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Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Let G be (connected) split reductive group over a field
(i.e. over C, G = KC, with K compact Lie group)

e.g. G =semi-simple, GL(n,C), (C∗)n,Spinc
C, . . .

Question

What are ‘good’ compactifications G of G?

Here ‘good’ should mean
G ×G-equivariant
smooth, with all orbit closures smooth
boundary G \G is a smooth normal crossing divisor
nice enumeration of orbits

Johan Martens Group compactifications & symplectic cutting 2 of 22



Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Let G be (connected) split reductive group over a field
(i.e. over C, G = KC, with K compact Lie group)

e.g. G =semi-simple, GL(n,C), (C∗)n,Spinc
C, . . .

Question

What are ‘good’ compactifications G of G?

Here ‘good’ should mean
G ×G-equivariant
smooth, with all orbit closures smooth
boundary G \G is a smooth normal crossing divisor
nice enumeration of orbits

Johan Martens Group compactifications & symplectic cutting 2 of 22



Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Ideally want some conceptual
understanding of boundary G \G

modular compactification?
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Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Toric varieties & fans

Toric varieties T are normal T -equivariant varieties with open
dense orbit

Determined by fans: collection of strongly convex, rational
cones in ΛT ⊗Z Q

every cone simplicial⇒
at worst finite quotient
singularities
non-minimal element on
ray⇒ extra
orbifold-structure
fan complete⇒ T
compact
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Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Wonderful compactfication of adjoint groups

G adjoint, i.e. ZG = {1}
e.g. PGL(n), SO(2n + 1,C), E8, F4, G2

λ regular dominant weight
highest weight representation Vλ

have

G End(Vλ)

P (End(Vλ))
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Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Wonderful compactification

Definition (De Concini - Procesi)

The wonderful compactification G
w

of an adjoint group is the
closure in P (End(Vλ))

Independent of choice of λ

TG maximal torus in G, take closure in G
w

⇒ get toric variety TG

Fan of TG = Weyl chambers + ΛG

(ΛG= co-weight lattice since G is adjoint)

Johan Martens Group compactifications & symplectic cutting 6 of 22



Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

Wonderful compactification

Definition (De Concini - Procesi)

The wonderful compactification G
w

of an adjoint group is the
closure in P (End(Vλ))

Independent of choice of λ

TG maximal torus in G, take closure in G
w

⇒ get toric variety TG

Fan of TG = Weyl chambers + ΛG

(ΛG= co-weight lattice since G is adjoint)

Johan Martens Group compactifications & symplectic cutting 6 of 22



Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

e.g. PGL(3):

$∨1

$∨2

Smooth since $∨i generate co-weight lattice!
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Main Question
Modular compactifications

Symplectic cutting

Reductive groups
Review: Toric varieties
Review: Wonderful compactifications of adjoint groups

e.g. SL(3,C)

Corresponding toric variety no longer smooth!
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Moduli Problem

Moduli problem:

Gm-equivariant G-principal bundles
on chains of projective lines

Framed at north- and south-poles

Lenght of chain is arbitrary finite, can
vary in families

Problem:
Too many objects: stack is not
separated nor of finite type

Cure this by imposing a stability
condition

s

n
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Which bundles are stable?

Theorem (Birkhoff-Grothendieck-Harder)

Every G-principal bundle on P1 reduces to the maximal torus
and up to isomorphims is entirely determined by a co-character

Λ 3 ρ : Gm → G

unique up to WG-action

Take two charts given by stereographic projection from s and n,
use ρ as transition function
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Every Gm- equivariant G-principal bundle on P1 is determined
by action of Gm on fibers over n and s,

s ρs

n ρn

given by co-characters ρn and ρs, unique up to WG.

Underlying non-equivariant bundle determined by ρn − ρs

Theorem (M.-Thaddeus)
Every Gm-equivariant G-principal bundle on a chain-of-lines of
length n reduces to the maximal torus TG and is given up to
isomorphism by an element of Λn+1/WG
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Σ-stable bundles

Choose a (stacky) fan Σ for TG, satisfying:

Σ is simplicial
Σ is Weyl-invariant
Σ refines the Weyl-chambers

Choose ordering of integral elements

ρ1, . . . , ρj

on rays in positive Weyl chamber
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Definition
A bundle on chain of lines is Σ-stable
if

co-chars on on extremal n and s
are 0
co-chars on nodes are
ρi1 , . . . , ρij :
in order and all rays of single
cone of Σ

s

0

n

0

...

ρi1

ρi2

ρij

Johan Martens Group compactifications & symplectic cutting 13 of 22



Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Definition
A bundle on chain of lines is Σ-stable
if

co-chars on on extremal n and s
are 0

co-chars on nodes are
ρi1 , . . . , ρij :
in order and all rays of single
cone of Σ

s 0

n 0

...

ρi1

ρi2

ρij

Johan Martens Group compactifications & symplectic cutting 13 of 22



Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Definition
A bundle on chain of lines is Σ-stable
if

co-chars on on extremal n and s
are 0
co-chars on nodes are
ρi1 , . . . , ρij :
in order and all rays of single
cone of Σ

s 0

n 0

...

ρi1

ρi2

ρij

Johan Martens Group compactifications & symplectic cutting 13 of 22



Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

Example

e.g. PGL(3)

ρ1
ρ2

ρ3wρ1

Σ-stable:

s 0

n 0

, s 0

n 0

ρ1

, s 0

ρ3

ρ2

n 0

,. . .

non-Σ-stable:

s 0

ρ3

ρ1

n 0

, s 0

ρ2

wρ1

n 0

, s 0

ρ1

ρ2

n 0

, s 0
ρ3

ρ2

n
ρ1

0
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Main Question
Modular compactifications

Symplectic cutting

Moduli problem
Stability

G semi-simple:

Weyl chambers strongly convex, no refinement necessary
⇒ have minimal (wonderful) compactification

G non-semi-simple reductive:

Weyl chamber not strongly convex,
need refinement⇒ no unique minimal compactification
G = T torus

Weyl-chamber everything⇒ any fan refines Weyl-chamber
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

Σ stacky fan, rays generate Λ over Q
have

1→ L→ (Gm)N → TC → 1

Theorem (Cox)

MT (Σ) ∼= (AN)0/L

If rays don’t generate Λ, still have

MT (Σ) ∼=
(
(AN)0 × TC

)
/(Gm)N

Want to generalize this to arbitrary groups
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

We use Vinberg monoid (Vinberg, Rittatore, Alexeev-Brion)
Given G reductive, have

SG

��

AΠ

affine reductive semigroup, units: (G × T )/ZG ⊂ SG

AΠ is smooth affine toric variety,
fan=pos Weyl chamber in co-weight lattice

Property

SG//T ∼= Gad
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

Using the data of the fan, can now base-change Vinberg
monoid:

AN ×AΠ SG //

��

SG

��

AN // AΠ

Theorem (M.-Thaddeus)

M(Σ) ∼=
(
AN ×AΠ Sg

)0
/(Gm)N

global quotient by torus, if Σ dual to P GIT quotient or
symplectic reduction
IfMTG (W Σ) semi-projective, so isMG(Σ)
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

If Σ is dual to a polytope P, thenM(Σ) is projective
⇒ can think of it as symplectic orbifold

Related to symplectic cut:
T compact, T � M, µ : M → t∗, P polytope ⊂ t∗

Abelian symplectic cutting (Lerman)

MP := µ−1(P)/ ∼ µ(MP) = µ(M) ∩ P

X (P) toric manifold determined by P
Can re-interpret Delzant construction as symplectic cut of T ∗T :

Master-cut

X (P) = T ∗TP , MP =
(
M × T ∗TP

)
//T
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

What about non-abelian K ? Many competing constructions

P simplicial ⊂ t∗+, perpendicular to walls of Weyl-chambers

Φ : M → k∗ → t∗+

Definition (Woodward)

MP = Φ−1(P)/ ∼

Problem for geometric quantisation:

Property (Woodward)
Even if M is Kahler, MP need not be!

How to understand this as a symplectic reduction / global
quotient?
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

Apply this cut to K � KC ∼= T ∗K . If all normals in t+

Theorem

M(Σ) ∼= (T ∗K )cut

Can use this to construct all other cuts as global (Kahler!)
quotients:

Non-abelian master cut
For general M Hamiltonian K -space have

MP
∼= (M × (T ∗K )P) //K .
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Main Question
Modular compactifications

Symplectic cutting

Cox-Vinberg construction
Vinberg monoid
Symplectic cutting

For non-compact M with proper moment maps, Weitsman
(2001) and Paradan (2009) use cutting to construct
quantizations

Formal geometric quantization

Q−∞K (M) = lim
n→∞

QK (MnP)

Our work gives local surgery description of this construction
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