE AND TECHNOLOGY

ENVS

- > Staff of 115 full-time equivalents
- > Work areas:
 - Atmospheric monitoring, processes and modelling
 - > Toxicology and microbiology
 - > Environmental social science
 - Emission modelling and environmental geography

Agroecology

Bioscience

Computer science

Physics and astronomy

Food Science

Geoscience

Animal science

Engineering

Chemistry

Mathematics

Environmental science (ENVS)

Molecular biology and genetics

Department of Environmental Science

- > Responsible for the national emission inventories and the mapping of emissions
- > Responsible for the monitoring of air quality
- > Modelling of air pollution at regional, local and street scale
- > Responsible for providing air pollution forecasts

Organisation of the project

> WP1

- > Literature review
- > Specifications of the spatial model
- > Specifications of the temporal model

> WP2

- Identification of available spatial data
- > Review of the spatial data sets
- > Selection of the spatial data

> WP3

- > Design of the spatial model
- > Building the spatial distribution model
- Consistency with the national emission inventory

> WP4

- > Design of the temporal model
- Integration with the spatial distribution model
- Building the temporal distribution mode
- > WP5 Project management and communication

Organisation of the project

> WP6

- > Case study
- > Bottom-up inventory for Dublin
- > Improved input to air quality models (100 m x 100 m)
- > FAIRMODE
- > Comparison with top-down models using the Delta tool
- Implementation in the EC map viewer together with top-down models and case studies for other European cities and regions

> WP7

- > Updating of the spatial model
 - > 2016 census
 - > 2000 agricultural census
 - > 2011 railway data
 - > Time-series for GeoKeys
 - > Point sources
 - > Aviation
 - > Railways
 - > Population
 - > Agriculture
 - > Waste incineration
 - > Composting

Objectives of the workshop

- > To inform relevant stakeholders about the project results
- > To present the spatial model and spatial emission maps
- To present the spatial model and spatial emission maps for the Dublin case study
- To present the temporal model and temporal emission animations
- To guide stakeholders to the publicly available data and highlight future applications of the research