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Overview

• Goal: Model the forward price dynamics in power markets

• Why?
• Price and hedge options and other derivatives
• Risk management (hedge production and price risk)

1. Some stylized facts of energy forward prices

2. Levy processes in Hilbert space
• Subordination of Wiener processes

3. Modelling the forward dynamics
• Adopting the Heath-Jarrow-Morton (HJM) dynamical

modelling from interest rate theory

4. Ambit fields and forward prices
• A direct HJM approach
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1. Forward markets
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Energy forward contracts

• Forward contract: a promise to deliver a commodity at a
specific future time in return of an agreed price

• Examples: coffee, gold, oil, orange juice, corn....
• or.... temperature, rain, electricity

• Electricity: future delivery of power over a period in time
• A given week, month, quarter or year

• The agreed price is called the forward price
• Denominated in Euro per MWh
• Forward contracts traded at EEX, NordPool, etc...
• Financial delivery!
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• Forward price at time t ≤ T1, for contract delivering over
[T1,T2], denoted by F (t,T1,T2)

• Connection to fixed-delivery forwards

F (t,T1,T2) =
1

T2 − T1

∫ T2

T1

f (t,T ) dT

• Musiela parametrization: x = T1 − t, y = T2 − T1

G (t, x , y) = F (t, t + x , t + x + y) , g(t, x) = f (t, t + x)

• Focus on modelling the dynamics of the forward curve

t 7→ g(t, x)
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Some stylized facts of power forwards

• Consider the logreturns from observed forward prices (at
NordPool)

ri (t) = ln
F (t,T1i ,T2i )

F (t − 1,T1i ,T2i )

• General findings are:

1. Distinct heavy tails across all segments
2. No significant skewness
3. Volatilities (stdev’s) are in general falling with time to delivery

x = T1 − t (Samuelson effect)
4. Significant correlation between different maturities x

(idiosyncratic risk)
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• Fitting NIG and normal to logreturns of forwards by maximum
likelihood
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• Expected logreturn (left) and volatility (right)
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• Plot of log-correlation as a function of years between delivery

• Correlation decreases in general with distance between
delivery

• ...but in a highly complex way
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Summary of empirical evidence

• Forward curve g(t, x) is a random field in time and space
• Or, a stochastic process with values in a function space

• Strong dependencies between maturity times x
• High degree of idiosyncratic risk in the market

• Non-Gaussian distributed log-returns
• Dynamics is not driven by Brownian motion
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2. Hilbert space-valued Lévy processes
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• Goal: construct a Hilbert-space valued Lévy process with
given characteristics

• For example, a normal inverse Gaussian (NIG) Lévy process in
Hilbert space

• X is a d-dimensional NIG random variable if

X
∣∣∣σ2 ∼ Nd(µ+ βσ2, σ2C )

• µ ∈ Rd , β ∈ R, C d × d covariance matrix,

• σ an inverse Gaussian random variable

• X defined by a mean-variance mixture model
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Lévy processes by subordination

• Define a NIG Lévy process L(t) with values in Hilbert space
by subordination

• In general: let
• H be a separable Hilbert space
• Θ a real-valued subordinator, that is, a Lévy process with

increasing paths
• W a drifted H-valued Brownian motion with covariance

operator Q and drift b
• Q is symmetric, positive definite, trace-class operator,

Cov(W )(f , g) = E [〈W (1)− b, f 〉〈W (1)− b, g〉] = 〈Qf , g〉

• Define
L(t) = W (Θ(t))
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• Let ψΘ be the cumulant (log-characteristic) function of Θ

• Cumulant of L becomes

ψL(z) = ψΘ

(
i〈z , b〉 − 1

2
〈Qz , z〉

)
, z ∈ H

• Let (a, 0, `) be characteristic triplet of Θ, then triplet of L is
(β, aQ, ν)

β = ab +

∫ ∞
0

E[1(|W (t)| ≤ 1)] `(dz)

ν(A) =

∫ ∞
0

PW (t)(A) `(dt) ,A ⊂ H ,Borel



Power forwards Levy processes Forward price dynamics Ambit fields

• Suppose L square-integrable Lévy process

• Define covariance operator

Cov(L)(f , g) = E [〈L(1), f 〉〈L(1), g〉] = 〈Qf , g〉

• Supposing mean-zero Lévy process
• Q symmetric, positive definite, trace-class operator

• If L is defined via subordination, covariance operator is

Q = E[Θ(1)]Q

• Supposing Θ(1) integrable
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• So, how to obtain L being NIG Lévy process?

• Choose Θ to be driftless inverse Gaussian Lévy process, with
Lévy measure

`(dz) =
γ

2πz3
e−δ

2z/21(z > 0) dz

• Define L(t) = W (Θ(t)), which we call a H-valued NIG Lévy
process with triplet (β, 0, ν),

Theorem
L is a H-valued NIG Lévy process if and only if TL(t) is a
Rn-valued NIG Lévy process for every linear operator T : H 7→ Rn.
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3. Forward price dynamics
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• Let H be a separable Hilbert space of real-valued continuous
functions on R+

• with δx , the evaluation map, being continuous
• x ∈ R+ is time-to-maturity
• H is, e.g. the space of all absolutely continuous functions with

derivative being square integrable with respect to an
exponentially increasing function (Filipovic 2001)

• Assume L is square-integrable zero-mean Lévy process
• Defined on a separable Hilbert space U, typically being a

function space as well (e.g. U = H)
• Triplet (β,Q, ν) and covariance operator Q
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• Define process X on H as the solution of

dX (t) = (AX (t) + a(t)) dt + σ(t) dL(t)

• A = d/dx , generator of the C0-semigroup of shift operators
on H

• a(·) H-valued process, σ(·) LHS(H,H)-valued process being
predictable

• LHS(H,H), space of Hilbert-Schmidt operators, H = Q1/2(U)

E
[∫ t

0
‖σ(s)Q1/2‖2

LHS(U,H) ds

]
<∞

• σ and a may be functions on the state again
• We will not assume that generality here
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• Mild solution, with S as shift operator

X (t) = S(t)X0 +

∫ t

0
S(t − s)a(s) ds +

∫ t

0
S(t − s)σ(s) dL(s)

• Define forward price g(t, x) by

g(t, x) = exp(δx(X (t)))

• By letting x = T − t, we reach the actual forward price
dynamics

f (t,T ) = g(t,T − t)
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• Assume X is modelled under ”risk-neutrality”, then f (·,T )
must be a martingale

• Yields conditions on a and σ!

• Introduce

â(t) =

∫ t

0
a(s)(T − s) ds , σ̂(t) =

∫ t

0
δ0S(T − s)σ(s) dL(s)

Theorem
The process t 7→ f (t,T ) for t ≤ T is a martingale if and only if

dâ(t) = −1

2
d [σ̂, σ̂]c(t)− {e∆σ̂(t) − 1−∆σ̂(t)}

• ∆σ̂(t) = σ̂(t)− σ̂(t−), [σ̂, σ̂]c continuous part of bracket
process of σ̂
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Market dynamics

• Forward model under risk neutral probability Q
• Esscher transform Q to ”market probability” P to get market

dynamics of F

• Let φ(θ) be the log-moment generating function (MGF) og L
• Recall characteristic triplet of L as (β,Q, ν)
• Assume L is exponentially integrable

φ(θ) = lnE[e(θ,L(1))U ]

= (β, θ)U +
1

2
(Qθ, θ)U

+

∫
U

e(θ,y)U − 1− (θ, y)U1|y |U≤1 ν(dy) , θ ∈ U
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• dP/dQ conditioned on Ft has density

Z (t) = exp ((θ, L(t))U − φ(θ) t)

• Lévy property of L preserved under Esscher transform

• Characteristic triplet under P is (βθ,Q, νθ)

βθ = β +

∫
|y |U≤1

y νθ(dy) , νθ(dy) = e(θ,y)U ν(dy)

• θ ∈ U is the market price of risk
• Esscher transform will shift the drift in X -dynamics, and
• and rescale (exponentially tilt) the jumps of L
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Example

• L = W , Wiener process in U

• Bracket process can be computed to be

[σ̂, σ̂]c(t) =

∫ t

0
‖δ0S(T − s)σ(s)Q1/2‖2

LHS (U,R) ds

• An example by Audet et al. (2004)

• Volatility specification
• σ multiplication operator: δxσ(t)u = ηe−αxu(x), u ∈ U
• η, α positive constants, α mean-reversion speed
• Volatility structure linked to an exponential

Ornstein-Uhlenbeck process for the spot
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• Spatial covariance structure of W
• Let Q be integral operator
• q(x , y) = exp(−κ|x − y |) integral kernel

• Recall correlation structure from empirical studies.....
• ...close to exponentially decaying
• Some seasonal variations: let η be seasonal

• Forward dynamics of Audet et al. (2004)

ln
g(t, x)

g(0, x)
= −1

2
η2

∫ t

0
e−2α(x+t−s) ds +

∫ t

0
ηe−α(x+t−s) dW (s, x)

• Or....
df (t,T )

f (t,T )
= ηe−α(T−t) dW (t,T − t)
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• Note: series representation of W
• Independent Gaussian processes, {en} basis of U

W (t) =
∞∑
n=1

〈W (t), en〉Uen

• May represent the dynamics in terms of Brownian factors
• Infinite factor model

• Recall the heavy tails in log-return data for NordPool forwards
• A Wiener specification W is not justified

• Should use an exponential NIG-Lévy dynamics instead
• Choose L to be NIG, constructed by subordinator
• Keep covariance operator
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Numerical examples with NIG-Levy field

• Simulation of forward field by numerically solving the
hyperbolic stochastic partial differential equation for X

• Euler discretization in time
• A finite-element method in ”space” x
• Conditions at ”inflow” boundary ”x =∞” and at t = 0

• Initial condition X (0, x) is ”today’s observed forward curve”
on log-scale

• Exponentially decaying curve
• Motivated from ”typical” market shapes

• Boundary condition at infinity equal to constant
• Stationary spot price dynamics yield a constant forward price

at ”infinite maturity”
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• L is supposed to be a NIG-Lévy process, which is defined as a
subordination

• Appeal to the series expansion of W , which is truncated in
the numerics

• Simulate a path of an inverse Gaussian Lévy process
• Change time of the finite set of independent Brownian motions
• Sum up these scaled by eigenvalues and basis function to get

the NIG-Lévy field approximation

• Parameters
• α = 0.2, mean-reversion
• κ = 2, correlation
• IG-parameters chosen by convenience (γ = 10, δ = 1)
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• Forward field, for x = 0, .., 40 days to maturity, and t daily
over 4 years. Implied spot process for x = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8
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• Can we recover the spot dynamics from the forward model?
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Implied spot price dynamics

• One can recover the spot dynamics as

g(t, 0) = exp(δ0(X (t)))

• X is driven by by NIG Lévy process in U
• ”Infinitely” many Lévy processes

• For L̃ is univariate NIG Lévy process, σ̃ stochastic process on
R, it holds

δ0

∫ t

0
σ(s) dL(s) =

∫ t

0
σ̃(s) dL̃(s)

• Spot can be represented as a dynamics in terms of a
univariate NIG Lévy process
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4. HJM modeling by ambit fields
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Forward dynamics by ambit fields

• A twist on the HJM approach
• by direct modelling rather than as the solution of some

dynamic equation
• Barndorff-Nielsen, B., Veraart (2010b)

• Simple arithmetic model in the risk-neutral setting

g(t, x) =

∫ t

−∞

∫ ∞
0

k(t − s, x , y)σ(s, y)L(dy , ds)

• L is a Lévy basis, k non-negative deterministic function,
k(u, x , y) = 0 for u < 0, stochastic volatility process σ
(typically independent of L and stationary)
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• L is a Lévy basis on Rd if

1. the law of L(A) is infinitely divisible for all bounded sets A
2. if A ∩ B = ∅, then L(A) and L(B) are independent
3. if A1,A2, . . . are disjoint bounded sets, then

L(∪∞i=1Ai ) =
∞∑
i=1

L(Ai ) , a.s

• Stochastic integration in time and space: use the
Walsh-definition (for square integrable Lévy bases)

• Natural adaptedness condition on σ
• square integrability on k(t − ·, x , ·)× σ with respect to

covariance operator of L

• Possible to relate ambit fields to Hilbert-space valued
processes
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Martingale condition

• No-arbitrage conditions: t 7→ f (t,T ) := g(t,Tt) must be a
martingale

Theorem
f (t,T ) is a martingale if and only if there exists k̃ such that

k(t − s,T − t, y) = k̃(s,T , y)

• Note, cancellation effect on t in 1st and 2nd argument
ensures martingale property
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• Example 1: exponential damping function (motivated by OU
spot models)

k(u, x , y) = exp (−α(u + x + y))

• Satisfies the martingale condition

k(t − s,T − t, y) = exp (−α(y + T − s)) =: k̃(s,T , y)

• Example 2: the SPDE specification of f
• Let L = W , a univariate Brownian motion for simplicity

dg(t, x) =
∂g

∂x
(t, x) dt + σ(t, x) dW (t)
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• Solution of the SPDE

g(t, x) = g0(x + t) +

∫ t

0
σ(s, x + (t − s)) dW (s)

• Note: forward price g(t, x) is an ambit process

• Letting x = T − t,

g(t,T − t) = g0(T ) +

∫ t

0
σ(s,T − s) dW (s)

• Martingale condition is satisfied....of course!
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Example

• Suppose k is a weighted sum of two exponentials
• Motivated by a study of spot prices on the German EEX
• ARMA(2,1) in continuous time

k(t − s, x , y) = w exp(−α1(t − s + x + y))

+ (1− w) exp(−α2(t − s + x − y))

• L = W a Gaussian basis

• σ(s, y) again an ambit field
• Exponential kernel function
• Driven by inverse Gaussian Lévy basis
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• Spot is very volatile

• Rapid convergence to zero when time to maturity increases
• In reality there will be a seasonal level
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Thank you for your attention!
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