CLASSICAL MECHANICS- SYMPLECTIC GEOMETRY

The phase space M of classical mechanics (q, p) can be understood as a symplectic 2N-dimensional manifold (M, ω) endowed with a closed, non-degenerate 2-form

$$\omega = \sum_{a=1}^N dp_a \wedge dq^a$$
.

On *M* one can define a smooth real-valued function $H: M \to \mathbb{R}$, known as the Hamiltonian or the energy function. The Hamiltonian induces a special vector field on the symplectic manifold $X_H : M \to TM$, known as the Hamiltonian vector field

$$dH(Y) = \omega(Y, X_H),$$

for any Y in $\chi(M)$.

LIOUVILLE'S THEOREM

The Hamiltonian vector field *H* induces a *Hamiltonian flow* $\varphi_t : \mathbb{R} \times M \to M$ on the manifold. The parameter of this one-parameter family of transformations of the manifold is commonly called the time. The Liouville's theorem states that the Hamiltonian flow preserves the volume form on the phase space:

$$\int_{\varphi_t(\Omega)} \omega^N = \int_{\Omega} \omega^N$$

for any precompact domain $\Omega \in M$ (being $\omega^N = p_1 \wedge q^1 \wedge \cdots \wedge p_N \wedge q^N$).

POINCARÉ RECURRENCE THEOREM

If *M* is compact, (M, ω^N) is a finite measure space, and then $\varphi_t : M \to M$ is a measure-preserving transformation. Hence, for any Ω with $\int_{\Omega} \omega^N \neq 0$, the set of points x of Ω such that $\varphi_t^k(x) \notin \Omega$ for all k > 0 has zero measure.

GRAPHICALLY

Images from Arnold's book "Mathematical methods of classical mechanics"

Liouville \implies Poincaré

Since the Hamiltonian flow preserves the volume form, then for any domain, recurrence appears.

BUNDLE

1. $\rho = \rho^{\dagger}$. 2. $\rho \ge 0$. 3. $tr(\rho) = 1$.

UHLMANN'S PRINCIPAL FIBRE BUNDLE

Modified picture from Roger Penrose's book "The road to reality"

A Hamiltonian operator *H* induces a vector field *h* in the principal space $h: \mathbb{S} \to T\mathbb{S}$ given by

And a Riemannian metric g_H on T_W S given by

What a metric can do for you*

Geometric approach to Quantum Poincaré recurrence

Vicent Gimeno José Sotoca

Department of Mathematics. Department of Languages and Computer Systems

Universitat Jaume I -Castelló

QUANTUM MIXED STATES - PRINCIPAL FIBRE

A quantum mixed state can be described by a density matrix. A density matrix is a complex matrix ρ that satisfies the following properties:

The set of strictly positive (or faithful) density matrices

$$\mathfrak{P}^+ = \{
ho \in \mathfrak{P} \, | \,
ho > 0 \}$$
 ,

is the base manifold of the Uhlman's principal fibre bundle $S(\mathcal{P}^+, U(n), \pi)$, being

 $\mathcal{S} := \left\{ W \in \operatorname{GL}(n, \mathbb{C}) ; \operatorname{tr}(WW^{\dagger}) = 1 \right\},.$

the principal space, the structure group, the unitary group U(n) of dimension n, and the projection to the base $\pi: S \to \mathcal{P}^+$ given by

 $\pi(W) = W W^{\dagger}$.

HAMILTONIAN VECTOR FIELD AND DYNAMIC

h(W) := -iHW.

DYNAMIC RIEMANNIAN METRIC

$$g_H(X,Y) := \frac{1}{2} \operatorname{tr}(X^{\dagger} H^{-2} Y + Y^{\dagger} H^{-2} X).$$

QUANTUM MECHANICS - RIEMANNIAN GEOMETRY

THEOREM (MAIN THEOREM)

We can state and prove that:

- 1. *h* is a Killing vector field of (S, g_H) .
- *Neumann equation*

vector field \mathcal{A} in (\mathcal{S}, g_H) given by

COROLLARY - LIOUVILLE TYPE THEOREM

Since *h* is a Killing vector field, its integral flow preserves the Riemannian volume

QUANTUM POINCARÉ RECURRENCE THEOREM

From the Liouville principle we can deduce in analogous way to the classical one, the Poincaré recurrence theorem for quantum mixed states.

MORE INFORMATION

2. The integral curves $\gamma : I \subset \mathbb{R} \to S$ of h are geodesics of (S, g_H) .

3. The projection on the base manifold \mathcal{P}^+ of the geodesic γ satisfies the von

$$\frac{d}{dt}\pi\circ\gamma=-i\left[H,\pi\circ\gamma\right].$$

Moreover, every conserved observable ($A = A^{\dagger}$, [H, A] = 0) induces a Killing

$$\mathcal{A}(W)=iAW.$$

Physical symmetries \implies geometric symmetries.

arXiv:1302.1333