Compactifications of reductive groups, non-abelian symplectic cutting and geometric quantisation of non-compact spaces

Johan Martens

QGM, Aarhus University

joint work with Michael Thaddeus (Columbia University)

arXiv:1105.4830, arXiv:1210.8161, Transform. Groups Dec 2012

EMS-DMF meeting, Århus, April 2013

< 回 > < 回 > < 回 > .

 Main Question
 Reductive groups

 Modular compactifications
 Review: Toric varieties

 Symplectic cutting
 Review: Wonderful compactifications of adjoint groups

Let *G* be (connected) split reductive group over a field (i.e. over \mathbb{C} , $G = K_{\mathbb{C}}$, with *K* compact Lie group)

e.g. G =semi-simple, $GL(n, \mathbb{C}), (\mathbb{C}^*)^n, \operatorname{Spin}_{\mathbb{C}}^c, \ldots$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

 Main Question
 Reductive groups

 Modular compactifications
 Review: Toric varieties

 Symplectic cutting
 Review: Wonderful compactifications of adjoint groups

Let *G* be (connected) split reductive group over a field (i.e. over \mathbb{C} , $G = K_{\mathbb{C}}$, with *K* compact Lie group)

e.g. G =semi-simple, $GL(n, \mathbb{C}), (\mathbb{C}^*)^n, Spin_{\mathbb{C}}^c, \dots$

Question

What are 'good' compactifications \overline{G} of G?

Here 'good' should mean

- G × G-equivariant
- smooth, with all orbit closures smooth
- boundary $\overline{G} \setminus G$ is a smooth normal crossing divisor
- nice enumeration of orbits

くロト (過) (目) (日)

Reductive groups Review: Toric varieties Review: Wonderful compactifications of adjoint groups

Ideally want some conceptual understanding of boundary $\overline{G} \setminus G$

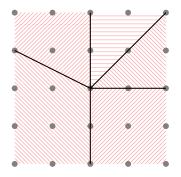
modular compactification?

Reductive groups Review: Toric varieties Review: Wonderful compactifications of adjoint groups

Toric varieties & fans

Toric varieties \overline{T} are normal *T*-equivariant varieties with open dense orbit

Determined by fans: collection of strongly convex, rational cones in $\Lambda_{\mathcal{T}}\otimes_{\mathbb{Z}}\mathbb{Q}$



- every cone simplicial ⇒ at worst finite quotient singularities
- non-minimal element on ray ⇒ extra orbifold-structure

イロト イポト イヨト イヨト

• fan complete $\Rightarrow \overline{T}$ compact
 Main Question
 Reductive gr

 Modular compactifications
 Review: Tori

 Symplectic cutting
 Review: Work

Reductive groups Review: Toric varieties Review: Wonderful compactifications of adjoint groups

Wonderful compactification of adjoint groups

G adjoint, i.e. $ZG = \{1\}$ e.g. PGL(n), $SO(2n + 1, \mathbb{C})$, E_8 , F_4 , G_2

ヘロト ヘ戸ト ヘヨト ヘヨト

 Main Question
 Reductive groups

 Modular compactifications
 Review: Toric varieties

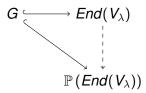
 Symplectic cutting
 Review: Wonderful compactifications of adjoint groups

Wonderful compactification of adjoint groups

G adjoint, i.e. $ZG = \{1\}$ e.g. PGL(n), $SO(2n + 1, \mathbb{C})$, E_8 , F_4 , G_2

 λ regular dominant weight highest weight representation V_{λ}

have



ヘロト ヘ戸ト ヘヨト ヘヨト

Reductive groups Review: Toric varieties Review: Wonderful compactifications of adjoint groups

Wonderful compactification

Definition (De Concini - Procesi)

The wonderful compactification \overline{G}^{w} of an adjoint group is the closure in $\mathbb{P}(\text{End}(V_{\lambda}))$

Independent of choice of λ

イロト イポト イヨト イヨト

Reductive groups Review: Toric varieties Review: Wonderful compactifications of adjoint groups

Wonderful compactification

Definition (De Concini - Procesi)

The wonderful compactification \overline{G}^{w} of an adjoint group is the closure in $\mathbb{P}(\text{End}(V_{\lambda}))$

Independent of choice of λ

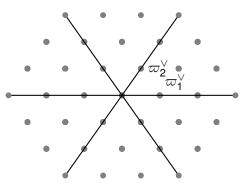
 T_G maximal torus in G, take closure in \overline{G}^w \Rightarrow get toric variety $\overline{T_G}$

Fan of $\overline{T_G}$ = Weyl chambers + Λ_G

(Λ_G = co-weight lattice since *G* is adjoint)

くロト (過) (目) (日)

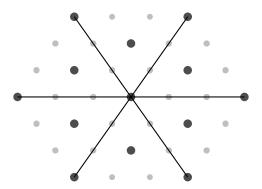
Main Question	Reductive groups
Modular compactifications	Review: Toric varieties
Symplectic cutting	Review: Wonderful compactifications of adjoint groups



Smooth since ϖ_i^{\vee} generate co-weight lattice!

< E > E

Main Question	Reductive groups
Modular compactifications	Review: Toric varieties
Symplectic cutting	Review: Wonderful compactifications of adjoint groups



Corresponding toric variety no longer smooth!

ヨトーヨー

Moduli problem Stability

Moduli Problem

Moduli problem:

Johan Martens Group compactifications & symplectic cutting 9 of 22

・ロト ・ ア・ ・ ヨト ・ ヨト

æ

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

프 🖌 🛪 프 🕨

ъ

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

Framed at north- and south-poles

n

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

Framed at north- and south-poles

Lenght of chain is arbitrary finite, can vary in families

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

Framed at north- and south-poles

Lenght of chain is arbitrary finite, can vary in families

Problem:

Too many objects: stack is not separated nor of finite type

Moduli problem Stability

Moduli Problem

Moduli problem:

 \mathbb{G}_m -equivariant *G*-principal bundles on chains of projective lines

Framed at north- and south-poles

Lenght of chain is arbitrary finite, can vary in families

Problem:

Too many objects: stack is not separated nor of finite type

Cure this by imposing a stability condition

Moduli problem Stability

Which bundles are stable?

Theorem (Birkhoff-Grothendieck-Harder)

Every *G*-principal bundle on \mathbb{P}^1 reduces to the maximal torus and up to isomorphims is entirely determined by a co-character

$$\Lambda \ni \rho : \mathbb{G}_m \to \boldsymbol{G}$$

unique up to W_G -action

(1) マン・ション・

Moduli problem Stability

Which bundles are stable?

Theorem (Birkhoff-Grothendieck-Harder)

Every *G*-principal bundle on \mathbb{P}^1 reduces to the maximal torus and up to isomorphims is entirely determined by a co-character

$$\Lambda \ni \rho : \mathbb{G}_m \to \boldsymbol{G}$$

unique up to W_G -action

Take two charts given by stereographic projection from *s* and *n*, use ρ as transition function

ヘロト 人間 ト ヘヨト ヘヨト

Stability

Every \mathbb{G}_m - equivariant *G*-principal bundle on \mathbb{P}^1 is determined by action of \mathbb{G}_m on fibers over *n* and *s*,

given by co-characters ρ_n and ρ_s , unique up to W_G .

イロン イボン イヨン イヨン

э.

Stability

Every \mathbb{G}_m - equivariant *G*-principal bundle on \mathbb{P}^1 is determined by action of \mathbb{G}_m on fibers over *n* and *s*,

given by co-characters ρ_n and ρ_s , unique up to W_G .

Underlying non-equivariant bundle determined by $\rho_n - \rho_s$

ヘロト 人間 ト ヘヨト ヘヨト

э.

Every \mathbb{G}_m - equivariant *G*-principal bundle on \mathbb{P}^1 is determined by action of \mathbb{G}_m on fibers over *n* and *s*,

given by co-characters ρ_n and ρ_s , unique up to W_G .

Underlying non-equivariant bundle determined by $\rho_n - \rho_s$

Theorem (M.-Thaddeus)

Every \mathbb{G}_m -equivariant *G*-principal bundle on a chain-of-lines of length *n* reduces to the maximal torus T_G and is given up to isomorphism by an element of Λ^{n+1}/W_G

くロト (過) (目) (日)

Moduli problem Stability

Σ -stable bundles

Choose a (stacky) fan Σ for T_G , satisfying:

- Σ is simplicial
- Σ is Weyl-invariant
- Σ refines the Weyl-chambers

くロト (過) (目) (日)

Moduli problem Stability

Σ -stable bundles

Choose a (stacky) fan Σ for T_G , satisfying:

- Σ is simplicial
- Σ is Weyl-invariant
- Σ refines the Weyl-chambers

Choose ordering of integral elements

 ρ_1,\ldots,ρ_j

on rays in positive Weyl chamber

ヘロト 人間 ト ヘヨト ヘヨト

æ

Moduli problem Stability

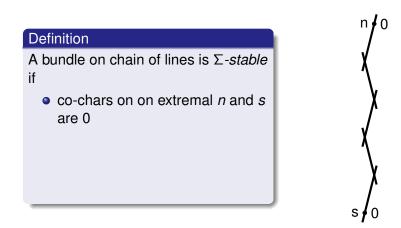
Definition A bundle on chain of lines is Σ -stable if

n

s

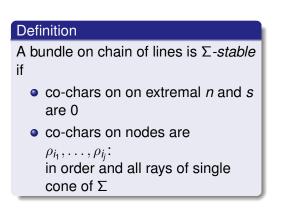
イロト 不得 とくほ とくほ とう

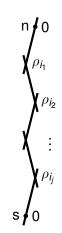
Moduli problem Stability



イロト 不得 とくほ とくほ とう

Moduli problem Stability

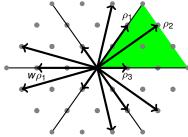




イロト イポト イヨト イヨト

Moduli problem Stability

Example

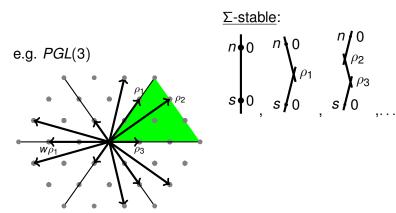


æ

★ Ξ → ★ Ξ → ...

Moduli problem Stability

Example

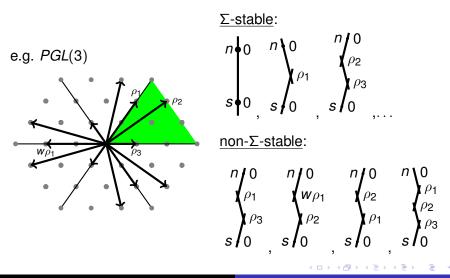


프 저 제 프 저 ...

æ

Moduli problem Stability

Example



Moduli problem Stability

• G semi-simple:

Weyl chambers strongly convex, no refinement necessary \Rightarrow have minimal (wonderful) compactification

ヘロト ヘ戸ト ヘヨト ヘヨト

Moduli problem Stability

• G semi-simple:

Weyl chambers strongly convex, no refinement necessary \Rightarrow have minimal (wonderful) compactification

• *G* non-semi-simple reductive:

Weyl chamber not strongly convex,

need refinement \Rightarrow no unique minimal compactification

< 🗇 🕨

★ 문 ► ★ 문 ►

Moduli problem Stability

• *G* semi-simple:

Weyl chambers strongly convex, no refinement necessary

- \Rightarrow have minimal (wonderful) compactification
- *G* non-semi-simple reductive:

Weyl chamber not strongly convex,

need refinement \Rightarrow no unique minimal compactification

• G = T torus

Weyl-chamber everything \Rightarrow any fan refines Weyl-chamber

-

Main Question Modular compactifications Symplectic cutting Symplectic cutting

Σ stacky fan, rays generate Λ over $\mathbb Q$ have

$$1 \to L \to (\mathbb{G}_m)^N \to T_\mathbb{C} \to 1$$

Theorem (Cox)

$$\mathcal{M}_T(\Sigma) \cong (\mathbb{A}^N)^0/L$$

If rays don't generate Λ, still have

$$\mathcal{M}_{T}(\Sigma) \cong \left((\mathbb{A}^{N})^{0} \times T_{\mathbb{C}} \right) / (\mathbb{G}_{m})^{N}$$

Want to generalize this to arbitrary groups

くロト (過) (目) (日)

ъ

 Main Question
 Cox-Vinberg constructio

 Modular compactifications
 Vinberg monoid

 Symplectic cutting
 Symplectic cutting

We use *Vinberg monoid* (Vinberg, Rittatore, Alexeev-Brion) Given *G* reductive, have

 S_G

Aп

affine reductive semigroup, units: $(G \times T)/ZG \subset S_G$

 \mathbb{A}_{Π} is smooth affine toric variety, fan=pos Weyl chamber in co-weight lattice

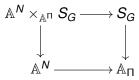
Property
$$S_G/\!\!/ T \cong \overline{G_{ad}}$$

イロト イポト イヨト イヨト

æ

Main Question Cox-Vinberg construction Modular compactifications Symplectic cutting Symplectic cutting

Using the data of the fan, can now base-change Vinberg monoid:



Theorem (M.-Thaddeus)

$$\mathcal{M}(\Sigma) \cong \left(\mathbb{A}^N imes_{\mathbb{A}^{\Pi}} S_g\right)^0 / (\mathbb{G}_m)^N$$

global quotient by torus, if Σ dual to *P* GIT quotient or symplectic reduction If $\mathcal{M}_{T_G}(W\Sigma)$ semi-projective, so is $\mathcal{M}_G(\Sigma)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Main Question Cox-Modular compactifications Vinb Symplectic cutting Sym

Cox-Vinberg construction Vinberg monoid Symplectic cutting

If Σ is dual to a polytope *P*, then $\mathcal{M}(\Sigma)$ is projective \Rightarrow can think of it as *symplectic orbifold*

イロト イポト イヨト イヨト

æ

Main Question Modular compactifications Symplectic cutting Symplectic cutting

If Σ is dual to a polytope *P*, then $\mathcal{M}(\Sigma)$ is projective \Rightarrow can think of it as *symplectic orbifold*

Related to symplectic cut: *T* compact, $T \circlearrowright M$, $\mu : M \to \mathfrak{t}^*$, *P* polytope $\subset \mathfrak{t}^*$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Main Question Cox-Vinberg constructio Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

If Σ is dual to a polytope *P*, then $\mathcal{M}(\Sigma)$ is projective \Rightarrow can think of it as *symplectic orbifold*

Related to symplectic cut: *T* compact, $T \circlearrowright M$, $\mu : M \to \mathfrak{t}^*$, *P* polytope $\subset \mathfrak{t}^*$

Abelian symplectic cutting (Lerman)

$$M_{\mathcal{P}} := \mu^{-1}(\mathcal{P})/\sim \qquad \mu(M_{\mathcal{P}}) = \mu(\mathcal{M}) \cap \mathcal{P}$$

X(P) toric manifold determined by PCan re-interpret Delzant construction as symplectic cut of T^*T :

Master-cut

$$X(P) = T^*T_P, \qquad M_P = (M \times T^*T_P) // T$$

イロン イボン イヨン イヨン

Main Question Cox-Vinberg constructi Modular compactifications Symplectic cutting Symplectic cutting

What about non-abelian K? Many competing constructions

イロト イポト イヨト イヨト

Main Question Cox-Vinberg construction Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

What about non-abelian K? Many competing constructions

P simplicial $\subset \mathfrak{t}_{+}^{*}$, perpendicular to walls of Weyl-chambers

$$\Phi: M \to \mathfrak{k}^* \to \mathfrak{t}^*_+$$

Definition (Woodward)

$$M_P = \Phi^{-1}(P) / \sim$$

イロン イボン イヨン イヨン

Main Question Cox-Vinberg construction Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

What about non-abelian K? Many competing constructions

P simplicial $\subset \mathfrak{t}_{+}^{*}$, perpendicular to walls of Weyl-chambers

$$\Phi: \boldsymbol{M} \to \mathfrak{k}^* \to \mathfrak{t}_+^*$$

Definition (Woodward)

$$M_P = \Phi^{-1}(P) / \sim$$

Problem for geometric quantisation:

Property (Woodward)

Even if M is Kahler, M_P need not be!

How to understand this as a symplectic reduction / global quotient?

ヘロト ヘアト ヘビト ヘビト

Main Question Cox-Vinberg const Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

Apply this cut to $K \odot K_{\mathbb{C}} \cong T^*K$. If all normals in \mathfrak{t}_+

Theorem

 $\mathcal{M}(\Sigma)\cong (\mathit{T^{*}K})_{cut}$

イロト 不得 とくほ とくほ とう

æ –

Main Question Cox-Vinberg constru Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

Apply this cut to $K \odot K_{\mathbb{C}} \cong T^*K$. If all normals in \mathfrak{t}_+

Theorem

 $\mathcal{M}(\Sigma)\cong (\mathit{T^{*}K})_{cut}$

Can use this to construct all other cuts as global (Kahler!) quotients:

Non-abelian master cut

For general M Hamiltonian K-space have

$$M_P \cong (M \times (T^*K)_P) /\!\!/ K.$$

Main Question Cox-Vinberg construction Modular compactifications Vinberg monoid Symplectic cutting Symplectic cutting

For non-compact M with proper moment maps, Weitsman (2001) and Paradan (2009) use cutting to construct quantizations

Formal geometric quantization

$$Q_{\mathcal{K}}^{-\infty}(M) = \lim_{n \to \infty} Q_{\mathcal{K}}(M_{nP})$$

Our work gives local surgery description of this construction

ヘロト ヘ戸ト ヘヨト ヘヨト

æ