QMath14: Mathematical Results in Quantum Physics

Aarhus University, 12–16 August 2019

Abstract

Spectral Theory

Yulia Meshkova (St. Petersburg State University)

On homogenization of periodic hyperbolic systems

The talk is devoted to homogenization of periodic differential operators. Let $B_{\varepsilon} = B_{\varepsilon}^* > 0$ be a second order matrix strongly elliptic differential operator acting in $L_2(\mathbb{R}^d; \mathbb{C}^n)$. The coefficients of the operator B_{ε} depend on \mathbf{x}/ε , $0 < \varepsilon \leq 1$. Consider the hyperbolic system

$$\partial_t^2 \mathbf{u}_{\varepsilon}(\mathbf{x},t) = -B_{\varepsilon} \mathbf{u}_{\varepsilon}(\mathbf{x},t) + \mathbf{F}(\mathbf{x},t), \quad \mathbf{u}_{\varepsilon}(\mathbf{x},0) = 0, \quad (\partial_t \mathbf{u}_{\varepsilon})(\mathbf{x},0) = \boldsymbol{\psi}(\mathbf{x}),$$

where $\psi \in L_2(\mathbb{R}^d; \mathbb{C}^n)$ and $\mathbf{F} \in L_1((0, T); L_2(\mathbb{R}^d; \mathbb{C}^n))$ for some $0 < T \leq \infty$. Then

$$\mathbf{u}_{\varepsilon}(\cdot,t) = B_{\varepsilon}^{-1/2}\sin(tB_{\varepsilon}^{1/2})\boldsymbol{\psi} + \int_{0}^{t} B_{\varepsilon}^{-1/2}\sin((t-\tilde{t})B_{\varepsilon}^{1/2})\mathbf{F}(\cdot,\tilde{t})\,d\tilde{t}.$$

We are interested in the behaviour of the solution $\mathbf{u}_{\varepsilon}(\cdot, t)$ in the small period limit $\varepsilon \to 0$. It turns out that, for sufficiently smooth ψ and **F**, the error estimates in approximations for the solution \mathbf{u}_{ε} depend on suitable norms of ψ and **F** explicitly. In other words, we can approximate the operator $B_{\varepsilon}^{-1/2} \sin(t B_{\varepsilon}^{1/2})$ in a uniform operator topology:

$$||B_{\varepsilon}^{-1/2}\sin(tB_{\varepsilon}^{1/2}) - (B^{0})^{-1/2}\sin(t(B^{0})^{1/2})||_{H^{1}(\mathbb{R}^{d};\mathbb{C}^{n})\to L_{2}(\mathbb{R}^{d};\mathbb{C}^{n})} \leq C\varepsilon|t|,$$
(1)

$$||B_{\varepsilon}^{-1/2}\sin(tB_{\varepsilon}^{1/2}) - (B^{0})^{-1/2}\sin(t(B^{0})^{1/2}) - \varepsilon K_{1}(\varepsilon;t)||_{H^{2}(\mathbb{R}^{d};\mathbb{C}^{n})\to H^{1}(\mathbb{R}^{d};\mathbb{C}^{n})}$$

$$\leq C\varepsilon(1+|t|),$$
(2)

$$\begin{aligned} \|B_{\varepsilon}^{-1/2}\sin(tB_{\varepsilon}^{1/2}) - (B^{0})^{-1/2}\sin(t(B^{0})^{1/2}) - \varepsilon K_{2}(\varepsilon;t)\|_{H^{3}(\mathbb{R}^{d};\mathbb{C}^{n}) \to L_{2}(\mathbb{R}^{d};\mathbb{C}^{n})} \\ &\leq C\varepsilon^{2}(1+t^{2}). \end{aligned}$$
(3)

Here B^0 is the so-called effective operator with constant coefficients, $K_1(\varepsilon;t)$ and $K_2(\varepsilon;t)$ are the correctors. The correctors contain rapidly oscillating factors and so depend on ε .

We derive estimates (1) and (2) from the corresponding approximations for the resolvent B_{ε}^{-1} , obtained by T. A. Suslina (2010) with the help of the spectral

http://conferences.au.dk/qmath14/

theory approach to homogenization problems. Our method is a modification of the classical proof of the Trotter-Kato theorem. The analogue of estimate (3) is also known (Suslina, 2014). But the author have no idea how to modify the Trotter-Kato theorem for this case. So, to prove estimate (3), we directly apply the spectral theory approach in a version developed by M. Sh. Birman and T. A. Suslina. The technique is based on the unitary scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.