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Abstract

This deliverable describes and discusses several ideas for abstraction mecha-
nisms, which will be developed and implemented in the INTO-CPS project so
as to support verification of co-simulation environments consisting of both,
continuous time and discrete event models. The bounded model checking
functionality implemented in the RT-Tester Model-Based Test Case Gen-
erator will be extended so that it supports such kinds of heterogenous co-
simulation environments.
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1 Introduction

Model checking of discrete event (DE) models has been extensively studied
over the past four decades. Brilliant ideas paired with careful engineering
have led to the invention of techniques such as symbolic model checking, SMT
solving, bounded model checking (BMC) etc.; these techniques have made
the verification of real-world systems a realistic yet still challenging task.
However, model checking techniques for continuous time (CT) systems have
not yet reached the maturity of techniques related to DE, most importantly
with respect to scalability and tractability.

For real-world applications — the kind of applications the INTO-CPS project
focuses on — it is thus advisable to abstract CT models into DE models for
the purpose of model checking. Given a concrete CT model MCT , the key
idea of abstraction in this context is to derive a map α such that MCT |=
α(MCT ). Then, all behavior described byMCT is as well present in α(MCT ),
although α may introduce additional behavior. If checking properties on the
abstract system α(MCT ), abstraction thus preserves soundness but comes at
the cost of completeness, which means that model checking may yield false
positive warnings.

This deliverable discusses how the abstraction α from a CT system to a DE
system can be implemented so as to apply DE model checking techniques to
systems that were originally designed as CT systems. Importantly, the docu-
ment discusses how the abstraction can be modelled by means of timed state
charts, which then allows the standard model checking techniques of the RT-
Tester Model-Based Test Case Generator (RTT-MBT) to be applied.

1.1 Setting

The overall setting of the techniques discussed in this deliverable is discussed
by means of the example given in Fig. 1. For this example, we do not
focus on what the models do, but more on their connection. The overall
configuration consists of three models, two of which are defined as DE models.
The signal voltage computed by the DE model called Environment flows
into the remaining two blocks, both of which use this value to compute their
outputs. The express aim of the techniques discussed in this deliverable is to
replace the CT component in Fig. 1 by an over-approximate DE component
that soundly mimicks the behavior of the original model.
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Figure 1: A heterogeneous co-simulation environment which is defined using
three models, two discrete-event models and one continuous-time models.

1.2 Requirements

This deliverable is based on and aims at implementing the following high
level requirements from [LPH+15].

0005 and 0035 Model checking shall be applied to a co-simulation config-
uration, rather than stand-alone state charts, and hence the outputs
of this requirement flow into the model checking functionality of RTT-
MBT. In particular, this requires that the abstracted CT models need
to be integrated into the co-simulation environment as well so as to
replace the original behavior.

0032 DE models, which are part of a configured co-simulation environment,
shall be supported using BMC techniques.

0033 and 0034 This requirement is the key scope of this deliverable, as it
specifies that RTT-MBT must support DE abstractions of CT models.
Further, DE abstractions of CT models shall be handled as if they
originally were DE models. To do so, the DE abstractions should be
specified in the same formalism as originary DE models, and can thus
be supported by RTT-MBT with as little integration effort as possible.

7



D5.1c - Abstraction Techniques for model-checking (Public)

1.3 Outline

The remainder of this document is then structured as follows. First, Sect. 2
discusses related techniques that have been described in the literature. This
section is followed by a survey of the state-of-the-art in DE model checking
and a description of the model checking techniques implemented in the RT-
Tester system. Directions for different directions of model checking in the
INTO-CPS project are then discussed in Sect. 4. Finally, Sect. 5 discusses
the configuration items for model checking in INTO-CPS.

2 Related Work

2.1 Bounded Model Checking

The key idea of BMC is to exercise the behavior of a system only up to
a certain depth of computations [CBRZ01, CKOS05]. BMC thus merely
serves as a bug-hunting framework, as opposed to the approach followed by
traditional unbounded model checking techniques [BK08, BCM+90, CES86,
CGP99, McM92, McM02], which aims at a formal verification of the analyzed
system. However, if the exercised computation depth is just large enough —
which is the case if the unrolling depth k of the transition relation has reached
the completeness threshold [KOS+11] of the system — then BMC can too
be used to prove system properties in the sense that it allows to show the
absence of property violations.

2.2 Abstraction

Correct abstractions have been formalized by Cousot and Cousot [CC77] in
the abstract interpretation framework. In principle, the semantics of a pro-
gram is then specified using lattices. Concrete and abstract domains A and C
are then connected using an abstraction function α : A→ C and a concretiza-
tion functions β : C → A. For c ∈ C and a correctly constructed abstraction
function α, α(c) then describes c in the sense that it contains c, and possibly
more results, which entails soundness. Despite recent progress on automatic
generation of abstractions [RSY04, BK10, BK11, BK12], however, designing
α typically is still a manual process. Importantly, though possible in the-
ory [RSY04], to the best of our knowledge no research has been contributed
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to the automatic abstraction of CT semantics into DE semantics, which is
the core problem discussed in this document.

However, of course abstract interpretation techniques have widely been ap-
plied to the verification of hybrid systems [Hen96]. For example, Sankara-
narayanan et al. [SDI08] have combined symbolic model checking with states
encoded on top of template polyhedra, that is, conjunctions of linear in-
equalities

∑n
i=0 ci · vi ≤ k where the ci are fixed a priori. However, such

works target an entirely different setting than our work since it is entirely
based on abstracting formally specified hybrid automata, whereas we focus
on continuous-time models that may not necessarily have a formal semantics
(the outputs may, for example, be computed using a controller that is directly
connected to the system). Further, the scalability of complex abstractions
such as template polyhedra in a network of components is uncertain. As
stated by Sankaranarayanan et al. [SDI08, Sect. 1], “hybrid systems veri-
fication is a challenge even for small systems”, which of course applies to
networks of hybrid systems.

3 State-of-the-Art in Discrete-Event Model

Checking

3.1 RT-Tester Model-Checker

At its core, the model checker integrated into RTT-MBT is based on the
well-known bounded model checking (BMC) algorithm for LTL described
by Biere et al. [BHJ+06]. The key idea of BMC is to unroll the transition
relation of the model step by step, up to a fixed bound k, and check whether
the desired LTL specification holds for up to k transitions. Thus, BMC is
merely a framework that supports bug-detection, rather than proving the
absence of bugs1. Typically, SAT or SMT solving is used to implement the
BMC algorithm as follows:

• Let I denote a formula that encodes the initial states of the system.

• Let Ti,i+1 denote a formula that encodes a transition from step i to step
i+ 1.

1It has been shown, however, that BMC can too be used to show the absence of bugs
if k is an adequately large value, see Sect. 2.1. Hence, if k is picked adequately as an
input parameter to RTT-MBT, the model checking framework in RTT-MBT can be used
to show the absence of defects.
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• Let ϕ denote an encoding of the LTL property that is to be checked.

• Then, the LTL specification ϕ is violated if and only iff the conjoined
formula I∧

∧k−1
i=0 Ti,i+1∧¬ϕ is satisfiable. If the formula is unsatisfiable,

the k-times unrolled transition relation does not contain a trace that
violates the LTL specification ϕ.

In RTT-MBT, the above formulae are encoded in a bit-vector theory [KS08]
and a dedicated SMT solver called Sonolar is used to check satisfiability.

Encoding transition relations for state charts and encoding these unrollings
propositionally so that they can be fed into an SMT solver is a well-known
technique [PVL11]. At this point, it is important to note that state charts
are themselves inherently concurrent, with the notion of time integrated as
a monotonically increasing integral value (as opposed to dense time used
in other approaches). This observation suggests that the same techniques
that are used to model check a single model, which contains a number of
concurrent components, can be used to check a collection of models using
the same approach. This issue will be discussed further in the following
section.

4 Design Principles for Model Checking Sup-

port in INTO-CPS

A key problem for model checking of heterogenous cyber-physical systems
specifications is the use of different modelling formalisms to specify the dif-
ferent components. For example, one component may compute its outputs
using continuous differential equations, whereas the other one is implemented
by means of a state chart. An important decision in the development of the
INTO-CPS project was to base model checking purely on DE formalisms,
and to over-approximate the behavior of CT components using suitable DE
abstractions (cp. Sect. 2.2). The model that is then verified is a network of
timed state charts, and abstractions are integrated by replacing CT compo-
nents with appropriate abstract DE state charts.
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4.1 Definition of Model Approximations from CT to
DE Models

4.1.1 Interval Abstraction

An classically used abstract domain for program analysis is the so-called
interval or box domain, which was introduced for this purpose by Cousot
and Cousot [CC77]. In this abstraction, the concrete value of each variable v
is described by an interval [vl, vu] such that v ∈ [vl, vu] for all possible concrete
values of v. An example of an interval abstraction for a continuous variable
that evolves over time is given in Fig. 2. The interval domain is probably
the coarsest general-purpose abstract domain that has proven valuable in
practical applications.

Figure 2: Interval abstraction for a continuous variable.

The FMI 2.0 standard [Blo14, Sect. 2.2.3] already specifies upper and lower
bounds for variables using fields called min and max, which serve as interval
bounds. An interval abstraction of a CT variable v can thus simply be
synthesized by generating a state chart that consists of a single re-eentrant
state directly from the FMU interface specification. The entry action of this
state is to assign v a random value in [vl, vu] after at least a certain amount
of time has passed so as to model discretization of time.

However, it is uncertain how useful the coarse interval abstraction is in prac-
tice. During the project, it will be evaluated in how far refinements of this
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abstraction are required in order to obtain meaningful results. The following
section discusses on such refinement.

4.1.2 Gradient-Based Interval Abstraction

The interval abstraction discussed before is coarse in the sense that it does
not specify how signal values may evolve over time, as the interval abstraction
describes a time-independent invariant that holds unconditionally. However,
often the values of continuous variables only change gradually, for example,
by at most 5 units within 10 ms. Such information can be integrated into
the abstraction, which we discuss by means of an example.

The key idea of the gradient-based interval abstraction is to assign to a signal
v values that are invariant for the discretized timeframe (here, 10 ms), which
is achieved as follows (see Fig. 3):

• An initial state s0 is introduced, which models the assignment of the
initial value to v. The state contains a single entry action, which is
a non-deterministic assignment of values in this range to v. For the
example, assume that the initial range of v is [0, 20], the state thus
contains an action v = rand(0,20).

• A second state s1 is added that models how the value of v is updated. In
the example, we assume that v may change by at most 5 units within a
timeframe of 10 ms. To achieve this behavior, the state s1 is re-entrant
after 10 ms and re-assigns a value to v.

Intuitively, the gradient describes the range in which a continuous signal may
change in a certain timeframe. An abstract transition relation can thus be
derived by simply implementing that a described signal is within the range
defined through 1) its value on input to the time frame and 2) the maxi-
mally reachable offset during the time frame. The gradient-based interval
abstraction can thus be seen as a form of predicate abstraction [GS97], with
the predicates derived using just two parameters (the gradient and the time-
frame). There are two drawbacks with this approach:

• The unrolling bound k will have to be very large due to the explicit
time-discretization. This may lead to intractable models.

• It is difficult to extract the gradients from the CT models automatically.
In this case, human intervention will be required to annotate continuous
signals with gradients.
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Figure 3: State chart that implements a gradient-based interval abstraction.

4.1.3 Simulation-Based Abstraction

The previous sections have discussed techniques which soundly over-approximate
the semantics of CT models using DE abstractions. These approaches may,
when applied to industrial-scale multi-model co-simulation environments,
lead to some frustration since the abstractions may be either too coarse
(cp. Sect. 4.1.1) or too expensive (cp. Sect. 4.1.2). It may thus be advisable
to give up on completeness2 and abstract only parts of the behavior of the
CT models.

We suggest that concrete continuous-time traces of CT models could be ex-
tracted from executions of the entire co-simulation3. Interval-based abstrac-
tion techniques could then be applied to these concrete executions. Clearly,
this approach is unsound as it does not allow to guarantee the absence of
defects in the multi-model co-simulation environment. Yet, it allows to ver-

2Unfortunately, it is not possible to quantify the loss of completeness since the simula-
tions only consist of one specific trace through a system. However, combining verification
techniques with testing- or simulation-based techniques is a well-known approach [Kur08]
if scalability problems or a loss of precision occur, see for example [GK10] for a technique
from the context of static program analysis for software.

3Of course, the traces extracted are already discretized. However, it is very likely
that these discretized traces are so detailed that they are intractable for bounded model
checking. We thus plan to further abstract these already discretized traces.
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ify properties of the DE models subject to the condition that the CT parts
behave similar to a concrete execution of the entire system.

To illustrate, consider Fig. 4, and assume that the signal x indicated by the
blue line has been obtained using simulation of a CT model. The signal is
identical to the one given in Fig. 2. For this example, we have decided to
abstract the concrete signal value with an adaptive interval abstraction with
three important properties:

• The signal x is abstracted by a finite sequence of n+ 1 intervals which
we denote ([xl,0, xu,0], [xl,1, xu,1], . . . , [xl,n, xu,n]).

• The size of each box is bound from above by a constant c, that is,
xu,i − xl,i ≤ c for all 0 ≤ i ≤ n.

• The timeframe covered by an interval [xl,i, xu,i] is variable. For a
continuous-time signal given through a function fx : R→ R, the time-
frame of validity [tl,i, tu,i] has to be chosen so that xl,i ≤ fx(t) ≤ xu,i
for all t ∈ [tl,i, tu,i].

Figure 4: Concrete signal flow from Fig. 2 with adaptive interval abstraction.

Such an abstraction can straightforwardly be represented by a DE model that
contains a chain of states. Importantly, the upper bound c on the interval-size
provides a means to control the tradeoff between precision and performance
of this approach. If c is small, then the abstract model will be precise,
but model checking may be intractable. It is then possible to incrementally
increase the size of c until model checking terminates in a reasonable amount

14
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of time. The impact of c on the number of intervals, and thereby the number
of transitions in the abstracted CT model, is highlighted by Fig. 5, where c
was chosen twice as large compared to Fig 4.

Figure 5: Concrete signal flow from Fig. 2 with adaptive interval abstraction.

Further, it is unclear whether a fixed grid shall be applied for the interval
subdivision, or whether it should be adapted. For the examples in Fig. 4 and
Fig. 5, respectively, the intervals were defined based on a predefined grid.
Fig. 6 shows the results using the same interval size as in Fig. 5, but based
on an adaptive grid for which the boundaries of the interval are computed
from the concrete signal flow.

5 Configuring Model Checking in INTO-CPS

It is our express aim to depend on as few manual adaptations of the co-model
(as expressed in Modelio) as possible to be able to apply model checking. The
main configuration artefact for the model checking component in INTO-CPS
is thus the co-model. The INTO-CPS application [BLL+15] shall provide
further functionality to configure the following parameters:

• Which blocks contained in the co-model shall be abstracted?

• Which abstraction technique shall be applied to which block? Depend-
ing on the abstraction technique, additional parameters may become
necessary, as sketched in the previous section.

15
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Figure 6: Dynamic interval subdivision scheme.

• Which LTL specifications shall be checked?

Further, it has to be decided at which location in a given FMU the under-
lying DE model has to be placed (if available). The model checker shall
automatically extract this DE model from the respective FMU.

6 Conclusion

This deliverable discusses the overall application setting of model checking in
the INTO-CPS project as well as possible abstraction techniques that could
be used to integrate DE and CT models. In year 2, these techniques will be
implemented and applied to case studies to evaluate their practicability to the
real-world problems imposed by the INTO-CPS setting. It is planned that
the model checking functionality will be released within the project in M18.
Depending on the outcomes of this evaluation phased, it may be necessary to
further refine the proposed abstractions using more complex domains.

One particular source of information that has been neglected in this docu-
ment is the LTL specification to be checked: Interpreting the atomic propo-
sitions used in the specification may turn out useful during the generation of
the transition relations. For example, the atomic propositions could be used
as in predicate abstraction to infer a candidate for an appropriate transition
relation. We expect that applying the different model checking techniques
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to the industrial case studios within the INTO-CPS project will provide suf-
ficient data to evaluate whether such an approach would be valuable.
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A List of Acronyms

BMC Bounded Model Checking
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
FMI Functional Mockup Interface
FMU Functional Mockup Unit
LTL Linear Timed Logic
MBT Model Based Testing
RTT RT-Tester
RTT-MBT RT-Tester Model-Based Test Case Generator
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