
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

DSE in the INTO-CPS Platform

Deliverable Number: D5.1a

Version: 1.0

Date: 2015

Public Document

http://into-cps.au.dk

D5.1a - DSE in the INTO-CPS Platform (Public)

Contributors:

Carl Gamble, UNEW
Richard Payne, UNEW
Claes Dühring Jæger, AI
Francois Hantry, CLE
Christian König, TWT
Alie El-din Madie, UTRC

Editors:

Carl Gamble, UNEW

Reviewers:

Francois Hantry, CLE
Andrey Sadovykh, ST
Claes Dühring Jaeger, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D5.1a - DSE in the INTO-CPS Platform (Public)

Document History

Ver Date Author Description
0.1 22-05-2015 Carl Gamble Initial document version
0.2 26-10-2015 Carl Gamble Content from iD3.1 added
0.3 13-11-2015 Alie El-Din Mady UTRC DSE case study added
0.4 14-11-2015 Claes Jæger AI case study added
0.5 15-11-2015 Carl Gamble Python scripts added
0.6 16-11-2015 Carl Gamble Progress and plans added
0.7 14-12-2015 Carl Gamble AI and ST review comments ad-

dressed
1.0 15-12-2015 Carl Gamble Internal review comments ad-

dressed

3

D5.1a - DSE in the INTO-CPS Platform (Public)

Abstract

This deliverable presents the outputs of Tasks 3.2 and 5.1 together, includ-
ing both the contributions of the methodology and tool creation activities.
The methodology reports upon the aspirations of the industry partners with
respect to DSE in their case studies before outlining the DSE approaches
that are planned to be implemented during the project. The tool creation
activity reports on the design of the DSE module, focussing on its separation
into components and their interaction before presenting an outline plan for
their development.

4

D5.1a - DSE in the INTO-CPS Platform (Public)

Contents
1 Introduction 6

2 Related Work 6

3 INTO-CPS Case Study DSE Goals 8
3.1 Agro Intelligence . 8
3.2 TWT Gmbh . 10
3.3 ClearSy . 11
3.4 United Technologies . 13
3.5 Key Points from the Case Studies 15

4 Outline DSE Approaches 16
4.1 Single Parameter, Single Objective Search method 16
4.2 Multi Parameter Search Methods 17
4.3 Multi Objective methods . 21

5 DSE Module Design and Progress 22
5.1 Outline of the DSE Module 22
5.2 Progress and Plans . 24

A Scripts 29
A.1 DSE_exhaustive.py . 29
A.2 COE_handler.py . 31

B List of Acronyms 32

5

D5.1a - DSE in the INTO-CPS Platform (Public)

1 Introduction

This is the first deliverable concerning the DSE tasks in INTO-CPS. It is
designated as D5.1a and so represents the output of the DSE module tool
task, T5.1, but for conciseness it also includes the methodological output of
T3.2.

The document begins with a statement of the state of the art in DSE in CPSs
and then moves on to a description of key aspects of the INTO-CPS case
studies as described by the case study owners with some key points drawn
out in Section 3. Section 4 outlines the proposed methods that the DSE
module should support and Section 5 presents an outline of how the DSE
module works, its structure, the progress to date and a plan for the future
development.

2 Related Work

In the DESTECS project1 DSE was supported by applying Automated Co-
model Analysis (ACA), such as parameter sweep. The project also provided
support for testing different model implementations. The project provided
methodological guidelines for DSE in [BFG+12] and [FLPV13] and tool sup-
port for the Crescendo in the form of ACA [NBAR+12]. INTO-CPS will use
the methods work from DESTECS as a baseline, extended with wider range
of analysis techniques and including closed loop support.

The Certainty project2 uses DSE in the DOL-Critical method; using the
results of interference analysis reliability analysis to evaluate potential map-
ping and scheduling solutions of tasks to cores on multi-core platforms.
The project includes several tools: “the EXPO tool is the central module
of the framework. As an underlying multi-objective search algorithm, the
Strength Pareto Evolutionary Algorithm (SPEA2) is used that communicates
with EXPO via the PISA interface” [CER13a]. The project also proposes
the “Mixed Criticality Mapping and Scheduling Optimisation (MCMSO)
method” which implements a heuristic method based on simulated anneal-
ing [CER13b]. Both the implementation and methods developed by Cer-
tainty will influence DSE in INTO-CPS, in particular the use of simulated

1http://www.destecs.org/
2http://www.certainty-project.eu/

6

http://www.destecs.org/
 http://www.certainty-project.eu/

D5.1a - DSE in the INTO-CPS Platform (Public)

annealing and Pareto Front techniques. It is not clear to what extent this
work is ‘closed-loop’, one focus of DSE in INTO-CPS.

As part an integrated tool chain for high-level synthesis of high-performance
FPGA systems, the ENOSYS 3 project uses two tools for DSE: FalconML4

and Jink 5. The Jink Design Space Explorer coordinates a design flow and
its exploration engine searches over various parameters used in customising
the soft core multi processor and in partitioning the UML design to the
underlying architecture. Jink finally parses over the various logs and reports
files produced by the various tools during synthesis, compilation, simulation
to extract various design characteristics and metrics. This work is limited
to FPGA design and it is not clear to what extent this work is ‘closed-
loop’, or which ranking or analysis methods are used. Further investigation
is required to determine the extent of influence these outputs may have on
INTO-CPS.

The ongoing AXIOM 6 project will provide DSE, with a deliverable on DSE
due in M24 of the project (January 2017). DSE technologies will be used in
the development of the software parts and the selection of the most appro-
priate hardware architecture and interconnect.

MADNESS 7 use traditional methods for DSE, alongside their “co-exploration”
which uses different search algorithms for different dimensions and they re-
port that “multidimensional co-exploration can find better design points and
evaluates a higher diversity of design alternatives as compared to the more
traditional approach of using a single search algorithm for all dimensions.”
We have been unable to obtain public deliverables.

In the iCyPhy project8, effort is placed to reduce the design space for DSE
through optimal architecture selection [FNSV15]. A routine is defined to
optimise the continuous parameters of a CPS to decrease the number of
simulations.

The DARPA AVM META project9 defines the CyPhyML for the modelling
of CPSs. The project uses the Design Space Exploration Tool (DESSERT)
to prune the design space to a “manageable size”. INTO-CPS should consider
the DESSERT technology and its methods for design space reduction.

3https://sites.google.com/a/enosys-project.eu/www/home
4https://sites.google.com/a/enosysproject.eu/www/enosys-tools/falconml
5https://sites.google.com/a/enosys-project.eu/www/enosys-tools/jink
6http://www.axiom-project.eu
7http://www.madnessproject.org/
8http://www.icyphy.org/index.html
9http://cps-vo.org/group/avm/meta

7

https://sites.google.com/a/enosys-project.eu/www/home
https://sites.google.com/a/enosysproject.eu/www/enosys-tools/falconml
https://sites.google.com/a/enosys-project.eu/www/enosys-tools/jink
http://www.axiom-project.eu
http://www.madnessproject.org/
http://www.icyphy.org/index.html
 http://cps-vo.org/group/avm/meta

D5.1a - DSE in the INTO-CPS Platform (Public)

The Merlin project10 produced a suit of tools collectively called the Strategic
Decision Making Tool (SDMT) to facilitate exploring the design space within
the rail domain. This suite consists of a core tool that orchestrates the DSE,
an optimisation tool responsible for driving the DSE through the use of a
genetic algorithm and pareto optimality analysis and a costing analysis tool
tasked with computing the electrical costs part of the simulation results. This
project makes explicit something akin to architectural aspects of the design
space by allowing the use of clusters, where each cluster may have different
sets of parameters and constraints but all are ultimately compared using the
same objective values.

3 INTO-CPS Case Study DSE Goals

In this section the case study owners present details of their scenarios from
four distinct view points. These viewpoints consider the parameters that
are present in each scenario, how each scenario will be measured, how the
results of each designs will be compared to rank the designs and how the
results could be presented. These aspects will affect the direction of the DSE
module scripts over the next two years of the project.

3.1 Agro Intelligence

3.1.1 Design Parameters

In the agricultural case study we have two categories of parameters. The
first category defines the robots physical size and its operation conditions.
The second category defines the parameters of the surrounding environments.
The first category has internal dependencies, like battery type/total weight
and wheel size/operation speed. But there are also dependencies between the
two categories, the wheel slip will affect the operating speed and the surface
type will affect the wheel slip. Crop type will affect the width of the robot,
because the robot needs to fit to the row distance for the current crop.

Category 1

• Wheel size, diameter in mm [450, 700].

• Width center of wheel to center of wheel, length in m [1.2, 3.5].
10http://www.merlin-rail.eu

8

http://www.merlin-rail.eu

D5.1a - DSE in the INTO-CPS Platform (Public)

• Battery type, [GEL, AGM, Lithium].

• Batery Capacity, [60, 150] Ah.

• Battery Weight, in kg [5, 20] per cell.

• Motor Power, [5, 25] kW.

• Motor Torque, [100, 35000] mN
m

(milli Newton)

• Gearing between motor and wheels, [10, 100].

• Total weight, [300, 1000] kg.

• Operating speed [0.3, 3] m
s
.

• Component list.

• Component price.

• Implement type, [Seeder, Row-Crop Cleaner, Robovator, K.U.L.T. Duo,...]

• Implement Drag force N

Category 2

• Wheel slip on the surface [-100, 100] % (positive slip means the wheels
are spinning and negative that they are skidding)

• Surface type [Bare soil, grass, pavement,...]

• Rolling friction coefficient between the surface and the wheel, has to
be defined for each surface type.

• Crop type, the type defines the row distance. [100, 1000] mm.

3.1.2 Solution Objectives

The simulation goal for the agro-case is to determine the optimal vehicle
configuration for a given scenario. The scenarios are defined by the imple-
ment, crop and surface type. The parameters that should be optimised for
are: operation time, navigation such as turning radius and route plan in re-
lation to the operation time. The end result should be a list of configuration
parameters that can be used in the final vehicle design.

9

D5.1a - DSE in the INTO-CPS Platform (Public)

3.1.3 Ranking of solutions

Like in the automotive case 3.2.3, the different designs will be compared by
a cost function. The parameters of the cost function will be total cost and
maximum operation time of the robot in the given scenario and configura-
tion.

3.1.4 Results Presentation

The result of the simulation should be presented in an interactive manner,
where the user can select the parameter he/she wants to see the results
for. It should be possible to select several parameters, e.g. battery capacity
and wheel size. Along with the parameters it should be possible to define
the scenarios the user wants to compare, e.g. what is the optimal battery
capacity and wheel size for the surface type and this crop type. The result
should be presented in a list and a graph so the user can see the how the
result compare to each other. It should be possible to select the indivual
simulations to see a detailed description of the scenario.

3.2 TWT Gmbh

3.2.1 Design Parameters

For the automotive case study, two categories of parameters can be differenti-
ated: The first group of design parameters that can be varied during an DSE
experiment defines the vehicle: vehicle mass, aerodynamic drag coefficient
cw, rolling friction coefficient crr, battery capacity C and the full load curve,
defined by the maximum engine speed nmax and the maximum torque Mmax.
The second set of parameters defines the route the vehicle takes to get from
the start position to its destination. These parameters can be described as
a set of coordinates. For a typical DSE experiment in the context of INTO-
CPS, the first set of parameters, defining the vehicle, is most likely the more
relevant group.

The vehicle design parameters can depend on each other, e.g. the battery
capacity has an influence on the total mass.

10

D5.1a - DSE in the INTO-CPS Platform (Public)

3.2.2 Solution Objectives

The simulation results that are of most interest for the automotive case study
are relatively directly measurable. They include: the maximum acceleration
should not be higher than a specific value (e.g. 4ms−2), the time that it
takes to travel a certain distance, the time it takes to achieve a temperature
inside the vehicle within the comfort zone (Tmin < T < Tmax).

3.2.3 Ranking of solutions

Different designs (i.e. vehicle configurations) are compared by using a cost-
function that has parameters such as total vehicle cost, energy consumption,
space and mass. In particular, electric vehicles are optimized using cost func-
tions that include the battery capacity, energy consumption, mass, driving
performance, efficiency per component and energy at the tire. Hybrid ve-
hicles have cost functions that include the battery capacity, power of the
elctric motor, power of the combustion motor, range, energy consumption,
driving performance and efficiency of components. These cost functions are
however individual for each automobile manufacturer and depend on the spe-
cific problem that needs to be solved. Therefore, there are no universal cost
functions or rules for ranking of results.

3.2.4 Results Presentation

The range of electric vehicles is typically presented as a bar diagram for
different vehicle configurations. For hybrid vehicles, the results could be
shown in a 3D-plot, with the different working points of the combustion
motor as the second parameter axis.

3.3 ClearSy

3.3.1 Design Parameters

For the railway case study, two kinds of parameters can be differenciated.
The first group of parameters correspond to real numbers (or function of
real numbers) such as Kinetic energy, communication or physical movement
delay, track length, track slope (function of position) or traction acceleration
(function of speed), or breaking force.

11

D5.1a - DSE in the INTO-CPS Platform (Public)

The other group of parameters is rather a choice of decomposition of a whole
track map into several distributed one, and the corresponding distributed
interlocking. Thus, such parameters are a set of subsets of the track map
database tuples. On can also consider a varying number of trains.
The parameters may be related, such as minimal and maximal Kinetic energy
or minimal or maximal slope or traction acceleration.

3.3.2 Solution Objectives

There are two kinds of measurement. The first kind of measurement are
extremal values of monitored real number variables such as: train trip delay,
Kinetic energy, train availability. The other kind of measurement is whether
one train will overun another and collide, or whether two train collide be-
cause of an error in the interlocking PLCs. The two kinds may be dependent:
one may want to measure availability but only in the case there is no colli-
sion.

3.3.3 Ranking of solutions

The preference value for solution objective may be the maximal or minimal
value while such and such parameters vary (ex: track map distribution or
traction vary and then the simulation tool would try to find the minimal
train trip delay).

It is not clear what is the link between train trip delay and train availabil-
ity. In this case, a curve with at least an extremal value (for instance the
availability) in function of train trip delay could be fine (train trip delay
computed with the other parameters the number of train, track map decom-
position).

3.3.4 Results Presentation

The presentation for simple objective value would be a table or curve with
a few significative simulations and showing the extremal objective value(s).
For the case of a limit value is overun (such as maximal allowed speed,
overun of train so positions overrunning, or collision with same), it could be
interesting to show similar table or curve in the neighbourhood of this limit
value. Finally, it should be interesting to show XY curve for showing trade

12

D5.1a - DSE in the INTO-CPS Platform (Public)

off between two competitive objectives. (such as availability vs train trip
delay).

3.4 United Technologies

3.4.1 Design Parameters

DSE is used in building automation to: (a) identify the optimal equipment
and control settings for an existing building; (b) study the equipment scal-
ability over different building thermal characteristics. In the following we
highlight the key design parameters used in the building automation case
study:

• Equipment Design Parameters: tuning these parameters lead to iden-
tify the optimal thermal supply settings to a building using Fan Coil
Units (FCUs).

1. Maximum water flow rate: m·
water ∈ [0.08 : 0.12]

2. Maximum air flow rate: m·
air ∈ [0.4 : 0.6]

3. Water coil efficiency: εcoil ∈ [0.1 : 1]

• Control Design Parameters: tuning these parameters lead to identify
the optimal PID control response to the building thermal load.

1. Proportional set-point weighting: Kp ∈ [0 : 1]

2. Derivative set-point weighting: Kd ∈ [0 : 1]

• Plant Design Parameters: these parameters are used to express dif-
ferent building heat dissipation characteristics. The building thermal
parameters are varied based on ASHRAE fundamentals 2013 standard.

1. Wall density: ρwall ∈ [960 : 1600]

2. Wall thermal conductivity: λwall ∈ [0.0865 : 0.1298]

Considering that these parameters are independent, then the search space for
optimizing equipment setting is m·

water ×m·
air × εcoil ×Kp ×Kd . Whereas,

the search space for equipment scalability study is ρwall × λwall.

13

D5.1a - DSE in the INTO-CPS Platform (Public)

3.4.2 Solution Objectives

The objective of a building automation system is to maintain the user com-
fort, while minimizing the energy consumption. In our case study, the user
comfort is represented as the room air temperature RAT , whereas more
comfort metrics can be taken in account, such as CO2 and humidity. The
automation system maintains the RAT in the comfort band identified as
RATsp ± 1oC, where RATsp is the RAT set-point identified by the user or
the building manager. Therfore, evaluating these performance metrics re-
quires observation of the following dependent variables:

1. Room Air Temperature RAT

2. Room Air Temperature Set-point RATsp

3. Supplied Power Qin

3.4.3 Ranking of solutions

In order to rank the search space solutions, we formulate two evaluation
metrics as follows:

• User discomfort UD is calculated as the area between RAT and RATsp
curves. In order to minimize the user discomfort, the RAT needs to re-
spect the RATsp. RMSE (Root Mean Square Error) is used to quantify
the user discomfort as follows, where N is the total number of samples:

UD =

√√√√∑N
k=1

[
RATsp(k)−RAT (k)

]2
N

(1)

• Energy Consumption E is calculated as the integration of the used
power Qin over the time. In order to calculate the energy consumption,
Coefficient Of Performance (COP) of the heat pump (HP) required
to be considered as follows (i.e. COP=2.6), where T is the sample
duration :

E =
N∑
k=1

Qin(k) ∗ T
COP

(2)

Optimizing the building performance requires minimizing both metricsMin(UD,E).
However decreasing one of them leads to increase the other, therefore a pareto
frontier is required to be evaluated in order to identify the optimal design
parameters.

14

D5.1a - DSE in the INTO-CPS Platform (Public)

3.4.4 Results Presentation

Considering the building automation is a multi-objective optimization prob-
lem, then we present the DSE results in an nD plot, where n is the number
of the optimization criteria. In our case study, we optimize the building
automation against two optimization criteria, i.e. E, UD. Therefore, the
search space will be presented in a 2D plot that captures E and UD values
for different configurations.

3.5 Key Points from the Case Studies

There are many key points from these descriptions that we can extract
and take into account during the future development of the DSE model
scripts.

• Each of the scenarios has a mixture of both design parameters of the
system itself and parameters defining the environment in which the
system is to operate. While these both contribute to the total design
space to be explored it is important that we differentiate between them
when, for example, grouping results by design.

• There are sometimes relations between simulation parameters meaning
that not all combinations are valid, for example in the AI case study,
the surface type of the ground affects the wheel slip parameter and in
the TWT case study various parameters of the vehicles are linked, such
as the battery capacity of an electric vehicle and its total mass. The
parameter sweep should only visit parameter sets that respect these
constraints.

• There is a range of different complexity levels when processing the raw
simulation results to derive the objective measures needed to assess
each simulation. Some are instantaneous measures that may be directly
provided by the simulation outputs, such as the maximum acceleration
of a vehicle, which others require more complex assessment. Exam-
ples include the time taken for the car cabin temperature to reach a
comfortable level, the cumulative occupant comfort level in the UTRC
scenario and computation of the turning radius in the AI study.

• There are also constraints over the variables in the simulations that
must not be breached, an example of this is the detection of collision of
two trains in the CLE case study. Such a constraint results in a boolean
pass or fail that should be recorded amongst the objective results. It

15

D5.1a - DSE in the INTO-CPS Platform (Public)

may be advantageous to terminate a simulation when a constraint is
breached to reduce wasted CPU time but this is outside the current
planned capabilities of the DSE module.

• The UTRC case study explicitly calls for a pareto optimal type analysis
to compare and rank the design results the TWT case study calls for
cost functions that take into account multiple design parameters and
simulation results and are unique to each vehicle simulated.

• In terms of presentation the case studies propose a range of visuali-
sations from being able to select a range of graph types such as bar
graphs, 2D and 3D plots. These plots could show a range parameter
and results or focus in on interesting areas such as the neighbourhood
around the maximum speed of a train. These are alongside the ability
to compare any two values on an XY plot style and also pareto optimal
style plots.

4 Outline DSE Approaches

This section presents an outline of the approaches to DSE that are planned
to be implemented with the INTO-CPSproject. The section is divided into
methods for searching the designs space (Sections 4.1 and 4.2) and methods
for ranking the performance of the designs when there are multiple objectives
(Section 4.3). During the text reference will be made to the ’DSE Driver’
which could actually refer to either a human or a software agent, though in
the case of this work the intention is that the role will be played as far as
possible by software.

4.1 Single Parameter, Single Objective Search method

If we are optimising a single objective by varying only a single parameter and
we are confident that the shape of the graph relating the parameter and the
objective is uni-modal (only a single maxima or minima) then the Golden
section search method may be employed. In this method it is necessary
to perform three initial simulations s1, s2, and s3, with the position of s2
between s1 and s3 being according to the golden ratio, and for each obtain
the objective value. The positions of s1, s2 and s3 here refer to the value of
the parameter being varied. The next step is to divide the largest section,
s1–s2 or s2–s3 and perform a new simulation, s4, again positioned according

16

D5.1a - DSE in the INTO-CPS Platform (Public)

to the golden ratio and obtain the objective value for s4. Depending on the
relative objective values of s2 and s4 we can determine in which region the
maxima/minima exists and thus repeat the process using either s1, s2 and s4
as the new triple of simulations or s2, s4 and s3. This process continues until
the width of the section being searched is deemed to be small enough.

The DSE driver needs to know which parameter is being varied and the
initial bounds. Being a closed loop method it requires access to either a
single objective value or the output of a ranking function.

4.2 Multi Parameter Search Methods

The multi parameter search methods outline below all focus on the parameter
search part of DSE and do not describe how to assess the objective values
of the CPS, they do all assume that we are able to compare designs to give
them at least an order of preference.

4.2.1 Exhaustive Search

The simplest form of multi parameter search, and the one that was imple-
mented in the Crescendo tool, involves performing a complete search of all
possible permutations of the parameters. This “brute force” approach is only
applicable for small design spaces where the organisation has enough proces-
sor time available to run all simulations. The advantage of the method, is
that it will always find the globally optimum results.

Here the DSE driver launches co-simulations with all combinations of the de-
sign parameters and does not require any feedback from the simulations.

4.2.2 Space Culling

It is possible for some systems, to cull areas of the parameter space based
upon past results and in doing so avoid running simulations that are predicted
to fail some criteria. For example, if the objective of the CPS is for a vehicle to
be able to follow a track and at speed X1 the vehicle has already experienced
understeering and so failed to follow the track, then there is little point in
performing a simulation at Speed X1 + 10 as it is unlikely that it will be
able to follow the track either. Thus we may cull the design space above X1.

17

D5.1a - DSE in the INTO-CPS Platform (Public)

To be able to use this method requires that the engineers are confident that
there objective trends continue and so ...

Here the DSE driver would need to know the range of parameter values to
be explored, the resolution for the initial search and the criteria to end the
search.

4.2.3 Orthogonal Matrices

Orthogonal Matrices, also referred to as Taguchi Tables, is a method for
assessing the effect of parameter variables on objective values without having
to explore the entire design space.

Key to the concept of orthogonal matrices is the idea of parameters inter-
actions. The idea is that the performance of a design is very likely not
dependant on the values of individual parameter but actually is dependant
on the set of all values acting in concert. To see the results of all inter-
actions it is necessary to simulate every permutation of design parameters,
which is identical to performing an exhaustive search described previously.
At the other end of the interaction scale it is possible to ignore the effects
of parameters interactions and performing sufficient simulations so that each
parameter value is simulated at least once. An orthogonal matrix then is
a compromise between an exhaustive search and only simulating with each
parameter value only once, and the compromise is in terms of how many
parameters are included in each interaction, larger numbers of parameters
included in each interaction means more simulations need to be performed
to see their effects and conversely small numbers of parameters included in
each interaction requires fewer simulations. An orthogonal matrix defines,
for a given number of parameters each with a set of possible values and for
a defined interaction size (minimum 2), exactly what simulations need to be
performed so that each interaction is simulated at least once. For example, if
a design has three parameters, A, B and C each with their own set of values,
then a matrix considering interactions of size 2 would include all combina-
tions of the parameters A and B and also also combinations of parameters
of A and C.

The results are analysed as a set of graphs, Fig. 1, where each graph plots
the objective value against the values of a particular parameter or group of
parameters, and from these graphs it is possible to estimate the best values
or range of values for each parameter, then the simulations confirming the
predictions of the graphs may be performed. Key to building an orthogonal

18

D5.1a - DSE in the INTO-CPS Platform (Public)

Better

Worse
v1 v2 v3 v1 v2 v3 v1 v2 v3
(a) (b) (c)

Figure 1: Simple example graph results from the Orthogonal Matrices
method.

matrix is specifying the order of interactions that are to be considered. The
smallest orthogonal matrices only consider the interactions of pairs of pa-
rameters and the largest matrix would consider all interactions, though this
would produce a table that is identical to an exhaustive search.

Here the DSE driver would need to know the range of parameter values, the
resolution of each parameter and also order of interactions to consider. It is
open loop and so does not require simulation feedback.

4.2.4 Hill Climbing/Descent

Hill Climbing is a method where a point in the design space is chosen, either
randomly or according to some engineering intuition, and then then the space
is searched by repeatedly sampling (simulating) a neighbouring point in the
design space and testing whether this point has a higher value than the
current point and jumping to it if it does. This process continues until there
are no neighbouring points with higher values and then the current design
is returned as the maximum. Hill Descent follows the same procedure but
selects neighbours with lower values instead. Both of these methods can
find a maximum with fewer simulations than either a random or exhaustive
search, but they have a weakness that in a system which contains both local
and global maxima, they will not always find the global maxima.

There is also the steepest ascent/descent versions of this method, where in-
stead of picking a single neighbour and determining if this is higher/lower,
all surrounding neighbour designs are examined and the one with the high-
est/lowest value is chosen. This has the potential to arrive at a maxima/min-
ima earlier than the normal method, but still suffers from the same weakness
of becoming trapped.

Here the DSE driver needs to know the range of parameters and the resolution
of each. This is a closed loop method and so it requires that the simulation
results in either a single value or a comparable set of results.

19

D5.1a - DSE in the INTO-CPS Platform (Public)

4.2.5 Simulated Annealing

Simulated Annealing is related to Hill Climbing, but it attempts to avoid
being trapped by local maxima by probabilistically being able to jump to a
neighbour with a lower value if one is found. The probability of this jump
to a seemingly worse design is initially quite high (>0.5) but as the number
of simulations performed increases, the probability gradually decreases. The
optimum design is either the one being examined at the end of the experiment
when all simulations have been run or possibly an earlier one if the records
of all designs are kept and there were some jumps to lower values near the
end of the experiment.

The DSE driver needs to know the allowed values for the design parameters,
the rate at which the probability of jumping decreases along with the total
number of simulations to perform, and access to the simulation results.

4.2.6 Genetic Algorithms

The genetic method for exploring a design space takes its inspiration from
the natural process of genetics and evolution. In its simplest form it starts by
generating a number of random designs and each one is simulated to obtain
its objective values. The designs are then ranked according to the results
and the process of building the next generation begins by choosing a pair of
designs to act as as parents. Two new designs are generated by combining
the parameters values of the two parents such that the two parents parameter
values are shared between the two offspring, with a small chance the one or
more of those parameters will be mutated to have a different value. The new
designs are tested via simulated to obtain their objective values and then the
process starts again.

The DSE driver here needs the parameters and their allowed values, it is a
closed loop method and so requires the simulation results and it also needs
various tuning parameters such as the probability of parameter mutation and
the number of elite individuals to maintain.

4.2.7 User Defined

This is not a DSE algorithm but instead it is simply some facility to allow
the users to enter the parameters defining a series of simulations that will
then be automatically executed in an open loop fashion.

20

D5.1a - DSE in the INTO-CPS Platform (Public)

Figure 2: An outline WAM equation

The driver needs a value for each parameter for each simulation to be run.

4.3 Multi Objective methods

For those simulation models that have more than a single objective value and
one of the closed loop DSE methods has been employed then it is necessary to
use one of the objective methods to provide a means to perform any tradeoff
between the individual objectives and determine which are the best designs.
There are two types of method presented here, the two ranking methods
order the design results by their ability to meet a specific goal, while the
Pareto method will present a range of optimal tradeoffs. While each of the
methods is quite different in how they perform their required computations,
they all make the same assumption that the simulations can provide a single
value for each objective.

4.3.1 Ranking Functions - WAM

The weighted additive method (WAM) computes a score for each design
by multiplying the value of each objective by a weight for that objective
and then summing the results. Figure 2 shows the basic form of a WAM
equation.

4.3.2 Ranking Functions - ENUM

The enumerate and scoring method (ENUM) method computes a score for
each design by defining groups of logical statements over the simulation re-
sults and then considering which and how many of those logical statements
are true for the results of each simulation. Each statement within a group
earns the same score if it is met, and the scores for each group are computed
such that meeting a single statement in one group earns a score that is greater
than meeting all of the statements in all groups below. Thus the engineer
may uses the groups to express a preference for some conditions over others.
The final score for a design is the sum of scores earned for all conditions met.
The basic form of an ENUM equation is shown in Fig. 3.

21

D5.1a - DSE in the INTO-CPS Platform (Public)

Figure 3: An outline ENUM equation

4.3.3 Pareto Optimality

Pareto optimality is an approach to ranking that in which the engineer only
has to state which objectives are of interest and whether they should be
maximised or minimised. The searches for all results that meet the conditions
for Pareto optimality, which are that, for each objective, it is not possible to
find a design that improves on the value of that objective without degrading
the value of another. When all designs that meet this criteria have been
found, they are collectively termed the non-dominated set and all designs it
contains are the best tradeoffs found so far for the selected criteria.

5 DSE Module Design and Progress

5.1 Outline of the DSE Module

The DSE module, when completed, will be composed of five different script
classes, each playing their own part in a DSE run:

DSE Driver this is the main script in the DSE process, it contains the
algorithm used to search the design space and as such is responsible
for picking the simulation values to start with, which parameters to
exercise through simulation each time after that and when optimisation
is complete and therefore when to end the search. It orchestrates the
execution of the other scripts.

COE Handler this script takes a simulation configuration stored in a spec-
ified directory and executes the simulation it represents by calling the
COE. It terminates after it has written the raw simulation results in
results.csv into the specified directory.

22

D5.1a - DSE in the INTO-CPS Platform (Public)

Objective Evaluation the purpose of this script is to analyse the raw simu-
lation results in a specified directory to determine the objective values
from those results. For example it might simply be looking for the
maximum value for the power drawn by a motor, or it could be more
complex using multiple results to calculate the comfort value as de-
scribed in the UTRC case study earlier (Section 3.4.2). These results
will be saved in objectives.json in the specified directory.

Ranking the ranking script has the job of comparing the objective values
calculated for each sim to produce a global ranking of the designs. This
ranking could be either via a ranking function or according to a pareto
type analysis. These results are saved into a common ranked.json file
in the DSE root directory.

Presentation the final script has the job of compiling all the numerical re-
sults in and or all of the results.csv, objtectives.json and ranked.json
into the graphs and tables as required for the user to consume.

The orchestration of the scripts is shown in Figure 4 and here we see that
it is not the case that each script is executed once, there are three nested
loops:

DSE loop this is the main loop of the DSE and it continues until either the
DSE algorithm determines that an optimal design has been found or
until the entire design space has been explored.

Simulation loop the number of times this loop executes before exiting is
determined by the DSE algorithm and how many simulations it needs to
perform in between computing the global rankings. A second factor in
determining how many times this executes is the availability of running
COE instances which may allow parallel simulations to be executed if
the DSE algorithm supports it.

Evaluation loop if the standard evaluation scripts are used then this loop
will execute once for each objective to be calculated. If the user builds
their own evaluation script then it may only need a single execution to
obtain all objectives.

There a three main assumption made by the DSE module scripts:

• Python 2.7 is installed

• the required config.json is in the same directory as the DSE scripts

• the curl application is available in the command line path. It is avail-

23

D5.1a - DSE in the INTO-CPS Platform (Public)

Figure 4: Informal sequence diagram of the DSE scripts

able by default in OSx and is downloadable for Windows11

Full instructions on the use of these scripts may be found in D4.1a [BLL+15]

5.2 Progress and Plans

5.2.1 DSE Driver

The first version of a DSE driver has been constructed. This script performs
an exhaustive search, where all combinations of parameters are simulated in
an open loop fashion. This script is included as Appendix A.1.

5.2.2 COE Handler

The first version of a COE handler has been constructed and tested. The
script initialises, launches the COE and retrieves the results. It does not

11http://curl.haxx.se

24

http://curl.haxx.se

D5.1a - DSE in the INTO-CPS Platform (Public)

Figure 5: DSE initial folder contents

consider any faults at this time. The script is included as Appendix A.2

5.2.3 Objective Evaluation

A script allowing the evaluation of simple objectives, such a the maximum,
minimum and mean values of any recorded variable is under development
and may be ready for the final deliverable submission in December.

5.2.4 Result Ranking

The results ranking scripts have not yet been started

5.2.5 Result Presentation

The results presentation scripts have not yet been started.

5.2.6 Plan for development

A proposed ordering for the development of the scripts that comprise the DSE
module is shown graphically in Figure 6. The plan consists of five columns,
one for each of the script classes previously introduced, and the boxes on
each line represent the method that will encoded in the a script and that
point with time flowing from top to bottom. The ordering of the method
developing is based upon a breadth first approach, preferring to have a set
of scripts that spans from the driver through to the presentation of results
before, for example, implementing all DSE search algorithms. It is hoped

25

D5.1a - DSE in the INTO-CPS Platform (Public)

Figure 6: Proposed order for DSE script development

that this will best facilitate the adoption of the DSE module by the WP1
partners and therefore improve the flow of feedback.

The plan is split into three years, with each year ending with a blue line
labelled. Y1, Y2 and Y3 respectively. In year 1 we see the completed scripts
for exhaustive DSE search and the singular version of the COE handler have
been completed (gree bounding box), we also see the simple objective script
bounded in yellow, which is the current focus of our developments. Finally
for this year we see that we intend to implement a Pareto ranking method
and HTML presentation of the results. This will give us a complete, is
computationally intensive, set of DSE methods.

In year 2, two more efficient DSE driver methods will be implemented, these
are the genetic approach and space culling, along with further objective eval-
uation methods to both support the WP1 case studies and to allow the space
culling approach to work. In terms of presentation, feedback on the search
progress will be developed and importantly results feedback will be integrated
with the INTO-CPSapp, along with the definition of DSE parameters. Since
the DSE script is not integrated with the COE, as it effectively is in the

26

D5.1a - DSE in the INTO-CPS Platform (Public)

Crescendo tool, this opens up the possibility of running parallel simulations
on multiple hosts which would have the effect of dramatically increasing the
speed at which the design space could be explored. Such remote simula-
tions could either be on spare machines or potentially using cloud based
services.

In the final year, further DSE algorithms will be implemented along with
more complex constraint checking and support for user defined ranking func-
tions.

These time lines are conservative and it is hoped that items from year 3 may
be brought forward to year, thus increasing the opportunity to respond to
WP1 feedback and produce well founded guidelines.

27

D5.1a - DSE in the INTO-CPS Platform (Public)

References

[BFG+12] Jan F. Broenink, John Fitzgerald, Carl Gamble, Claire Ingram,
Angelika Mader, Jelena Marincic, Yunyun Ni, Ken Pierce, and
Xiaochen Zhang. Methodological guidelines 3. Technical report,
The DESTECS Project (INFSO-ICT-248134), October 2012.

[BLL+15] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Sune
Wolff, Carl Gamble, Adrian Pop, Etienne Brosse, Jörg Brauer,
Florian Lapschies, Marcel Groothuis, and Christian Kleijn. User
Manual for the INTO-CPS Tool Chain. Technical report, INTO-
CPS Deliverable, D4.1a, December 2015.

[CER13a] CERTAINTY. Modelling languages and models. Technical Re-
port Deliverable D2.3, EU FP7 288175 CERTAINTY, 2013.

[CER13b] CERTAINTY. Preliminary methodology. Technical Report De-
liverable D8.2, EU FP7 288175 CERTAINTY, 2013.

[FLPV13] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel
Verhoef. A Formal Approach to Collaborative Modelling and
Co-simulation for Embedded Systems. Mathematical Structures
in Computer Science, 23(4):726–750, 2013.

[FNSV15] John B. Finn, Pierluigi Nuzzo, and Alberto Sangiovanni-
Vincentelli. A mixed discrete-continuous optimization scheme
for cyber-physical system architecture exploration. In Interna-
tional Conf. Computer-Aided Design, 2015.

[NBAR+12] Yunyun Ni, Jan F. Broenink, Kenneth G. Lausdahl Au-
gusto Ribeiro, Frank Groen, Ken Pierce Marcel Groothuis, Carl
Gamble, and Peter Gorm Larsen. Design space exploration tool
support. Technical report, The DESTECS Project (INFSO-
ICT-248134), December 2012.

28

D5.1a - DSE in the INTO-CPS Platform (Public)

A Scripts

A.1 DSE_exhaustive.py

import json , sys , os, platform , subprocess , time

print ("DSE Exhaustive launch v 1.0 starting")

#check OS
platform = platform.system ()
if platform == ’Windows ’:

print("Windows detected")
pathSeparator = "\\"

if platform == ’Linux ’:
print("Linux detected")
pathSeparator = "/"

if platform == ’Darwin ’:
print("Darwin detected")
pathSeparator = "/"

runSimulations = True

def iterateOverParams(keyList , paramValues , simParamVals ,
start_time , end_time):

keyListLocal = list(keyList)
thisKey = keyListLocal.pop()

for val in paramValues[thisKey]:
simParamValsLocal = dict(simParamVals)
simParamValsLocal[thisKey] = val

if len(keyListLocal) >0:
iterateOverParams(keyListLocal ,

paramValues ,
simParamValsLocal ,
start_time , end_time)

else:
outputSimParams(simParamValsLocal ,

start_time ,
end_time)

return

def outputSimParams(simParamVals , start_time , end_time):

newpath = makeDirName(simParamVals)
print(" using params " + newpath)

29

D5.1a - DSE in the INTO-CPS Platform (Public)

if not os.path.exists(newpath):
os.makedirs(newpath)

print(" results directory created")

filepath = newpath + os.path.sep + ’config.json’

configParams = parsed_json[’parameters ’]
for key in simParamVals.keys ():

configParams[key] = simParamVals[key]

json_output = json.dumps(parsed_json , sort_keys=True ,
indent=4, separators =(’,’,’: ’))

json_output_file = open(filepath ,’w’)

json_output_file.write(json_output)
json_output_file.close()
print(" config created")
#print simParamVals
time.sleep (1)
if runSimulations:

launchSimulation(newpath , start_time , end_time)
return

def makeDirName(simParamVals):
first = True;
dirName = ’’
for key in simParamVals.keys ():

if not first:
dirName += ’-’

dirName += str(simParamVals[key])
first = False

return dirName

def shortName(fullName):
tokens = fullName.split("}")
return tokens [1]

def launchSimulation(simFolder , start_time , end_time):
subprocess.call(["python", "COE_handler.py", simFolder ,

start_time , end_time])

print ("Opening config.json")
json_data = open("config.json")
parsed_json = json.load(json_data)
params = parsed_json[’parameters ’]

parameters = parsed_json[’parameters ’]

30

D5.1a - DSE in the INTO-CPS Platform (Public)

paramvalues = {}

print ("Please enter a list of values for each parameter")

for key in parameters.keys ():
string_input = raw_input(" " + shortName(key) + ": ")
paramvalues[key] = string_input.split()

print("Please enter the start and stop times for the simulation")

start_time = raw_input(" Start: ");
end_time = raw_input(" End: ");

print("Starting the DSE...")
iterateOverParams(paramvalues.keys(), paramvalues , {},

start_time , end_time)

print("DSE complete.")

A.2 COE_handler.py

import sys , os , subprocess , platform , time , json

def getSessionKeyFromInitialisationResponse(rawInitResponse):
parsedInitResponse = json.loads(rawInitResponse)[0]
sessionKey = parsedInitResponse[’sessionId ’]
return sessionKey

platform = platform.system ()

subdir = sys.argv [1]
start_time = sys.argv [2]
end_time = sys.argv [3]

print(" initiliasing simulation")

#initilise the coe and get session id
configPath = subdir + os.path.sep + ’config.json’
initialiseCmd = ’curl -s -H "Content -Type: application/json" \

--data @’ + configPath + ’ http :// localhost :8082/ initialize ’
initialisationResponse = subprocess.check_output(initialiseCmd ,

shell=True)
sessionKey = getSessionKeyFromInitialisationResponse \

(initialisationResponse)

time.sleep (1)

31

D5.1a - DSE in the INTO-CPS Platform (Public)

print(" launching simulation")

startTime =0.0
endTime =5.0
runSimulationCmd = ’curl -s -H "Content -Type: application/json" \

--data \’{" startTime ":’ + start_time + ’, "endTime ":’
\

+ end_time +’}\’ http :// localhost :8082/ simulate/’ \
+ str(sessionKey)

runSimulationResponse = subprocess.check_output(runSimulationCmd ,
shell=True)

#print runSimulationResponse

time.sleep (1)

print(" fetching results")
getResultsCmd = ’curl -s http :// localhost :8082/ result/’ \

+ str(sessionKey)
getResultsResponse = subprocess.check_output(getResultsCmd ,

shell=True)
resultsFile = open(subdir + os.path.sep + ’results.csv’,’w’)
resultsFile.write(getResultsResponse)

B List of Acronyms

AU Aarhus University
CLE ClearSy
CLP Controllab Products B.V.
DSE Design Space Exploration
ENUM Enumeration and Scoring
PROV-N The Provenance Notation
ST Softeam
TWT TWT GmbH Science & Innovation
UNEW University of Newcastle upon Tyne
UTRC United Technology Research Center
UY University of York
VSI Verified Systems International
WAM Weighted Additive Method
WP Work Package

32

	Introduction
	Related Work
	INTO-CPS Case Study DSE Goals
	Agro Intelligence
	TWT Gmbh
	ClearSy
	United Technologies
	Key Points from the Case Studies

	Outline DSE Approaches
	Single Parameter, Single Objective Search method
	Multi Parameter Search Methods
	Multi Objective methods

	DSE Module Design and Progress
	Outline of the DSE Module
	Progress and Plans

	Scripts
	DSE_exhaustive.py
	COE_handler.py

	List of Acronyms

