Levy processe

Forward price dynamics

Ambit fields

The Stochastics of Energy Markets ...or... Modelling Financial Energy Forwards

Fred Espen Benth

Centre of Mathematics for Applications (CMA) University of Oslo, Norway

In collaboration with: Ole Barndorff-Nielsen (Århus), Andrea Barth (Zürich), Paul Krühner (Oslo), and Almut Veraart (Imperial)

EMS/DMF Joint Mathematical Weekend, Aarhus 5-7 April 2013

Levy processe

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview

- Goal: Model the forward price dynamics in power markets
- Why?
 - Price and hedge options and other derivatives
 - Risk management (hedge production and price risk)
- 1. Some stylized facts of energy forward prices
- 2. Levy processes in Hilbert space
 - Subordination of Wiener processes
- 3. Modelling the forward dynamics
 - Adopting the Heath-Jarrow-Morton (HJM) dynamical modelling from interest rate theory
- 4. Ambit fields and forward prices
 - A direct HJM approach

Levy processes

Forward price dynamics

Ambit fields

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Forward markets

Levy processe

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Energy forward contracts

- Forward contract: a promise to deliver a commodity at a specific *future* time in return of an agreed price
 - Examples: coffee, gold, oil, orange juice, corn....
 - or.... temperature, rain, electricity
- Electricity: future delivery of power over a period in time
 - A given week, month, quarter or year
- The agreed price is called the forward price
 - Denominated in Euro per MWh
 - Forward contracts traded at EEX, NordPool, etc...
 - Financial delivery!

Levy processe 00000 Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Forward price at time $t \le T_1$, for contract delivering over $[T_1, T_2]$, denoted by $F(t, T_1, T_2)$
- Connection to fixed-delivery forwards

$$F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} f(t, T) \, dT$$

• Musiela parametrization: $x = T_1 - t, y = T_2 - T_1$

 $G(t, x, y) = F(t, t + x, t + x + y), \quad g(t, x) = f(t, t + x)$

• Focus on modelling the dynamics of the forward curve

 $t \mapsto g(t,x)$

Some stylized facts of power forwards

• Consider the *logreturns* from observed forward prices (at NordPool)

$$r_i(t) = \ln rac{F(t, T_{1i}, T_{2i})}{F(t-1, T_{1i}, T_{2i})}$$

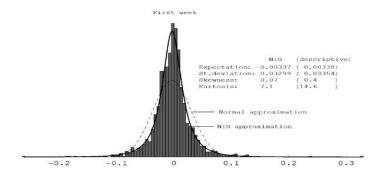
- General findings are:
 - 1. Distinct heavy tails across all segments
 - 2. No significant skewness
 - 3. Volatilities (stdev's) are in general falling with time to delivery $x = T_1 t$ (Samuelson effect)
 - Significant correlation between different maturities x (idiosyncratic risk)

Levy processe

Forward price dynamics

Ambit fields

Fitting NIG and normal to logreturns of forwards by maximum likelihood



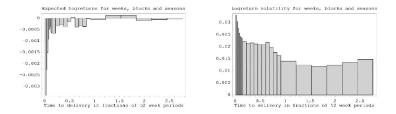
Levy processes

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Expected logreturn (left) and volatility (right)



Power	forwards
0000000	

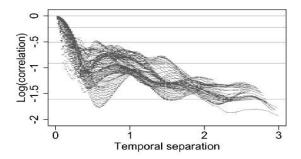
Levy processes

Forward price dynamics

<ロ> (四) (四) (三) (三) (三) (三)

Ambit fields

- Plot of log-correlation as a function of years between delivery
- Correlation decreases in general with distance between delivery
 - ...but in a highly complex way



Levy processe 00000 Forward price dynamics

Ambit fields

Summary of empirical evidence

- Forward curve g(t, x) is a random field in time and space
 - Or, a stochastic process with values in a function space
- Strong dependencies between maturity times x
 - · High degree of idiosyncratic risk in the market
- Non-Gaussian distributed log-returns
 - Dynamics is not driven by Brownian motion

Levy processes

Forward price dynamics

Ambit fields

2. Hilbert space-valued Lévy processes

Levy processes

Forward price dynamics

Ambit fields

- Goal: construct a Hilbert-space valued Lévy process with given characteristics
 - For example, a normal inverse Gaussian (NIG) Lévy process in Hilbert space
- X is a d-dimensional NIG random variable if

 $X \sigma^2 \sim \mathcal{N}_d(\mu + \beta \sigma^2, \sigma^2 C)$

- $\mu \in \mathbb{R}^d$, $\beta \in \mathbb{R}$, $C \ d \times d$ covariance matrix,
- σ an inverse Gaussian random variable
- X defined by a mean-variance mixture model

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lévy processes by subordination

- Define a NIG Lévy process *L*(*t*) with values in Hilbert space by subordination
- In general: let
 - *H* be a separable Hilbert space
 - Θ a real-valued subordinator, that is, a Lévy process with increasing paths
 - *W* a drifted *H*-valued Brownian motion with covariance operator *Q* and drift *b*
 - Q is symmetric, positive definite, trace-class operator,

 $\mathsf{Cov}(W)(f,g) = \mathbb{E}\left[\langle W(1) - b, f \rangle \langle W(1) - b, g \rangle\right] = \langle Qf, g \rangle$

Define

$$L(t) = W(\Theta(t))$$

Levy processes

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Let ψ_{Θ} be the cumulant (log-characteristic) function of Θ
- Cumulant of *L* becomes

$$\psi_L(z) = \psi_{\Theta}\left(\mathrm{i}\langle z,b\rangle - \frac{1}{2}\langle Qz,z
ight), z \in H$$

 Let (a, 0, ℓ) be characteristic triplet of Θ, then triplet of L is (β, aQ, ν)

$$eta = ab + \int_0^\infty \mathbb{E}[\mathbf{1}(|W(t)| \le 1)] \,\ell(dz)$$

$$u(A) = \int_0^\infty P^{W(t)}(A) \,\ell(dt) \,, A \subset H \,,$$
 Borel

Levy processes

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Suppose L square-integrable Lévy process
- Define covariance operator

 $\mathsf{Cov}(L)(f,g) = \mathbb{E}\left[\langle L(1), f \rangle \langle L(1), g \rangle\right] = \langle \mathcal{Q}f, g \rangle$

- Supposing mean-zero Lévy process
- ${\mathcal{ Q}}$ symmetric, positive definite, trace-class operator
- If L is defined via subordination, covariance operator is

 $\mathcal{Q} = \mathbb{E}[\Theta(1)]Q$

• Supposing $\Theta(1)$ integrable

Levy processes

Forward price dynamics

Ambit fields

- So, how to obtain L being NIG Lévy process?
- Choose Θ to be driftless inverse Gaussian Lévy process, with Lévy measure

$$\ell(dz) = \frac{\gamma}{2\pi z^3} \mathrm{e}^{-\delta^2 z/2} \mathbf{1}(z>0) \, dz$$

Define L(t) = W(Θ(t)), which we call a H-valued NIG Lévy process with triplet (β, 0, ν),

Theorem

L is a *H*-valued NIG Lévy process if and only if TL(t) is a \mathbb{R}^n -valued NIG Lévy process for every linear operator $T : H \mapsto \mathbb{R}^n$.

Levy processes

Forward price dynamics

Ambit fields

3. Forward price dynamics

er forwards Levy processes

Forward price dynamics •00000000000 Ambit fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let H be a separable Hilbert space of real-valued continuous functions on \mathbb{R}_+
 - with $\delta_{\rm x}$, the evaluation map, being continuous
 - $x \in \mathbb{R}_+$ is time-to-maturity
 - *H* is, e.g. the space of all absolutely continuous functions with derivative being square integrable with respect to an exponentially increasing function (Filipovic 2001)

• Assume L is square-integrable zero-mean Lévy process

- Defined on a separable Hilbert space U, typically being a function space as well (e.g. U = H)
- Triplet (β, Q, ν) and covariance operator Q

Levy processe 00000 Forward price dynamics

Ambit fields

• Define process X on H as the solution of

 $dX(t) = (AX(t) + a(t)) dt + \sigma(t) dL(t)$

- A = d/dx, generator of the C₀-semigroup of shift operators on H
- a(·) H-valued process, σ(·) L_{HS}(H, H)-valued process being predictable

• $L_{HS}(\mathcal{H}, H)$, space of Hilbert-Schmidt operators, $\mathcal{H} = \mathcal{Q}^{1/2}(U)$ $\mathbb{E}\left[\int_{0}^{t} \|\sigma(s)\mathcal{Q}^{1/2}\|_{L_{HS}(U,H)}^{2} ds\right] < \infty$

- σ and a may be functions on the state again
 - We will not assume that generality here

Levy processe 00000 Forward price dynamics

Ambit fields

• Mild solution, with S as shift operator

$$X(t) = S(t)X_0 + \int_0^t S(t-s)a(s) \, ds + \int_0^t S(t-s)\sigma(s) \, dL(s)$$

• Define forward price g(t, x) by

$$g(t,x) = \exp(\delta_x(X(t)))$$

• By letting x = T - t, we reach the actual forward price dynamics

f(t,T)=g(t,T-t)

Levy processe 00000 Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Assume X is modelled under "risk-neutrality", then f(⋅, T) must be a martingale
 - Yields conditions on a and $\sigma!$
- Introduce

$$\widehat{a}(t) = \int_0^t a(s)(T-s) \, ds \,, \ \ \widehat{\sigma}(t) = \int_0^t \delta_0 S(T-s) \sigma(s) \, dL(s)$$

Theorem

The process $t \mapsto f(t, T)$ for $t \leq T$ is a martingale if and only if

$$d\widehat{a}(t) = -\frac{1}{2}d[\widehat{\sigma},\widehat{\sigma}]^{c}(t) - \{e^{\Delta\widehat{\sigma}(t)} - 1 - \Delta\widehat{\sigma}(t)\}$$

• $\Delta \hat{\sigma}(t) = \hat{\sigma}(t) - \hat{\sigma}(t-)$, $[\hat{\sigma}, \hat{\sigma}]^c$ continuous part of bracket process of $\hat{\sigma}$

Levy process

Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Market dynamics

- Forward model under risk neutral probability ${\ensuremath{\mathbb Q}}$
- Esscher transform ${\mathbb Q}$ to "market probability" ${\mathbb P}$ to get market dynamics of F
- Let $\phi(\theta)$ be the log-moment generating function (MGF) og L
 - Recall characteristic triplet of L as (β, Q, ν)
 - Assume *L* is exponentially integrable

$$\begin{split} \phi(\theta) &= \ln \mathbb{E}[\mathrm{e}^{(\theta, L(1))_U}] \\ &= (\beta, \theta)_U + \frac{1}{2}(Q\theta, \theta)_U \\ &+ \int_U \mathrm{e}^{(\theta, y)_U} - 1 - (\theta, y)_U \mathbf{1}_{|y|_U \le 1} \nu(dy), \theta \in U \end{split}$$

Levy processe 00000 Forward price dynamics

Ambit fields

• $d\mathbb{P}/d\mathbb{Q}$ conditioned on \mathcal{F}_t has density

 $Z(t) = \exp\left((\theta, L(t))_U - \phi(\theta) t\right)$

- Lévy property of L preserved under Esscher transform
- Characteristic triplet under \mathbb{P} is $(\beta_{\theta}, Q, \nu_{\theta})$

 $eta_{ heta} = eta + \int_{|y|_U \leq 1} y \,
u_{ heta}(dy), \qquad
u_{ heta}(dy) = \mathrm{e}^{(heta, y)_U} \,
u(dy)$

- $\theta \in U$ is the market price of risk
 - Esscher transform will shift the drift in X-dynamics, and
 - and rescale (exponentially tilt) the jumps of L

くして 「「」 (山下) (山下) (山下) (山下)

Levy processe

Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

- L = W, Wiener process in U
- Bracket process can be computed to be

$$[\widehat{\sigma},\widehat{\sigma}]^{c}(t) = \int_{0}^{t} \|\delta_{0}S(T-s)\sigma(s)Q^{1/2}\|_{L_{HS}(U,\mathbb{R})}^{2} ds$$

- An example by Audet et al. (2004)
- Volatility specification
 - σ multiplication operator: $\delta_x \sigma(t) u = \eta e^{-\alpha x} u(x), u \in U$
 - η, α positive constants, α mean-reversion speed
 - Volatility structure linked to an exponential Ornstein-Uhlenbeck process for the spot

Levy processe

Forward price dynamics

Ambit fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Spatial covariance structure of W
 - Let Q be integral operator
 - $q(x, y) = \exp(-\kappa |x y|)$ integral kernel
- Recall correlation structure from empirical studies.....
 - ...close to exponentially decaying
 - Some seasonal variations: let η be seasonal
- Forward dynamics of Audet et al. (2004)

$$\ln \frac{g(t,x)}{g(0,x)} = -\frac{1}{2}\eta^2 \int_0^t e^{-2\alpha(x+t-s)} \, ds + \int_0^t \eta e^{-\alpha(x+t-s)} \, dW(s,x)$$

• Or.... $\frac{df(t,T)}{f(t,T)} = \eta e^{-\alpha(T-t)} dW(t,T-t)$

Levy processe

Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Note: series representation of W
 - Independent Gaussian processes, $\{e_n\}$ basis of U

$$W(t) = \sum_{n=1}^{\infty} \langle W(t), e_n \rangle_U e_n$$

- May represent the dynamics in terms of Brownian factors
 - Infinite factor model
- Recall the heavy tails in log-return data for NordPool forwards
 - A Wiener specification W is not justified
- · Should use an exponential NIG-Lévy dynamics instead
 - Choose L to be NIG, constructed by subordinator
 - Keep covariance operator

Levy processe 00000 Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Numerical examples with NIG-Levy field

- Simulation of forward field by numerically solving the hyperbolic stochastic partial differential equation for X
 - Euler discretization in time
 - A finite-element method in "space" x
 - Conditions at "inflow" boundary " $x = \infty$ " and at t = 0
- Initial condition X(0, x) is "today's observed forward curve" on log-scale
 - Exponentially decaying curve
 - Motivated from "typical" market shapes
- Boundary condition at infinity equal to constant
 - Stationary spot price dynamics yield a constant forward price at "infinite maturity"

Levy processe

Forward price dynamics

Ambit fields

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- *L* is supposed to be a NIG-Lévy process, which is defined as a subordination
- Appeal to the series expansion of W, which is truncated in the numerics
 - Simulate a path of an inverse Gaussian Lévy process
 - Change time of the finite set of independent Brownian motions
 - Sum up these scaled by eigenvalues and basis function to get the NIG-Lévy field approximation

Parameters

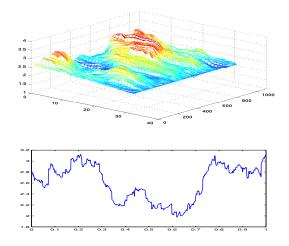
- $\alpha = 0.2$, mean-reversion
- $\kappa = 2$, correlation
- IG-parameters chosen by convenience ($\gamma=$ 10, $\delta=$ 1)

Levy processe 00000 Forward price dynamics

イロト イポト イヨト イヨト

Ambit fields

 Forward field, for x = 0, ..., 40 days to maturity, and t daily over 4 years. Implied spot process for x = 0



• Can we recover the spot dynamics from the forward model?

Levy processes

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Implied spot price dynamics

• One can recover the spot dynamics as

 $g(t,0) = \exp(\delta_0(X(t)))$

- X is driven by by NIG Lévy process in U
 - "Infinitely" many Lévy processes
- For \widetilde{L} is univariate NIG Lévy process, $\widetilde{\sigma}$ stochastic process on $\mathbb R,$ it holds

$$\delta_0 \int_0^t \sigma(s) \, dL(s) = \int_0^t \widetilde{\sigma}(s) \, d\widetilde{L}(s)$$

 Spot can be represented as a dynamics in terms of a univariate NIG Lévy process

Levy processes

Forward price dynamics

Ambit fields

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

4. HJM modeling by ambit fields

Forward dynamics by ambit fields

• A twist on the HJM approach

- by direct modelling rather than as the solution of some dynamic equation
- Barndorff-Nielsen, B., Veraart (2010b)
- Simple arithmetic model in the risk-neutral setting

$$g(t,x) = \int_{-\infty}^{t} \int_{0}^{\infty} k(t-s,x,y)\sigma(s,y)L(dy,ds)$$

 L is a Lévy basis, k non-negative deterministic function, k(u,x,y) = 0 for u < 0, stochastic volatility process σ (typically independent of L and stationary)

Levy processe

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- L is a Lévy basis on \mathbb{R}^d if
 - 1. the law of L(A) is infinitely divisible for all bounded sets A
 - 2. if $A \cap B = \emptyset$, then L(A) and L(B) are independent
 - 3. if A_1, A_2, \ldots are disjoint bounded sets, then

$$L(\cup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}L(A_i)$$
, a.s

- Stochastic integration in time and space: use the Walsh-definition (for square integrable Lévy bases)
 - Natural adaptedness condition on $\boldsymbol{\sigma}$
 - square integrability on k(t − ·, x, ·) × σ with respect to covariance operator of L
- Possible to relate ambit fields to Hilbert-space valued processes

Levy processe

Forward price dynamics

Ambit fields

Martingale condition

No-arbitrage conditions: t → f(t, T) := g(t, T_t) must be a martingale

Theorem f(t, T) is a martingale if and only if there exists \tilde{k} such that

$$k(t-s, T-t, y) = \widetilde{k}(s, T, y)$$

• Note, cancellation effect on *t* in 1st and 2nd argument ensures martingale property

Ambit fields

• Example 1: exponential damping function (motivated by OU spot models)

$$k(u, x, y) = \exp\left(-\alpha(u + x + y)\right)$$

• Satisfies the martingale condition

$$k(t-s, T-t, y) = \exp\left(-\alpha(y+T-s)\right) =: \widetilde{k}(s, T, y)$$

• Example 2: the SPDE specification of f

• Let L = W, a univariate Brownian motion for simplicity $dg(t,x) = \frac{\partial g}{\partial x}(t,x) dt + \sigma(t,x) dW(t)$

Levy processe 00000 Forward price dynamics

Ambit fields

• Solution of the SPDE

$$g(t,x) = g_0(x+t) + \int_0^t \sigma(s,x+(t-s)) dW(s)$$

- Note: forward price g(t, x) is an ambit process
- Letting x = T t,

$$g(t, T-t) = g_0(T) + \int_0^t \sigma(s, T-s) \, dW(s)$$

• Martingale condition is satisfied....of course!

Levy processe

Forward price dynamics

Ambit fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Example

• Suppose k is a weighted sum of two exponentials

- Motivated by a study of spot prices on the German EEX
- ARMA(2,1) in continuous time

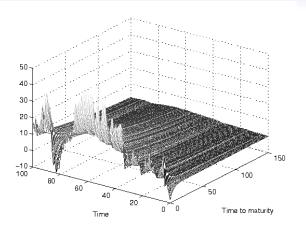
$$k(t-s,x,y) = w \exp(-\alpha_1(t-s+x+y)) + (1-w) \exp(-\alpha_2(t-s+x-y))$$

- L = W a Gaussian basis
- $\sigma(s, y)$ again an ambit field
 - Exponential kernel function
 - Driven by inverse Gaussian Lévy basis

Levy processes 00000 Forward price dynamics

(日) (同) (日) (日)

Ambit fields



- Spot is very volatile
- Rapid convergence to zero when time to maturity increases
 - In reality there will be a seasonal level

Levy processes

Forward price dynamics

Ambit fields

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention!

Levy processe

Forward price dynamics

Ambit fields

References

- Audet, Heiskanen, Keppo and Vehviläinen (2004). Modeling electricity forward curve dynamics in the Nordic market. In 'Modeling Prices in Competitive Markets', John Wiley & Sons, pp. 252-265.
- Barndorff-Nielsen, Benth and Veraart (2010a). Modelling energy spot prices by Lévy semistationary
 processes. To appear in Bernoulli
- Barndorff-Nielsen, Benth and Veraart (2010b). Modelling electricity forward markets by ambit fields. Preprint SSRN, submitted
- Barth and Benth (2010). The forward dynamics in energy markets infinite dimensional modelling and simulation. Submitted.
- Benth and Krühner (2013). Subordination of Hilbert-space valued Lévy processes. Available on Arxiv: http://arxiv.org/pdf/1211.6266v1.pdf, submitted
- Filipovic (2001). Consistency Problems for Heath-Jarrow-Morton Interest Rate Models, Springer
- Frestad (2009). Correlations among forward returns in the Nordic electricity market. Intern. J. Theor. Applied Finance, 12(5),
- Frestad, Benth and Koekebakker (2010). Modeling term structure dynamics in the Nordic electricity swap market. Energy Journal, 31(2)

Levy processe 00000 Forward price dynamics

Ambit fields

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Coordinates:

- fredb@math.uio.no
- folk.uio.no/fredb/
- www.cma.uio.no