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Abstract

This deliverable contains the technical design documentation of the INTO-
CPS platform at the end of the first year of the project. This is focussed
around the Co-simulation Orchestration Engine (COE) and the integration
of a number of existing simulation tools making use of the Functional Mockup
Interface (FMI). However, the INTO-CPS tool chain contains a lot of other
features as well. These range from requirements and graphical overviews of
CPS elements in different views using SysML down to realisation of CPSs.
Full traceability from the initial requirements as well as configuration man-
agement for all the different artefacts. Additional features enable Design
Space Exploration (DSE), Test Automation (TA) and Model Checking (MC).
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1 Introduction

This deliverable contains the technical design documentation of the INTO-
CPS tool chain platform. Since the project has two Work Packages (WPs)
dedicated to the development of tool features this deliverable will provide an
overview of the entire tool chain, and provide references to the deliverables
that explain the extension features for the INTO-CPS tool chain. This de-
liverable mainly focuses on the Co-simulation Orchestration Engine (COE)
which implements a master algorithm for the Functional Mock-up Interface
(FMI) standard version 2.0 [Blo14]. However, external input to the FMI
standard such as [BBG+13a] is also taken into account and the COE imple-
ments similar algorithms described in more detail in Section 6.3. The COE
itself is a tool that performs co-simulations using a collection of FMUs in-
cluding together with a co-simulation configuration, which describes how the
FMUs relate to each other.

After this introduction Section 2 introduces the key parts of FMI. Section 3
provides an overview of the related work in particular with focus on co-
simulation. Afterwards Section 4 provides a graphical overview of the differ-
ent features in the INTO-CPS tool chain and indicates the interfaces between
each of them. This is followed by Section 5 which describes the most likely
use scenarios of the INTO-CPS tool chain.

The remaining sections introduce the designs of the different features in
the INTO-CPS tool chain. The INTO-CPS Application described in Sec-
tion 6.1 provides the main co-simulation user interface; Section 6.2 describe
how SysML support is provided in the INTO-CPS tool chain; Section 6.3
describes the design of the COE and Section 6.4 how the baseline simulation
tools are integrated with the COE using FMI. Afterwards the different ex-
tensions of the INTO-CPS platform are presented in a number of sections.
Here Section 6.5 contains the top-level design of the Design Space Explo-
ration (DSE) feature [GHJ+15]. This is followed in Section 6.6 that provides
a top level description of the test automation feature in an INTO-CPS con-
text [MPB15]. Section 6.7 explains an overview of model-checking in the
INTO-CPS context [BLL+15]. Then Section 6.8 provides an indication how
the users are intended to make use of code generation in an INTO-CPS con-
text and refers to the deliverable where the principles for this are defined
in more detail [HLG+15]. Section 6.9 shows the plans for making use of
provenance and traceability of artefacts in an INTO-CPS setting.

Section 7 describes the release mechanisms for the INTO-CPS tool includ-
ing its independent baseline tools in their updated versions that fit together.
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Section 8 concludes the work carried out during the first project year. Fi-
nally, the appendices: Appendix A described the COE protocol, Appendix B
describes the variable stepsize calculation used in the COE, Table C lists
the FMI functions uses by the COE, and Appendix D describes intermediate
model description format exported from Modelio.

2 The Functional Mock-up Interface (FMI)

The Functional Mock-up Interface (FMI) [Blo14] is an open standard for ex-
porting dynamic models on the system and component level either for model
exchange or co-simulation. FMI gives model-based systems engineering the
ability to share models between tools. More than 60 commercial or open-
source simulation tools are now supporting the FMI standard.

In this section we give a brief overview of the FMI standard, for a more
detailed description please consult [Blo14].

2.1 Overview

The FMI (Functional Mock-up Interface) defines an interface to be imple-
mented by an executable called FMU (Functional Mock-up Unit). The FMI
functions are called by a simulation environment (in the INTO-CPS con-
text the COE) to create one or more instances of the FMU and to simulate
them, typically together with other models. An FMU may either have its own
solvers (FMI for Co-Simulation) or require the simulation environment to per-
form numerical integration (FMI for Model Exchange). See Figure 1.

In the INTO-CPS project we are only interested in the FMI standard version
2.0 and the FMI for Co-Simulation part of the standard.

The FMI for Co-Simulation interface is designed both for the coupling of
simulation tools (simulator coupling, tool coupling), and coupling with sub-
system models, which have been exported by their simulators together with
its solvers as runnable code.

The FMI for co-simulation FMUs are of two types:

• standalone (not needing a tool to work) - Figure 2

• tool wrapper (need a tool to run) - Figure 3

9
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Figure 1: FMU interaction with the environment; inputs are in red, outputs
are in blue

Figure 2: Co-simulation with an standalone FMU

Figure 3: Co-simulation with an FMI tool wrapper FMU
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In its most general form, a tool coupling based co-simulation is implemented
on distributed hardware with subsystems being handled by different comput-
ers with maybe different OS (cluster computer, computer farm, computers
at different locations). The data exchange and communication between the
subsystems is typically done using one of the network communication tech-
nologies (i.e TCP/IP). The definition of this communication layer is not
part of the FMI standard. Distributed co-simulation scenarios can be im-
plemented using FMI and the master has to implement the communication
layer.

2.2 FMI for Co-Simulation Computational Model

FMI for Co-Simulation provides an interface standard for the solution of time
dependent coupled systems consisting of subsystems that are continuous in
time (model components that are described by instationary differential equa-
tions) or time-discrete (model components that are described by difference
equations like, for example discrete controllers). In a block representation of
the coupled system, the subsystems are represented by blocks with (inter-
nal) state variables x(t) that are connected to other subsystems (blocks) of
the coupled problem by subsystem inputs u(t) and subsystem outputs y(t).
In this framework, the physical connections between subsystems are repre-
sented by mathematical coupling conditions between the inputs u(t) and the
outputs y(t) of all subsystems.

During time integration, the simulation is performed independently for all
subsystems (FMUs) restricting the data exchange between subsystems to
discrete communication points. The term "communication point" in FMI
for Co-Simulation refers to the communication between subsystems in a co-
simulation environment and should not be mixed with the output points for
saving simulation results to file. The data flow (input and output for an
FMU) at communication points is given in Figure 4.

For co-simulation two basic groups of functions have to be realized:

• functions for the data exchange between subsystems

• functions for algorithmic issues to synchronize the simulation of all
subsystems and to proceed in communication steps from initial time to
end time

In FMI for Co-Simulation both functions are implemented in one software
component, the co-simulation master. The data exchange between the sub-
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Figure 4: FMI for co-simulation FMU input and output at communication
points

systems (slaves) is handled via the master only. There is no direct commu-
nication between the slaves. In the INTO-CPS project the master is the
COE.

The state machine of calling an FMI for co-simulation FMU from the master
is given in Figure 5

2.3 FMI Distribution

An Functional Mock-up Unit (FMU) model is distributed as a zip file with
extension .fmu containing several files and directories. The zip file con-
tains:

• The FMI Description File (in XML format).

• The C sources of the FMU, including the needed run-time libraries used
in the model, and/or binaries for one or several target machines, such as
Windows dynamic link libraries (.dll) or Linux shared object libraries
(.so). The latter solution is especially used if the FMU provider wants
to hide the source code to secure the contained know-how or to allow a
fully automatic import of the FMU in another simulation environment.
An FMU may contain physical parameters or geometrical dimensions,
which should not be open.

12
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Figure 5: FMI for co-simulation FMU calling sequence
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• Additional FMU data (like tables, maps) in FMU specific file formats.

A more detailed structure of the .fmu file is given below:

// Structure of zip file of an FMU
modelDescription.xml // Description of FMU (required

file)
model.png // Optional image file of FMU icon
documentation // Optional directory containing the FMU

documentation
index.html // Entry point of the documentation
<other documentation files>

sources // Optional directory containing all C sources
// all needed C sources and C header files to

compile and link the FMU
// with exception of: fmi2TypesPlatform.h ,

fmi2FunctionTypes.h and fmi2Functions.h
// The files to be compiled (but not the files

included from these files)
// have to be reported in the xml-file under the

structure
// <ModelExchange><SourceFiles> ... and <

CoSimulation><SourceFiles>
binaries // Optional directory containing the binaries

win32 // Optional binaries for 32-bit Windows
<modelIdentifier>.dll // DLL of the FMI

implementation (build with option "MT" to
include run-time environment)

<other DLLs> // The DLL can include other DLLs
or optional object Libraries for a
particular compiler

VisualStudio8 // Binaries for 32-bit Windows
generated with Microsoft Visual Studio 8
(2005)
<modelIdentifier>.lib // Binary libraries

gcc3.1 // Binaries for gcc 3.1.
...

win64 // Optional binaries for 64-bit Windows
...

linux32 // Optional binaries for 32-bit Linux
<modelIdentifier>.so // Shared library of

the FMI implementation

14
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...
linux64 // Optional binaries for 64-bit Linux

...
resources // Optional resources needed by the FMU

< data in FMU specific files which will be read
during initialization;
also more folders can be added under resources

(tool/model specific).
In order for the FMU to access these resource

files, the resource directory
must be available in unzipped form and the

absolute path to this directory
must be reported via argument "

fmuResourceLocation" via fmi2Instantiate.
>

2.4 FMI Application Programming Interface

All needed equations or tool coupling computations are evaluated by calling
standardized "C" functions. "C" is used, because it is the most portable
programming language today and is the only programming language that
can be utilized in all embedded control systems.

Three header files are provided that define the interface of an FMU:

• fmi2TypesPlatform.h - contains the type definitions of the input
and output arguments of the functions. This header file must be used
both by the FMU and by the target simulator

• fmi2FunctionTypes.h - contains typedef definitions of all function
prototypes of an FMU. When dynamically loading an FMU, these defi-
nitions can be used to type-cast the function pointers to the respective
function definition.

• fmi2Functions.h - contains the function prototypes of an FMU
that can be accessed in simulation environments.

In all header files the convention is used that all C function and type defini-
tions start with the prefix "fmi2"

The FMI for co-simulation API is given in Figure 6.
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Figure 6: FMI for co-simulation C API
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2.5 FMI Description Schema

All static information related to an FMU is stored in file modelDescription.xml
in XML format.

The schema defines the structure and content of the modelDescription.xml
XML file generated by a modeling environment. This XML file contains the
definition of all variables of the FMU in a standardized way. It is then pos-
sible to run the C code in an embedded system without the overhead of the
variable definition (the alternative would be to store this information in the
C code and access it via function calls, but this is neither practical for em-
bedded systems nor for large models). Furthermore, the variable definition
is a complex data structure and tools should be free how to represent this
data structure in their programs. The selected approach allows a tool to
store and access the variable definitions (without any memory or efficiency
overhead of standardized access functions) in the programming language of
the simulation environment, such as C++, C#, Java, or Python.

2.5.1 Definition of an FMU (fmiModelDescription)

The root-level definition given in Figure 7 contains all the elements that can
appear in the XML file. Attributes (see for example Figure 8) of the elements
are storing extra data.

3 Related Work

This section discusses existing work on co-simulation of heterogeneous sys-
tems. It is divided into two parts, the first describing projects focused on
co-simulation, the second discussing literature on co-simulation which is not
directly associated with any of the projects identified. The projects discussed
in the first part are taken from the project survey of WP3. These projects all
relate to INTO-CPS in terms of co-simulation capabilities. The technologies
developed either use FMI or include their own simulation protocol. Projects
are identified as relevant in this context based on the following criteria:

• The technology uses the FMI standard. Projects which use a bespoke
co-simulation protocol are mentioned, but not discussed in detail.

• The technology developed allows some level of heterogeneity in the pool
of models forming a co-simulation. That is, the technology can cope

17
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Figure 7: FMI model description element
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Figure 8: FMI model description attributes
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with co-simulating discrete- and continuous-time systems together, as
well orchestrating different simulation tools within each category. Pro-
jects which only allow a limited amount of model heterogeneity are not
considered.

The remaining discussion of literature which is independent of these projects
follows no particular scheme.

The INTO-CPS project is similar to most of the related projects, but also
aims to support well-founded co-simulation taking all the tools in the INTO-
CPS tool suite into account. The project focus on developing an efficient
COE while focusing on stability. The COE described in the document, at
its early state, is similar to what has been carried out in the related projects
but it will be developed in line with the semantics described in Deliverable
D2.1d [ACG+15]. The COE itself will be based on FMI for co-simulation
making it independent on the FMU export tool oppose to some of the related
projects.

3.1 Projects which Do Not Use FMI

The following projects use approaches to co-simulation that are not compliant
with the FMI standard.

• The DESTECS project1 [DES09] developed methods and tools which
combine continuous time system models with discrete event controller
models through co-simulation to allow multidisciplinary modelling. Co-
simulation is achieved through a custom exchange protocol similar to
FMI. The simulation engine can co-simulate one discrete event model
using Overture and one continuous time model using 20-sim. Co-
simulation uses only fixed time steps. Both tools implement extensions
which allow the co-simulation orchestrator to utilize all features avail-
able in the individual tools during a co-simulation, e.g. debugging and
3D visualization. Automatic design-space exploration is supported via
automatic permutation of parameter values in user specified ranges.

• The HYCON 2 project2 focuses on co-simulation of heterogeneous mod-
els developed specifically in toolboxes for either Matlab or Simulink.
The modelling language is the Compositional Interchange Format (CIF)3,

1http://destecs.org/
2http://www.hycon2.eu
3http://cif.se.wtb.tue.nl
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an automata-based general-purpose language for hybrid systems. The
project targets specifically version 2.0 of CIF. Choice of CIF facilitates
model interchange through model transformations. Interaction with ex-
ternal modelling tools, specifically toolboxes in Matlab and Simulink,
is facilitated through the use of Simulink S-Functions. The project lists
over 800 publications, but no project deliverables are available in the
public domain, making it impossible to gain abstract insights into the
simulation technologies developed.

• The MODESEC project4 takes a model-driven approach to the devel-
opment of CPSs, with particular emphasis on security. The project uses
Ptolemy II as the implementation platform (described below). There-
fore, simulation in this project benefits from the facilities of the Ptolemy
II platform, but it is not the central focus.

• The SPEEDS project5 focused on the development of heterogeneous
component-based systems through functional problem decomposition
based on multiple viewpoints. Heterogeneity within a system thus de-
veloped is achieved through the use of the Heterogeneous Rich Com-
ponents (HRC) meta-model, which captures model interfaces indepen-
dently of the individual COTS modelling tools. A co-simulation re-
quires tool-independent exports from these tools, in the same sense as
standalone FMUs, but conforming to HRC meta-model. Co-simulation
of HRCs benefits from variable time steps.

• Like HYCON 2, the MULTIFORM project6,7 also addresses the prob-
lem of model-driven component-based system design and implementa-
tion through the use of CIF. Heterogeneity is achieved in the resulting
system models by allowing different modelling tools, which are con-
cerned with different aspects of design, to work together, the same
principle as in INTO-CPS.

3.2 Projects which Use FMI

The following projects make use of the FMI standard at the level of co-
simulation.

4http://modesec-project.eu
5http://www.speeds.eu.com
6http://www-verimag.imag.fr/MULTIFORM.html?lang=fr
7The project-specific website at http://www.multiform.bci.tu-dortmund.

de/ is inaccessible, making it impossible to delve further into the project literature.
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• Ptolemy II [Pto14]8 is a single-tool simulation and modelling platform
which can perform simulation of heterogeneous models constructed
from so-called domains (realized as models of computation), for in-
stance, continuous time ordinary differential equation descriptions, dis-
crete-event systems, state machines etc., under the control of directors,
which implement the control laws for each domain. The tool has the
ability to import standalone FMUs, leading to a high degree of model
heterogeneity through a combination of native domains and external
FMUs. However, it is unclear at this time whether tool-wrapper FMUs
can be co-simulated.

• The iCyPhy project9 [FJLM14] focuses on the semantics of compo-
nent interoperation, but a simulation tool based on Ptolemy II, FIDE
[CLT+15], achieves co-simulation of FMUs. CyPhyML provides a graph-
ical editor for models and an API for programmatic construction of
models. At this time it is impossible to gain further insight into the
co-simulation technology produced under this project, as much of the
relevant literature is not yet publicly available.

• The DANSE project10 models System of System (SoS) using block di-
agrams and is able to export this as FMUs which can be simulated in
their DESYRE environment. The project develops its own specifica-
tion language, the DANSE language. In addition to simulation, the
project also supports statistical model checking and optimised simula-
tion based on metrics of interest. Both are done by reading information
directly from DANSE specifications, since the FMI standard does not
include the required structural information. Of note is the fact that
the technology allows multiple levels of abstraction of any given model
component in a simulation. The connection between the two levels
is made stochastically. It is believed that allowing such multi-level
abstraction makes simulations requiring high numbers of components
more tractable while still yielding accurate results. In terms of sim-
ulation support, the project supports both local simulation (termed
“hosted simulation”), as well as distributed co-simulation, in the sense
of INTO-CPS. However, the project makes use of FMI only for hosted
simulation, where essentially only standalone FMUs are co-simulated
on a single host, whereas distributed co-simulation is achieved through
the use of the United States Department o Deference’s High-Level Ar-

8http://ptolemy.eecs.berkeley.edu
9http://www.icyphy.org/index.html

10http://www.danse-ip.eu/home/index.php
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chitecture (HLA). Further information is available from the project
website, as all project deliverables are publicly available.

• The CosiMate project11 develops a co-simulation approach for hetero-
geneous systems which is very similar to INTO-CPS. However, it allows
the connection of external simulation tools not only through FMI, but
also through their native control interfaces. Addition of a new simula-
tion tool to a co-simulation scenario is facilitated by an Eclipse-based
interface construction environment. The co-simulation platform sup-
ports variable time steps.

• The ADVANCE project12 [SBC14] allows co-simulation of Event-B ma-
chines with external continuous FMUs through FMI version 1. The re-
sulting technologies support model-based testing and model-checking
of CPS using ProB. The co-simulation capabilities of the ADVANCE
MultiSim simulation framework are similar to those projected for the
INTO-CPS tool chain, and are implemented as a plugin for the Rodin
platform for Event-B. However, owing to the capabilities of Rodin,
proof in that domain is better integrated with the relevant tool than
current proof support for VDM-RT, but INTO-CPS has the main ad-
vantage that it seeks to make a co-simulation platform. The aim in
INTO-CPS is to co-simulate both discrete and continuous FMUs to-
gether without knowing the details about the implementation of the
FMUs, as long as they are compatible with the FMI version 2 stan-
dard. Further information is available from the project website, as all
project deliverables are publicly available.

3.3 Work not Associated with the Other Related Projects

Determinate composition of FMUs for co-simulation is discussed in [BBG+13b]
along with a criticism of the FMI standard concerning the level of informa-
tion that a given FMU must provide. They provide two algorithms that
support co-simulation, and show that the FMI version 2.0 algorithm has a
high simulation cost because it is based on roll-back where state must be
saved for all FMIs. The second algorithm uses a small FMI extension for
obtaining the minimum next step size per FMU, and is more efficient but
not FMI compliant. Both of the presented algorithms are methods to de-
terministically orchestrate a co-simulation with both discrete and continuous

11http://site.cosimate.com
12http://www.advance-ict.eu/
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FMUs. The INTO-CPS COE presented in section Section 6.3, supports both
algorithms from [BBG+13b] automatically detecting if the extension method
exists. The COE is providing the necessary support for the FMUs exported
by Overture [LBF+10] as described in Section 6.4.

In [NGL+14] it is demonstrated that a co-simulation with multiple FMUs
potentially running with different step-sizes can be simulated on their Com-
mand and Control Wind Tunnels platform using the High-Level Architecture
(HLA) framework.

A language-based approach is used in [vADVM15] for the generation of a
static optimized master algorithm. The paper classifies the FMU intercon-
nections and based on this selects the type of master algorithm. The main
focus is on feedback types and requires that all input-output relations be
present in the model description of all FMUs. Their solution also relies on
the ability to restore state, only takes fixed time steps into account and uses
cycle detection as described in [BCWS11]. However, in their solution, under
certain constraints, the FMUs in a co-simulation can be simulated with dif-
ferent step-sizes, using interpolation if needed, to provide all inputs at the
required communication points. This approach is something we do not yet
support but are interested in pursuing due to the potential improvement in
simulation speed for certain multi-models.

4 Overview of the INTO-CPS Platform

This section gives an overview of the structure of the INTO-CPS tool chain.
First an introduction to the top-level structure is provided, centered on
the main interface to the tool chain, the INTO-CPS Application. Subse-
quent sections describe in more detail how the design of the tool chain fa-
cilitates the different phases of the co-simulation workflow as described in
Section 5 [FGPP15a].

4.1 The INTO-CPS Application

This section describes how the INTO-CPS Application interfaces with the rel-
evant tools of the INTO-CPS tool chain as shown in Figure 9. It can be seen
that the INTO-CPS Application is responsible for coordinating the simula-
tion with the Co-Simulation Orchestration Engine, Design Space Exploration
driver, and to generate test FMUs using the RT-Tester. The Modelio tool
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can export test models to the RT-Tester tool and co-simulation configura-
tions to the INTO-CPS Application. The connections in the figure represent,

INTO-CPS ApplicationModelio
P1: Export FMU topology

Co-Simulation Orchestration Engine

P
3:
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un
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ulation
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P5: Run Design Space Exploration

P3: Run simulation

Figure 9: Overview of the INTO-CPS Application

at an abstract level, communications in the direction of the arrow. These are
as follows:

P1: A protocol to extract FMU topologies from architectural models ex-
pressed in the INTO-CPS profile of SysML [APCB15]. The export
format is a partial co-simulation configuration containing the FMU
topology that the COE needs to perform a co-simulation.

P2: A protocol for model checking multi-models against user-defined prop-
erties.

P3: The simulation protocol documented in Appendix A. The protocol con-
trols a simulation through actions such initialization, executing simula-
tion steps, obtaining results and observing the status of the simulation.
The protocol requires a list of FMUs, their connections, design param-
eters, the type of simulation algorithm and configuration that must be
applied to it.

P4: This is the protocol to generate test FMUs. The protocol is command-
line based and essentially asks RT-Tester to generate a number of
FMU’s, all with the same interface, which can then be used in a sim-
ulation invoked by the INTO-CPS Application. The RT-Tester tool
must be pre-configured with a state diagram that may be modelled in
Modelio and then exported via XMI for RT-Tester.

P5: A protocol used to enter the designspace exploration phase. The DSE
script requires the same information regarding the co-simulation con-
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figuration as a single co-simulation, as it takes over the co-simulation
in order to explore optimal configurations.

4.2 System Modelling

This section describes the interactions and interfaces necessary between the
different tools such that Modelio may be used to layout a co-simulation con-
figuration graphically using the SysML profile described in Section 6.2. Once
the elements and connection topology of such a multi-model are laid out, the
information contained in the resulting SysML model can be exported to the
INTO-CPS Application for use in a co-simulation. For each SysML block,
Modelio exports the interface definition as an FMI ModelDescription.xml
file. This information can be used by the other applications as a start-
ing point, such that the models created there comply with the interfaces
as defined in the initial SysML multi-model. On the other hand, Modelio
can import existing FMUs and extract their interface definitions to create a
starting point for multi-model definition. These two workflows are facilitated
by interfacing Modelio with the other tools, as illustrated in Figure 10. The
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• excel
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Figure 10: Overview of the Modelio tool

connections in the figure represent, at an abstract level, protocols controlled
from the source of the arrows. These are as follows:

P1: A protocol that can be used to open a SysML model and obtain the
FMU connection topology.
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P6: Import of requirements from Excel, Word or OpenOffice documents.

P7: Export of FMI ModelDescription.xml file that contains the ele-
ments described in Appendix D.

P8: Import of existing FMU (ModelDescription.xml) in order to ex-
tract interface information for use inside the SysML multi-model.

P9: Imports the model description and creates an internal tool-specific struc-
ture that enables the tool to re-export the same model description, but
with the GUID updated and internal model structure added. See Sec-
tion 4.3.

4.3 Model Import / Code Generation

This section describes how the tools Overture, 20-Sim, OpenModelica, and
RT-Tester interface with model descriptions exported from Modelio. These
tools use these model descriptions as the base interface for the respective
models being developed. Once a model is developed, the different kinds of
FMUs that can be exported from these tools will respect the model descrip-
tion previously imported. The simulators Overture, 20-Sim and OpenModel-
ica can export two kinds of FMUs: standalone FMUs having no dependencies,
or tool wrapper FMUs which require the simulator to be present for simula-
tion. The RT-Tester tool is also capable of exporting FMUs, but will export
multiple versions of the same FMU which have different roles in a testing
context of the same system. In Figure 11 an overview is given of the inter-
faces between the tools. The various tools mentioned are represented here as
“Generic” and the models developed inside these tools are illustrated as the
internal model. When exported, this model will respect the model descrip-
tion imported. The connections in the figure represent, at an abstract level,
communications in the direction of the arrow. These are as follows:

P7: Modelio extracts FMU interface information from SysML multi-model
and exports it as ModelDescription.xml.

P10: Exports a tool specific model as a standalone FMU, i.e., one that is
self-contained and which does not require the tool to simulate.

P11: Exports a tool-specific model with a tool wrapper FMU, i.e., one that
requires the tool to be present for simulation.
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Figure 11: Overview of the import of ModelDescription.xml and code
generation.

4.4 Simulation

This section describes the interfaces involved in a co-simulation with primary
focus on the Common Orchestration Engine (COE). The interactions for the
COE is illustrated in Figure 12. It interfaces all FMUs according to the
INTO-CPS variant of the FMI standard. It is controlled and configured
through the INTO-CPS Application or the design space exploration driver.
The connections in the figure represent, at an abstract level, communications
in the direction of the arrow. These are as follows:

P12: This is the INTO-CPS variant of the FMI Standard. Further details
about its functions usage of the COE can be found in Appendix C.

P13: Live feedback for the INTO-CPS Application to enable monitoring of
changes to FMU output variables during simulation. See Appendix A.

The interaction between the COE (described in Section 6.3), the INTO-
CPS Application (described in Section 6.1, and the design space exploration
driver (described in Section 6.5) illustrated in Figure 12 shows how the COE
can simulate a multimodel based on a co-simulation configuration which de-
scribes the connection between the models and other relevant configuration
parameters. The protocol P13 illustrates live feedback from the COE to
the INTO-CPS Application allowing users to observe the progress of a co-
simulation. The design space exploration extension is comprised of a set of
predefined search algorithm scripts along with user definable evaluation and
ranking scripts that use an API to access the COE. During DSE, the driver
uses feedback from the user defined evaluation and ranking scripts to direct
the exploration until a set of optimal configurations have been obtained. The
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Figure 12: Overview of the COE

evaluation and ranking scripts obtain the data they need from the COE log
for each simulation run.

4.5 Model Checking

Model-checking takes place at two different levels of an INTO-CPS multi-
model. First, the RT-Tester Model-Based Test Case Generator (RTT-MBT),
which adds model-based testing functionality to the RT-Tester test system,
can model-check individual FMUs against desired properties, which are spec-
ified in LTL. Second, RTT-MBT will be able to model-check the complete
multi-model against desired properties. The model-checking interaction is
illustrated in Figure 13. RTT-MBT uses XMI-exported test models to carry
out both automated model-based testing, as well as model-checking at the
two levels, that is, single components as well as multi-models. Further details
are given in Section 6.7.
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Figure 13: Overview of model-checking and automated model-based testing.

5 Example Use Case for the INTO-CPS Tech-
nologies

The INTO-CPS technologies will enable new workflows for model-based de-
sign of CPSs from conception to realisation. Seven baseline technologies are
combined to form a tool chain that supports this. In order to give an over-
all picture of how these technologies come together, we give an illustrative
example of the technologies. We consider a putative development of a CPS,
from scratch, that utilises all features of the INTO-CPS technologies. We
simplify the workflow by omitting iteration or feedback between levels.

This is only one such way in which the technologies might be used. For
example, not every development will begin with an entirely blank state,
and therefore not all steps are necessary. The choice of approach will de-
pend on the experience of the team, their existing practices and the needs
of their customers. Deliverable D3.1a [FGPP15a] considers in more detail
how the INTO-CPS technologies might be used and what workflows they
enable.

In the following description, terms in bold are baseline tools or INTO-CPS
tools. Terms in italics correspond to activities in the ontology that produce
artifacts of traceability and provenance (Deliverable D3.1b [FGPP15b]).

• At each step in the development, engineers can store and retrieve arte-
facts using the INTO-CPS Application. Design rational and Design
Notes are attached to artefacts, as well as information about which en-
gineer created or modified them. Data can be retrieved to reconstruct
the design rationale at any time, enable traceability throughout the
entire design process.

• Using Modelio, engineers can construct an architectural model of a
system expressed in the SysML/INTO-CPS profile [APCB15]. Some
blocks (components or subsystems) have an associated model (either
discrete or continuous), to be described using some modelling language
(e.g., VDM-RT, OpenModelica, 20sim); these block with separate mod-
els result in FMUs. A SysML/INTO-CPS connections diagram pro-
vides the topology of the FMUs, and describes flow of information
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between the different system components.

• From the architectural model, RT-Tester can build an internal rep-
resentation of the system that is used to Create Tests and can also be
used for Model Checking.

• Modelio can Export FMI version 2.0 Model Descriptions for modelling
tools: Overture, OpenModelica, and 20-sim. Each modelling tool
can Import a Model Description to be used as a basis for Simulation
Modelling. Once models have been completed, each tool can Export an
FMU for co-simulation.

• Using the architectural model, the INTO-CPS Application can Cre-
ate a co-simulation configuration that forms the basis for a co-simulation
which can then be co-simulated by theCo-simulation Orchestration
Engine (COE).

• The Design Space Exploration (DSE) tool can be used to create
multiple configurations to co-simulate multiple variations of a design.
The DSE tool can be used to rank designs using objective functions
and feedback can cull unnecessary configurations and optimise designs.

• The COE can run co-simulations with one or more FMUs being re-
placed by signals from real hardware or from Code Generated by the
modelling tools. RT-Tester can create a Test Oracle FMU to run
tests against these elements of the prototype.

6 The INTO-CPS Tool chain

This section gives an introduction to the tools that are part of the INTO-
CPS tool chain, and provides information about where more information can
be found about the individual tools that are not described in detail in this
document.

6.1 The INTO-CPS Application

In the Spring semester of 2015 two MSc thesis students elicites requirements
of the user interface of the INTO-CPS tool [TC15]. This effort is taken
forward in the development of an INTO-CPS Application connected to the
different baseline technologies and the new INTO-CPS features from a com-
mon platform. This INTO-CPS Application is the main graphical interface
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of INTO-CPS tool chain. Its goal is to allows user to manage Co-Simulation
configuration, DSE runs, and FMU checker generation which will respectively
utilized by COE, DSE, and RTTester cf. Figure 9.

Developed as a collection of Eclipse plug-ins https://eclipse.org, it al-
lows the INTO-CPS Application to be independent of all INTO-CPS baseline
tool but also compatible with Modelio as so to have one unique interface for
INTO-CPS SysML Modelling Section 6.2 and Co-Simulation configuration.
The INTO-CPS Application is, for now, composed of two components:

File Browser: As shows in Figure 14 this plug-in provides an overview of
the INTO-CPS files - i.e. FMUs, Co-Simulation configurations, Run
Results.

Co-Simulation configuration editor: This plug-in provides an editor for
Co-Simulation configuration files. It allows the user to configure all
parameter of a Co-Simulation e.g. which FMUs is used, the connections
between them, initialize the inputs, and configure the algorithm and
the timing used for a given simulation as shown in Figure 15. The
configuration data follow the XSD Schema provided in Appendix E.

Figure 14: INTO-CPS Application
browser Figure 15: INTO-CPS Application

co-simulation configuration editor

Detailed information about how to use the INTO-CPS Application are avail-
able in [BLL+15]

6.2 The INTO-CPS SysML Modelling

To facilitate co-simulation the INTO-CPS project has extended SysML with
an INTO-CPS SysML profile [APCB15] that contains several extensions and
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a formal semantics of the INTO-CPS SysML. The SysML modelling in INTO-
CPS is implemented as a Modelio module, and is able to interface with the
INTO-CPS Application. The SysML profile allows the user to define the
FMU topology[BQS15] that can be exported to the INTO-CPS Application,
which then allows the user to specify additional information required for a
co-simulation such as: start- and end-time.

6.3 Co-Simulation Orchestration Engine

The Co-Simulation Orchestration Engine (COE) is the core engine that is
used for connecting different FMUs together in co-simulations in the INTO-
CPS project. The sources for this development are stored in a private Git
repository at https://github.com/twt-gmbh. The executable derived
from these sources is made freely available to all partners of the consortium
(as well as external parties) and released at regular intervals.

The COE is built as a service and serves its clients using JSON over the
HTTP protocol (see Appendix A), allowing clients to perform co-simulations
based on a co-simulation configuration that is composed of a number of
FMUs, their connections, parameters and the desired step-size algorithm.
The COE supports two types of step-size algorithms:

Fixed step size algorithm: This algorithm performs fixed size steps with
a predefined step size. However, the COE uses this algorithm in com-
bination with an error recovery feature that, under some constraints,
can progress a discarded fixed step by a smaller step. This enables an
otherwise fatal error to be recovered so the fixed step size algorithm
can continue to drive the simulation after the discarded step is recov-
ered. The recovery depends on the ability of all FMUs to roll-back and
provide status information about the last successfully simulation time.
If this is provided then COE will roll-back all FMUs and calculate a
smaller step size based on the current time and the minimum of the
last successful time the FMUs reported and do a step with that size
before resuming the use of the fixed step size algorithm.

Variable step size algorithm: This algorithm performs variable steps. The
algorithm is similar to Algorithm 2, and Algorithm 3 from [BBG+13a].
However our implementation of Algorithm 3 does not yet support step-
ping the FMUs that supports roll-back but not getMaxStepsize
first. The COE implementation automatically detects if the INTO-
CPS specific FMI extension to obtain the maximum step size for each
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FMU is available, and based on this selects the appropriate algorithm.
When using the variable variable step size algorithm then COE uses
constraints on the connections to make sure that a given step does not
result in instability [?] which is detected by a violation of one of the
constraints. See Appendix B for in-depth details on how the variable
step size calculation is performed.

6.3.1 FMI Integration

The COE supports version 2 of the FMI Standard, using dynamic load-
ing of FMUs. It utilizes the functions listed in Appendix C to orchestrate
co-simulations. The COE also supports an INTO-CPS specific function to
obtain the maximum step size that a given FMU can accept at a given syn-
chronization point during a co-simulation. The need for this function arises
from the assumption that a co-simulation should complete as fast as possible,
in combination with some looseness in the standard, whereby the roll-back
capability has to be provided by an FMU. The standard provides a way to
obtain the last successful simulation time once a simulation has failed, but if
this is used with FMUs which cannot roll-back, then each discarded doStep
will require a complete restart with a new step size which is the last smallest
step size known to have executed successfully. While it is possible to per-
form a simulation where all FMUs support roll-back it is not be possible to
incorporate an FMU with variable step size that cannot roll-back. However,
using the custom getMaxStepsize function presented here, together with
the variable step size algorithm [BBG+13a], avoids this kind of restart, the
need for roll-back, and thus enables faster co-simulations.

6.3.2 Co-Simulation Execution

A co-simulation can be performed by the COE as shown in Figure 16, where
transitions to the two states User configuration configured and User simula-
tion start-end time configured are triggered by the user through the INTO-
CPS Application by calling one of the initialize or simulate com-
mands from the protocol described in Appendix A.

The state machine Initialize is shown in detail in Figure 17. It shows the
phases through which the COE goes as it initializes for a given simulation.
The Simulate state represents the simulation proper, and is shown in detail
in Figure 18.
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Figure 16: Top level state machine of the COE.

The Initialization State The state machine starts by reading all model
description files embedded in the FMUs and validating their structure using
the schema from the FMI standard. In addition to this, it also validates them
using the semantic rules obtained from the textual description of the FMI
standard (i.e. rules which cannot be enforced by schema-based validation).
These include how scalar variables may be configured with their attributes,
and how the model structure must be laid out.

After the model descriptions are validated, the COE uses the co-simulation
configuration supplied by the user, through the INTO-CPS Application, to
configure inputs and outputs of all FMUs, checking that all connections are
valid, and caches these in lookup tables for execution. Then the libraries
implementing the FMU behaviour are extracted from the FMU zip archives
and dynamically loaded, followed by creation of all required FMU instances.
The number and name of the instances are obtained from the cached con-
nection tables. Finally, the COE extracts the log categories from the model
description of each FMU and returns these, together with a session ID, to
the INTO-CPS Application.

The Simulation State The simulation state machine shown in Figure 18
can only be entered if the COE has initialized the current session and if
the user has supplied the required start and the optional end time, and the
optional set of activated logging categories. It starts by setting the logging
categories, if supplied, followed by experiment setup, setting start and op-
tionally end times, allowing the FMUs to allocate internal memory for the
simulation. Initialization in this context refers to the FMI setX functions,
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Figure 17: View of the Initialize state machine from Figure 16.

where parameters and initial values are provided, and obtained either from
the model description or from the co-simulation configuration. After the
FMUs are initialized, the global state is obtained across all FMUs and co-
simulation stepping can begin starting by calculating the step size. This is
done either by using a fixed step size given be the user of the COE, or by
using a variable step size algorithm that uses a INTO-CPS specific extension
getMaxStepsize on each FMU and taking the minimum of the obtained
values. While the current time is less than the end time, stepping progresses
the FMUs by a single time step, as shown in Figure 19. When the end
time is reached, the COE terminates all FMUs and frees the allocated FMU
instances. If an error occurs during stepping, the simulation is aborted.

Stepping The Stepping state machine shown in Figure 19 either performs
the requested step in all FMUs and obtains the new global state, or if any
FMU discards the step size, and they all are able to roll-back and provide
information about the step size they can accept, then the COE will retry
with this new step size. Rolling back involves resetting to a previous state in
all FMUs and discarding the estimated derivatives. In case any of the FMUs
reports an error, or if they cannot all roll-back, then the COE exits with an
error.
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Figure 18: View of the Simulate state machine from Figure 16.
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Figure 19: View of the Stepping state machine from Figure 18.
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6.3.3 Performance Optimization

The execution time of a simulation is a crucial factor in increasing the use-
fulness to the user, and the uptake potential of the COE. As some FMUs
perform complex work in the stepping process, the time taken for different
FMUs to perform a step can vary greatly. Implementing concurrency in the
COE can decrease the execution time of a simulation and take full advan-
tage of available hardware [Han16]. To optimize the performance of different
simulations, it is necessary to implement different execution strategies, in-
cluding one where concurrency is not used at all. The different options to
optimize performance include, but are not limited to, letting the COE change
strategy between steps, providing feedback to be used in future simulations
and providing additional configuration options. Currently, different concur-
rency strategies are implemented, along with a test framework to measure
the performance of these and future strategies.

6.4 Integration of Simulation Tools

Fundamentally, integration of the individual tools which make up the INTO-
CPS tool chain is facilitated by compliance with the FMI standard version
2.0 for co-simulation. Deliverable D4.1b [PBLG15] describes how the tools
Overture [LBF+10], 20-sim [Bro97], and OpenModelica [Fri04] achieve com-
pliance with the FMI standard.

6.5 Design Space Exploration

The Design Space Exploration (DSE) extension of the INTO-CPS tool chain
allows a user to automatically explore a range of parameters and candidate
implementation options automatically while avoiding the problem of state
space explosion. The extension is launched from the main INTO-CPS appli-
cation but is actually a separate entity. The interested reader can find more
details about the DSE extension in [GHJ+15]. There is three main parts to
the extension:

DSE Driver This is the main component of the DSE extension, it has the
role of gathering the user’s desired parameter ranges and model de-
scriptions and to determine exactly which combinations of parameters
should be simulated next. The choice to parameters will be determined
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by which of the DSE search algorithms the user has elected to use given
the nature of the model and problem domain;

DSE Analysis has the role of processing the results of simulation to obtain
the key objective values by which it should be evaluated. Such anal-
ysis could be as simple as finding the maximum power consumed by
a device during the simulation, or it could be more complex such as
computing the deviation from a path or some temporal constraint over
the states visited during the simulation (the latter functionality will be
implemented in part using the RT-Tester tool, see Section 6.7); and

DSE Ranking Once the key objective values have been determined then
this data is processed to determine which parameters produced the
best results. The ranking can be via a ranking function, if the user
understands specifically what they are looking for; or by the pareto
optimal method, if the user wishes to find a range of best tradeoffs
between two or more of the objectives. If a closed loop DSE search
algorithm, such as a genetic method, has been chosen in the driver
then this ranking information is fed back to the driver for it to use
when selecting the next simulations to perform.

6.6 Test Automation

The test automation extension of the INTO-CPS tool chain allows users to
automatically generate test stimulations and test oracles from test models. In
principle, test models are collections of state charts which specify the desired
behaviour of the system-under test. The test case generate evaluates these
models, extracts a sequence of suitable stimulations for covering the test
model, and generates checks to detect deviations between the behaviour of
the System-Under-Test (SUT) and the test model. This functionality will be
implemented within the RT-Tester Model-Based Test Case Generator (RTT-
MBT) as a tool that is entirely independent of the INTO-CPS Application.
However, the configuration of the co-simulation environment itself and the
test automation functionality provided by RTT-MBT takes place entirely in
the main INTO-CPS Application. Further details are given in Deliverable
D5.1b [MPB15].
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6.7 Model Checking

Model checking in INTO-CPS shall be applied to discrete event (DE) test
models, but also support continuous time (CT) models via suitable abstrac-
tion mechanisms, see Deliverable D5.1c [BF15]. The RT-Tester Model-Based
Test Case Generator (RTT-MBT) is an upgrade for RT-Tester that adds
model-based testing to the RT-Tester test system. One particular feature of
RTT-MBT is bounded model checking (BMC) of LTL specifications for DE
systems, where the entire model to be checked consists of a SUT on the one
hand, and an environment model on the other. Arbitrary LTL specifications
can be verified, where the atomic propositions typically range over outputs of
the SUT, model variables that are internal to the SUT, and timers. For ex-
ample, let us assume that a test model shall express the following behaviour:
If some input voltage is below 10 units, the SUT shall set an output error flag
within 10 time units. This is a typical property to be checked using model
checking techniques in RTT-MBT.

The core feature of model checking in INTO-CPS is the integration and con-
figuration of different test models into a single SUT configuration, to which
established model checking techniques can then be applied. This approach
allows the combined behaviour of several components to be checked, and
takes into account the interaction between these components. The config-
uration has to be performed via the main INTO-CPS Application, which
then invokes RTT-MBT so as to perform the actual model checking. Details
about modelling the interfaces and connections between the different system
components are given in [BLL+15].

6.8 Code Generation

The INTO-CPS platform needs to be able to support the ability of code
generating sub models that are included in a multi-model. This will take
place using the individual baseline tools augmented with new code generation
features as needed by the case study owners fromWP1. The principles for the
code generators is further described in Deliverable D5.1d [HLG+15].

6.9 Provenance and Traceability

The ability to relate the many artefacts stored within the different tools is
an essential feature of the INTO-CPS tool chain. This feature has three
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different abilities:

• the ability to logically relate artefacts contained in the many tools, such
as relating a requirement to a model that implements it, this we refer
to as traceability;

• the ability to record the temporal links between entities produced dur-
ing the development, such as connecting simulation results and the
tools and models that created them, this we term the provenance; and

• finally the ability to query this stored data to produce useful informa-
tion for the various stakeholders of the project.

The success of the provenance and traceability activities will depend on the
tool support, which begins in year 2 of the project, but more so on a solid on-
tology of the INTO-CPS artefacts and relations that will be tracked. The ini-
tial work describing these elements is included in Appendix A of [FGPP15a]
and the interested reader is directed there to find more details. Initial explo-
ration of how this can be incorporated in the tool suite has been carried out
[Han16].

7 Release Management

The goal for release management in INTO-CPS is to establish a process
for officially and hopefully quality assured releases of the entire tool chain.
INTO-CPS involves a lot of tools, with completely independent development
and release schedules, and therefore a major INTO-CPS release consists of a
release bundle containing the released tools which includes a listing of these
tools with their respective versions that have been tested together and thus
guaranteed to work.

7.1 In practice

The release management team will make a online repository for partners to
deliver their build releases in binary form. These can be black box tested
to some extent using the FMU export support or other INTO-CPS specific
tool protocol. Uploading a new release will trigger a set of automated test
suites to be run, and if errors are found, then an error report will be sent to
developers responsible for that tool.
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If the initial automated tests pass then further tests may be made by the
release management team and once the quality has been assured the specific
release candidate of the newly uploaded INTO-CPS tool will be marked as
approved. Then the release manager can assemble a new INTO-CPS release
updating the previous release bundle with the new INTO-CPS tools that has
been approved since last release.

7.2 Releases

At certain scheduled dates (set by the project coordinator) stable releases
will be released to the INTO-CPS project, covering all the tools.

However, beta releases should be made available as soon as possible. Meaning
that, as soon as a new tool release has been marked approved by the release
management team it must become available online for the the INTO-CPS
project.

7.3 Dependencies

The INTO-CPS tools have dependencies to either the FMI standard ver-
sion or other INTO-CPS tools. Therefore we except to create a simple
way for specifying tool dependencies. The initial idea is as follows: Each
release is uploaded as a single zip-file. Inside this file there must be a
into-cps-dependencies.txt specifying dependencies to other INTO-
CPS tools. The format of the file contents will be similar to that used in
Pip packages, or Bower packages (Python, and JavaScript package manage-
ment system, respectively[pip, npm]). For example, if a tool depends on
version 2.0.4 of Overture or newer than the file would have a line like so:
overture>=2.0.4.

8 Conclusion

During the first year of the INTO-CPS project a lot of effort has been de-
voted to establishing the best approaches for connecting the different baseline
tools and their extensions to from an INTO-CPS tool chain. This includes
the different XML formats as well as the protocols necessary for connecting
the different features in a seamless fashion that will become natural for users
of the tool chain. There is not yet full connectivity but the design for the
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different ways of interacting has been completed in the first year. At the core
of the tool chain a first stable FMI-based COE able to act both with fixed as
well as variable time steps has been produced and the different baseline mod-
elling and simulation tools have been extended to export FMUs. In addition
to this center of the INTO-CPS tool chain coverage along the development
process has been started up with extensions of Modelio with export of model
descriptions of the interfaces for the different FMUs to be included in a CPS
as well as export of the overall composition of the constituent models in-
cluded and combined in the model of the CPS. This means that connections
between many individual tools has been established and in addition plans for
the connections that will be established in the second year of the project has
been established as well. All in all we feel that good progress on establishing
the overall platform for the INTO-CPS tool chain has been made during the
first year of the project.
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A The COE Protocol

The COE protocol is based the HTTP protocol where payloads are send
as JSON data, using a similar approach as Representational State Transfer
(REST). However, the COE keeps state opposed to RESTful. The format
used to describe each command is that its URL is listed and any arguments
are prefixed with a colon, e.g. “:section”.

The COE operates as a server where co-simulations can be carried out. Once
a co-simulation is requested a session is created and the sessionId is re-
turned and must be used in any further communication with the COE for
the particular co-simulation. The following sections will list the API for the
COE where each command has it own section. The minimum required com-
mand sequence for a co-simulation is: initialize, simulate, result, and the
destroy.

A.1 COE Information

Information about the COE is available at:

http://localhost:8082/

This returns an html page viable in a standard browser listing the COE
version and with links to the API command.

A.2 The API Command

The command is available at:

http://localhost:8082/api

or the following for a PDF version:

http://localhost:8082/api/pdf

If successful, the command returns one of two types of content:

Content-Type: application/pdf A PDF version of the COE protocol part
of this document.
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Content-Type: text/plain The LaTeX source file for COE protocol part
of this document.

The returned content contains the COE protocol part of this document in
the format specified.

A.3 The Status Command

The command is available at:

http://localhost:8082/status/:session

The command takes the following arguments:

:session Optional session id filtering the returned data array

The command returns the following response on success:
1 [
2 {
3 "status":"idle",
4 "sessionid": -1
5 }
6 ]

Listing 1: JSON status payload

If no session ID is given, an array of all session statuses are returned.

A.4 The Initialize Command

The command is available at:

http://localhost:8082/initialize

The command takes no arguments but requires a JSON payload, Content-
Type: application/json containing the following entries:

fmus A list of the location of the FMUs.

connections Amap of connections, output to inputs. The format is <GUID>.
<instance name>.<scalar variable name>.

<GUID> the guid from the model description in the FMU.
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<instance name> any name not containing dot. Each name is used
to identify a unique instance of the FMU.

<scalar variable name> may contain any FMI version 2.0 al-
lowed characters including dot.

parameters A map from parameter to value.

algorithm Step size algorithm configuration:

fixed-step A fixed step size algorithm is available requiring a step size
to be specified.

1 {
2 "fmus":[
3 "file://controller.fmu",
4 "file://tank.fmu"
5 ],
6 "connections":{
7 "{guid-controller}.instance1.valve":"[{guid-tank}.

instance1.valve"],
8 "{guid-tank}.instance1.level":["{guid-controller}.

instance1.level"]
9 },

10 "parameters":{
11 "maxLevel":8,
12 "minLevel":2
13 },
14 "algorithm":{
15 FIXED-STEP-SIZE-CONFIG or VARIABLE-STEP-SIZE-CONFIG
16 }
17 }

Listing 2: JSON co-simulation payload

FIXED-STEP-SIZE-CONFIG The fixed step size configuration contains
the following:

1 "type":"fixed-step",
2 "size":0.1

VARIABLE-STEP-SIZE-CONFIG The variable step size configuration con-
tains the following:

1 "type":"var-step",
2 "size":[1E-6, 1.0],
3 "initsize":1E-4,
4 "constraints":{
5 STEPSIZE-CONSTRAINT*
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6 }

Where the properties are defined as:

type:"var-step" selects the variable stepsize calculator (each al-
gorithm has a type).

size:[<minimal stepsize> , <maximal step size>] defi-
nes the stepsize interval as an array of double values.

initsize:<initial stepsize> defines the initial stepsize as dou-
ble value.

constraints: defines the stepsize constraints as follows:
1 "id":{
2 type:"[zerocrossing|boundeddifference|

samplingrate]",
3 ...
4 }

The id is a string that is used to identify a constraint e.g. in the
log. All constraints have a single common name-value pair with
name type. The value of type specifies the type of the con-
straint; the other name-value pairs of the constraint depend on the
value of type. The zerocrossing is described in section A.4.1,
boundeddifference in section A.4.2, and samplingrate in
section A.4.3.

The command returns the following response on success:
1 {
2 "status":"initialized",
3 "sessionid": 1234,
4 "avaliableLogLevels":{
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":[
6 {
7 "name":"logAll",
8 "description":"Description of this loggin level"
9 },

10 {
11 "name":"logError",
12 "description":null
13 }],
14 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.controller":[
15 {
16 "name":"logAll",
17 }]
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18 }
19 }

Listing 3: JSON initialization payload

The avaliableLogLevels value will be specific to the FMUs given in the
initial payload. The generated sessionid is the ID that must be supplied
in any subsequent calls.

A.4.1 Definition of a Zero Crossing Constraint

A constraint of "type":"zerocrossing" is defined by
1 "id":{
2 "type":"zerocrossing",
3 "ports":[
4 "<guid>.<instance>.<outport>",
5 "<guid>.<instance>.<outport>"
6 ],
7 "order":[1|2],
8 "abstol":<double>,
9 "safety":<double>

10 }

Listing 4: JSON zerocrossing constraint payload definition

where the second entry in the ports list and the attributes order, abstol
and safety are optional. The name-value pairs have the following mean-
ing.

• ports: Defines the zero crossing function f as an array of strings of
size 1 or 2. If one output port is provided, then f is the value of that
output port. If two output ports are provided, then f is the difference
between the values of the first and second output ports. Any other size
of the string array is not supported.

• order: This name-value pair is optional; it specifies the extrapolation
order that is used to predict a zero crossing (see Section B.3.1). First
and second order extrapolation are supported. The default is second
order extrapolation.

• abstol: This name-value pair is optional; it specifies the absolute
tolerance. The stepsize calculator attempts to adjust the stepsize such
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that at a time instant tZC the absolute value of the zero crossing func-
tion f is smaller or equal to the absolute tolerance, |f(tZC)| ≤ abstol.
The default value for the absolute tolerance is 10−3.

• safety: This name-value pair is optional; it adjusts the conservatism
of the zero crossing prediction. The neutral default value is 0.0. If the
variable stepsize calculator fails to resolve a zero crossing of a particular
co-simulation within the absolute tolerance (and the minimal stepsize
is not the limiting factor), then the value for safety can be increased
for more conservatism in the zero crossing prediction. Negative values
for less conservatism are mathematically possible, but should probably
not be used.

A.4.2 Definition of a Bounded Difference Constraint

A constraint of "type":"boundeddifference" is defined by
1 "id":{
2 "type":"boundeddifference",
3 "ports":[
4 "<guid>.<instance>.<outport>"
5 ,"<guid>.<instance>.<outport>"
6 ,"<guid>.<instance>.<outport>"
7 ...
8 ]
9 ,"abstol":<double>

10 ,"reltol":<double>
11 ,"safety":<double>
12 ,"skipDiscrete":<boolean>
13 }

Listing 5: JSON boundeddifference constraint payload definition

where entries after the first in the ports list and the attributes abstol,
reltol, safety and skipDiscrete are optional. The name-value pairs
have the following meaning.

• ports: Defines a set of values whose minimal and maximal value shall
have a bounded difference. The set of values is defined by a non-empty
array of strings. If one output port is provided, then the set of values
comprises that output port’s current value and its previous value. If at
least two output ports are provided, then the set of values comprises
the output ports’ current values.
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• abstol: This name-value pair is optional; it specifies the absolute
tolerance. The stepsize calculator attempts to adjust the stepsize such
that the absolute difference between the minimal and maximal value is
smaller than the value of abstol. The default value for the absolute
tolerance is 10−3.

• reltol: This name-value pair is optional; it specifies the relative
tolerance. The stepsize calculator attempts to adjust the stepsize such
that the relative difference between the minimal and maximal value is
smaller than the value of reltol. The default value for the relative
tolerance is 10−2.

• safety: This name-value pair is optional; it adjusts the conservatism
of the algorithm that selects the next stepsize. The neutral default
value is 0.0. If the variable stepsize calculator fails to keep the difference
bounded (and the minimal stepsize is not the limiting factor), then the
value of safety can be increased for more conservatism in the stepsize
selection algorithm. Small negative values above αRISKY − 1, i.e. per
default above −0.4 (see Table 3), are possible for less conservatism.
Negative values below or equal to αRISKY−1 lead to undefined behavior
of the difference bin assignment algorithm (see Section B.4).

• skipDiscrete: This optional name-value pair is by default set to
true, i.e. the skipping over previous stepsizes that were limited by
discrete constraints (see Section B.7.3) is by default enabled. It may
be disabled by setting this value to false.

A.4.3 Definition of a Sampling Rate Constraint

A constraint of "type":"samplingrate" is defined by
1 "id":{
2 "type":"samplingrate",
3 "base":<integer>,
4 "rate":<integer>,
5 "startTime":<integer>
6 }

Listing 6: JSON samplingrate constraint payload definition

with the following name-value pairs.

• base: Defines the exponent of 10 of the time base in seconds.

• rate: Defines the sample rate in multiples of 10base.
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• startTime: Defines the occurrence of the first sample hit in multiples
of 10base.

A.5 The Simulate Command

The command is available at:

http://localhost:8082/simulate/:session

The command takes the following arguments and requires a JSON payload,
Content-Type: application/json, and executes a co-simulation that is already
initialized with the supplied session id:

:session The session ID.

The Data payload:
1 {
2 "startTime":0.0,
3 "endTime":10.1,
4 "logLevels": {
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":
6 ["logAll", "logError"],
7 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.tank":
8 ["logError"]
9 }

10 }

Listing 7: JSON simulate payload

The payload contains the start and end time interval plus the log levels.

The command returns the following response on success:
1 {
2 "status":"simulating",
3 "sessionid": 1234
4 }

Listing 8: JSON status payload

A.6 The Result Command

The command is available at:
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http://localhost:8082/result/:session/:type

The command takes the following arguments, and based on these returns the
result:

:session The session ID.

:type Optional parameter. Possible parameters are: plain/zip and default
is plain.

The command returns the following response on success. A response supports
two return formats selected by the :type argument and indicated using the
content type:

Content-Type: application/zip Returns a zip file containing the initial-
ization data + start data + the result obtained during the simulation

Content-Type: text/plain Returns the result obtained during the simula-
tion as text. The result is a CSV formatted string with: time, stepsize,
and all outputs at that time

A.7 The Destroy Command

The command is available at:

http://localhost:8082/destroy/:session

The command takes the following arguments:

:session The session ID.

The command destroys a session and releases all resources bound to the
session on success full termination.

A.8 The Reset Command

The command is available at:

http://localhost:8082/reset

The command resets the COE to its initial state on success full termina-
tion.
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B Variable Stepsize Calculation

Three of the four constraint types (Zero Crossing, Bounded Difference, and
Sampling Rate) are defined in a JSON file that is posted to the COE with the
initialize command (see Section A.4), and one (FMU-requested) is requested
by the simulated FMUs.

After initialization, the variable stepsize calculator holds a set of constraint
handlers. Each handler is responsible for one constraint. When asked for the
next stepsize by the COE, the variable stepsize calculator asks each handler
for the next stepsize and returns the minimum of these values.

B.1 Interface with the Master Algorithm

The variable stepsize calculator is called by the master algorithm (COE)
before each doStep. The step size calculator is provided with the current
time, the previous stepsize, the current output values, and the (estimated)
output derivatives of the FMUs. The variable stepsize calculator returns to
the master algorithm the next stepsize.

After a doStep, the master algorithm asks the variable stepsize calculator
to validate the taken step, i.e. to check whether any constraints have been
violated. If that is the case, a warning is issued. If all FMUs support rollback,
a rollback is initiated and the master algorithm asks the variable stepsize
calculator for a new, reduced stepsize.

The algorithm for derivative estimation, see Section B.3.2, has been moved
from the variable stepsize calculator to the COE. This is done so that the
master algorithm may estimate derivatives and supply these to FMUs that
have the capability canInterpolateInputs. To be clear, if the FMU that sup-
plies these signals also provides derivatives, these are used, but if that FMU
has maxOutputDerivativeOrder = 0 (or ≤ 1 in the case of second order
input derivatives), the estimated values are used.

B.2 Constraint Types

There are four constraint types,

• Zero Crossing

• Bounded Difference
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• Sampling Rate

• FMU-requested,

of which the first three are defined in the JSON file (see Section A.4). The
fourth constraint, FMU-requested, is not defined in the JSON file but is
coded in an FMU and reported by the FMU when the COE queries for it
(see Section B.6).

B.3 Zero Crossing Constraints

A zero crossing constraint is a continuous constraint. A zero crossing occurs
at the point where a function changes its sign. In simulation, it can be
important to adjust the stepsize such that a zero crossing is hit (more or
less) exactly. For instance, a ball should rebound from a wall exactly when
the distance between the ball and the wall hits zero and not before or after
that.

A solver in a tool such as 20-sim, Open Modelica, or Simulink can adjust
the stepsize using iterative approaches, but in a co-simulation a rollback of
the participating models’ internal states is in general not possible or efficient.
Hence, the variable stepsize calculator bases its stepsize adjustments on the
prediction of a future zero crossing.

B.3.1 Extrapolation

To predict a future zero crossing, the zero crossing function f must be ex-
trapolated.

For first order extrapolation,

f(t+ ∆t) = f(t) + ḟ(t)∆t

is used.

For second order extrapolation,

f(t+ ∆t) = f(t) + ḟ(t)∆t+ 0.5f̈(t) (∆t)2

is used.
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B.3.2 Derivative Estimation

The derivatives ḟ(t) and f̈(t) are either provided by the FMUs (if the ca-
pability maxOutputDerivativeOrder is high enough), or estimated. For first
order extrapolation, the last two data points are used to estimate the first
derivative. For second order extrapolation, either the last three data points
are used to estimate the first and second derivate, or, if the FMU provides
the first but not the second derivative, the last two data points and their
first derivatives are used to estimate the second derivative.

B.3.3 Extrapolation Error Estimation

Extrapolation will generally incur an extrapolation error; the variable step-
size calculator estimates that error based on past extrapolation errors. After
completion of a time step, the variable stepsize calculator compares the actual
value x of the zero crossing function f with the value x̂ that was predicted
one time step earlier. The estimated extrapolation error ε̂ follows

ε←
{
αε̂+ (1− α) |x− x̂| if ε̂ > |x− x̂|
|x− x̂| otherwise

}
(1)

i.e. it decreases slowly (α = 0.7) with a first order IIR-filter rule when the
extrapolation error becomes smaller, and rises abruptly to the actual value
when the extrapolation error becomes larger.

B.3.4 Estimation of the number of timesteps to a zero cross-
ing

The variable stepsize calculator (conservatively) estimates the number of
timesteps n to hit the predicted zero crossing f(tZC) = 0 at time tZC , when
starting from the current time t (with t ≤ tZC) and when keeping the current
stepsize ∆t constant, to

n =
tZC − t

∆t
· 1

1 + ε̂+ σ
(2)

with ε̂ the estimated extrapolation error and σ the (additional) level of con-
servatism optionally specified by the attribute safety in the JSON config
file.
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The rationale of this equation is that the left term predicts the zero crossing
exactly when the zero crossing function f is, in the case of first order extrapo-
lation, a straight line, or, in the case of second order extrapolation, a straight
line or second order parabola. An extrapolation error generally occurs for all
other functions f , with the danger of overestimating n and thus potentially
choosing a too large stepsize (that steps over the zero crossing with the con-
sequence that the tolerance of the zero crossing may be violated). Therefore,
n is conservatively underestimated. The degree of this conservatism is de-
fined by the second term and depends on both the (time-varying) estimated
extrapolation error ε̂ and the (constant) value of the safety attribute σ.

B.3.5 Detection of unstable oscillations

Unstable oscillations around the zero crossing are detected by monitoring the
last three data points and checking whether these lie on alternating sides of
the zero crossing and increase in absolute value.

B.3.6 Stepsize adjustment strategy

The chosen stepsize ∆t is in most cases determined by a factor ρ that is
multiplied with the previous stepsize ∆tprev (and saturated to lie within the
specified stepsize interval). The stepsize is said to be adjusted to hit the zero
crossing when ρ = n (for n ≤ 1). The stepsize is said to be tightened when
ρ = TIGHTENING_FACTOR. The stepsize is held constant, when ρ =
1. The stepsize is said to be relaxed when ρ = RELAXATION_FACTOR.
The stepsize is said to be strongly relaxed when ρ = STRONG_RELA-
XATION_FACTOR. The default values for these factors are listed in
Table 1.

Table 1: Default values for the stepsize adjustment factors.
TIGHTENING_FACTOR 0.5
RELAXATION_FACTOR 1.2
STRONG_RELAXATION_FACTOR 3.0

By inspecting the last two data points, the direction of the simulated trajec-
tory with respect to the zero crossing can be either:

• distancing zero crossing,

• approaching zero crossing,
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• crossed zero.

When distancing a zero crossing, the stepsize is strongly relaxed.

When approaching a zero crossing, the current value of the zero crossing func-
tion, f(t), is compared to the value of the absolute tolerance, abstol.

If

|f(t)| ≤ abstol · TOLERANCE_SAFETY_FACTOR (3)

with TOLERANCE_SAFETY_FACTOR ≤ 1.0 and a default value of
0.5, then f(t) is said to be well within tolerance, and the stepsize is re-
laxed (the zero crossing has not yet occurred but is already precisely re-
solved).

If

|f(t)| ≤ abstol (4)

then f(t) is said to be within tolerance, and the stepsize is held constant (the
zero crossing has not yet occurred but is already resolved).

If

|f(t)| > abstol (5)

then f(t) is said to be outside tolerance, and the (conservatively) estimated
value for the number of timesteps to hit the predicted zero crossing, n, is
considered.

• If n ≤ 1, then the stepsize is adjusted to hit the zero crossing.

• If 1 < n ≤ δtighten, then the stepsize is tightened.

• If δtighten < n ≤ δrelax, then the stepsize is held constant.

• If δrelax < n ≤ δstronglyrelax, then the stepsize is relaxed.

• If δstronglyrelax < n, then the stepsize is strongly relaxed.

The default values of the parameters δi are listed in Table 2.

When the simulated trajectory crossed zero in the previous time step, it is
checked whether or not unstable oscillations around the zero crossing are
building up.
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Table 2: Default values of the distance bin separators for the number of
timesteps to hit a predicted zero crossing.

δtighten 1.8 (= 1.5 ·RELAXATION_FACTOR)
δrelax 3.0 (= STRONG_RELAXATION_FACTOR)
δstronglyrelax 30.0 (= 10.0 · δrelax)

• If unstable oscillations occur, and f(t) is well within tolerance, then the
stepsize is held constant.

• If unstable oscillations occur, and f(t) is within tolerance, then the
stepsize is tightened.

• If unstable oscillations occur, and f(t) is outside tolerance, then the
stepsize is set to its minimal value.

• If unstable oscillations do not occur, and f(t) is well within tolerance,
then the stepsize is relaxed.

• If unstable oscillations do not occur, and f(t) is within tolerance, then
the stepsize is held constant.

• If unstable oscillations do not occur, and f(t) is outside tolerance, then
the stepsize is tightened.

The final three reactions (when unstable oscillations do not occur) are some-
what conservative, with the intention of discouraging possible oscillations
around the zero crossing from developing. Therefore, the stepsize immedi-
ately after the zero crossing is kept small.

Altogether, these are the 14 possible reactions of the variable step size cal-
culator to exhaustively handle a zero crossing constraint.

B.4 Bounded Difference Constraints

A bounded difference constraint is a continuous constraint. A bounded dif-
ference ensures that the minimal and maximal value of a set of values do not
differ by more than a specified amount (the underlying assumption is that this
difference becomes smaller when the stepsize is reduced). For the definition
of a bounded difference constraint in the JSON file, see Section A.4.2.

The capability to impose a bounded difference can be useful in co-simulation,
for instance, in the calculation of the heat exchange between model A of
temperature TA and model B of temperature TB. Here, at least one of the
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models must calculate the heat flow, which is a function of both TA and
TB. The model that calculates the heat flow, say model A, knows its own
temperature TA but only has a view, TB,view, on model B’s true temperature
TB. To bound the error of the calculated heat flow, a bounded difference
between TB and TB,view is imposed.

The bounded difference problem is distinct from the zerocrossing problem in
that there is not a specific time instant (the zero crossing) to hit, but rather a
specific time difference (the stepsize that keeps the difference bounded).

To choose the next stepsize, the current absolute and relative differences be-
tween the minimal and maximal values, δA and δR, are calculated and com-
pared to the absolute and relative tolerances, εA and εR, respectively. Based
on this comparison, the absolute and relative differences are each assigned to
one of five distance bins. With the safety factor

σ =
1

1 + safety
, (6)

with i = A,R, and with the default values of the parameters

αSAFE ≤ αTARGET ≤ αRISKY ≤ 1 (7)

listed in Table 3,

Table 3: Default values of the parameters used in the distance bin assignment
of the bounded difference algorithm.

αRISKY 0.6
αTARGET 0.4
αSAFE 0.2

the bins are determined. If

• δi > εi , then the difference i is assigned to the VIOLATION bin.

• εi ≥ δi > εiσαRISKY , then the difference i is assigned to the RISKY
bin.

• εiσαRISKY ≥ δi > εiσαTARGET , then the difference i is assigned to the
TARGET bin.

• εiσαTARGET ≥ δi > εiσαSAFE , then the difference i is assigned to the
SAFE bin.
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• εiσαSAFE ≥ δi , then the difference i is assigned to the SAFEST bin.

Of the two assigned distance bins, the less safe one (the one ranking higher
in the bullet list above) is chosen. If this distance bin is the

• VIOLATION bin, then the stepsize is strongly tightened.

• RISKY bin, then the stepsize is tightened.

• TARGET bin, then the stepsize is held constant.

• SAFE bin, then the stepsize is relaxed.

• SAFEST bin, then the stepsize is strongly relaxed.

A strongly tightened stepsize means that δ = STRONG_TIGHTENING_-
FACTOR with default value 0.01 is multiplied with the previous stepsize
(∆t)prev to obtain the next stepsize ∆t. The meaning of the other stepsize
adjustments is analogous to the implementation of the zero crossing algo-
rithm (see Section B.3.6). The chosen stepsize is saturated to the stepsize
interval.

This algorithm for the bounded difference handler tries to adjust the step-
size such that it is kept within the TARGET bin throughout the simulation.
Because a variable stepsize calculator in a co-simulation cannot (efficiently)
obtain the stepsize through an iterative approach, it needs to make fairly
sure that the stepsize it selects does not lead to a tolerance violation. The
stepsize calculation must therefore be somewhat conservative, which is es-
sentially manifested in the RISKY bin as a buffer between the TARGET and
VIOLATION bins.

On the safe side of the TARGET bin, two bins must exist. The SAFE bin
has an associated relaxation factor that is small enough so that a stepsize
relaxation should not lead to an overshoot of the bound difference beyond
the TARGET bin in the next time step. The SAFEST bin has an associated
strong relaxation factor that is equal to the strong relaxation factor used by
all other continuous constraints to prevent interference between continuous
constraints (see Section B.7.1).

Note that the above described algorithm of the Bound Difference handler is
extended below to prevent interference by discrete events (see Section B.7.3).
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B.5 Sampling Rate Constraints

A sampling rate constraint is a discrete constraint. It constrains the stepsize
such that repetitive, predefined time instants are exactly hit. This can be
useful in co-simulation, for instance, when a modeled control unit reads a
sensor value every x milliseconds.

For the definition of a sampling rate constraint in the JSON file, see Sec-
tion A.4.3.

The chosen stepsize is either the time difference between the current time and
the time instant of the next sampling, or the maximal stepsize, whichever is
smaller. Note that the minimal stepsize may be violated to hit a sampling
event.

B.6 FMU-requested Constraints

A constraint requested by an FMU is a discrete constraint. A proposal is
underway to extend the FMI standard with the procedure

fmi2Status fmi2GetMaxStepSize(fmi2Component c,

fmi2Real *maxStepSize);

so that an FMU can report in advance the maximal stepsize that it will accept
in the next time step. The variable stepsize calculator queries all FMUs for
these stepsizes and uses the minimum of the reported values as upper bound
for the next stepsize.

B.7 Interference between constraint handlers

When multiple constraints are present, their handlers may interfere with
each other in the sense that one constraint may become active only because
another one has been active in the previous step. Measures are taken to
counter such interference.

B.7.1 Interference between continuous constraints handlers

Interference between continuous constraint handlers occurs when
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1. in one time step, Constraint A is active (i.e. constrains the stepsize);

2. in the next time step, the handler for Constraint A relaxes the stepsize
by a factor ρA > 1, and

3. Constraint B becomes active – not because its handler protects against
a potential violation, but only because it cannot relax the stepsize by
more than a factor ρB < ρA.

To prevent such interference, all continous contraints must have the same
value for their respective maximal relaxation factors. Therefore, in the
implementation of the variable stepsize calculator, STRONG_RELAXA-
TION_FACTOR is the maximal relaxation factor for both Zero Crossing
and Bounded Difference constraints and defined in the scope of the whole
calculator – not in the scope of individual constraints (as other factors are).
When constraints relax strongly, STRONG_RELAXATION_FACTOR
is used .

(Strictly speaking, when all continuous constraints relax strongly with the
same relaxation factor, they all become active. The important point is that
none of them slows down the relaxation process unnecessarily by relaxing
less than the others.)

B.7.2 Interference between discrete constraints handlers

Discrete constraints handlers base their stepsize requirements on independent
time instants and therefore do not interfere with each other.

B.7.3 Interference between discrete and continuous constraint han-
dlers

When a discrete constraint handler has limited the stepsize in the previous
step, the question arises how a continuous constraint handlers shall proceed
with its calculation of the next stepsize. The situation that shall be avoided
is this: All continuous constraint handlers would allow a large stepsize, but
a discrete constraint handler enforces a sudden, strong reduction of the step-
size. In the steps that follow, there are no discrete events, but the continuous
constraint handlers require potentially many steps to repeatedly strongly re-
lax the stepsize until it becomes large again.

The solution to this problem is different for Zero Crossing and Bounded
Difference constraint handlers.
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Extension of the Zero Crossing handler To prevent the above de-
scribed undesired situation, Zero Crossing handlers calculate the next step-
size based on the last stepsize that was not limited by a discrete constraint.

To be precise, a Zero Crossing handler uses the previous data points irre-
spective of the previously active constraints to calculate the extrapolation.
But when it calculates the next stepsize, it discards all previous stepsizes
that were limited by a discrete constraint and chooses the last stepsize that
was limited by a continuous constraint. With the thus chosen previous step-
size (and the result of the extrapolation), the handler calculates the factor ρ
that is multiplied to the chosen previous stepsize in order to obtain the next
stepsize. With this approach, introduced discrete events do not markedly af-
fect the tightening and relaxation of the stepsize selected by a Zero Crossing
handler.

This approach is safe, in the sense that a zero crossing should not be crossed
prematurely, for two reasons. First, introduced discrete events always shorten
the stepsize when approaching the zero crossing, which is conservative. Sec-
ond, the assumed previous stepsize may be larger than the true previous
stepsize (that was limited by a discrete constraint handler), but this does
no harm: The calculation of the next stepsize is based on the number of
timesteps to the predicted zero crossing, n, with the assumption that the
(assumed) previous stepsize is held constant. When the previous stepsize is
larger, n becomes smaller, favoring a stronger tightening of the next step-
size in particular close to the zero crossing, where the stepsize is adjusted to
hit.

Essentially, the Zero Crossing handler can safely ignore previous stepsizes
that were limited by discrete constraints because it needs to hit a time in-
stant (i.e. the zero crossing) and that time instant does not depend on
the previous stepsizes (time differences). The situation is different for the
Bounded Difference handler.

Extension of the Bounded Difference handler Whereas the Zero Cross-
ing handler needs to hit a time instant (i.e. the zero crossing) that does not
depend on the previous stepsizes (time differences), the Bounded Difference
handler needs to limit a value difference that does depend on the stepsize.
When the Bounded Difference handler notices that the previous stepsize was
limited by a discrete constraint, it may proceed in either of two ways.

First, the Bounded Difference handler could simply go forward as usual (i.e.
it calculates the next stepsize by scaling the previous stepsize by the factor
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that is associated with the determined diffe-rence bin). Because the previous
stepsize was limited by a discrete event and was therefore shorter than the
stepsize that the Bounded Difference handler would have chosen, this strategy
will frequently lead to the stepsize being relaxed or strongly relaxed.

Second, the Bounded Difference handler could take the last stepsize that
was limited by a continuous constraint and repeat the decision it made then
on that stepsize. To prevent that a repeated decision overly relaxes the step-
size, the repeated decision will hold the stepsize constant whenever the past
decision was to relax or strongly relax it. To prevent that a repeated decision
overly tightens the step-size, the chosen next stepsize may never be smaller
than the one obtained with the above (usual) strategy.

By default, the second strategy is enabled. However, in rare cases that strat-
egy may lead to a tolerance violation (a chain of discrete events could carry
a past decision to hold the stepsize constant through time; when the chain of
discrete events stops, the stepsize will be held constant in the next step but
it might have needed to be tightened instead). Therefore, it is possible to dis-
able the second strategy by setting the optional attribute "skipDiscrete"
to false in the JSON configuration file (see Section A.4.2).

to the definition of the Bounded Difference constraint in the JSON config file.
When the second stra-tegy is disabled, an active discrete constraint will likely
reduce the next stepsize(s) proposed by the Bounded Difference constraint
handler, potentially reducing efficiency.

B.8 Logging

The variable stepsize calculator writes to the same log as the COE.

When a step is taken with maximal stepsize, the variable stepsize calculator
produces no log output.

When a step is taken with a less than maximal stepsize, the variable stepsize
calculator logs the identifiers of the active constraints and the action of their
handlers. For instance, a log entry would read

Time 0.9499999999999998, stepsize 0.09, limited by constraint

"bd" with decision to hold the stepsize constant

(absolute difference within target range)
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When all continuous constraints relax strongly, the log entry does not list all
constraints but is shortened to

Time 5.000458745644138, stepsize 9.536808544011453E-4,

all continuous constraint handlers allow strong relaxation

When a Zero Crossing constraint handler detects a zero crossing, it produces
a log entry which would read, for instance,

A zerocrossing of constraint "zc" occurred in the time interval

[ 14.999971188014648 ; 15.000117672389647 ] and was hit

with a distance of 0.18103104302103257

When the variable stepsize calculator detects that a constraint has been
violated in the previous step, it logs a warning. For instance, such a warning
would read

Absolute tolerance violated!

| A zerocrossing of constraint "zc"

| occurred in the time interval [ 4.998123597131701 ;
5.008123597131701 ]

| and could only be resolved with a distance of
11.789784201164633

| which is greather than the absolute tolerance of 1.0

| The stepsize equals the minimal stepsize of 0.01 !

| Decrease the minimal stepsize

or increase this constraint’s tolerance

C FMI integration of the COE

The table presented in Table 4 lists all FMI version 2.0 functions plus the
custom INTO-CPS functions. It also indicates where the COE uses the
functions.
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Common Functions Usage
getTypesPlatform Not used
getVersion Main algorithm
setDebugLogging Main algorithm
instantiate Main algorithm
freeInstance Main algorithm
setupExperiment Main algorithm
enterInitializationMode Main algorithm
exitInitializationMode Main algorithm
terminate Main algorithm
reset Not used
getReal Main algorithm
getInteger Main algorithm
getBoolean Main algorithm
getString Main algorithm
setReal Main algorithm
setInteger Main algorithm
setBoolean Main algorithm
setString Main algorithm
getFMUstate Main algorithm
setFMUstate Main algorithm
freeFMUstat Main algorithm
serializedFMUstateSize Ignored
serializeFMUstate Ignored
deSerializeFMUstate Ignored
getDirectionalDerivative not used

Functions for FMI2 for Co-Simulation
setRealInputDerivatives Not used
getRealOutputDerivatives Main algorithm
doStep Main algorithm
cancelStep Not used
getStatus Not used
getRealStatus Main algorithm
getIntegerStatus Not used
getBooleanStatus Not used
getStringStatus Not used

INTO CPS specific
getMaxStepsize Main algorithm (var step)

Table 4: Table describing the COE integration with the FMI standard func-
tions. 69
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D The Intermediate Model Description Format

The intermediate model description follows the FMI version 2 model descrip-
tion format but only contains the following information:

fmiModelDescription/guid On export a new unique GUID will be
generated

ModelVariables/ScalarVariable* Scalar variables are both handled
on import and export. The following attributes are supported:

name The name of the scalar variable

description An optional description of the variable

causality With the following values:

• input

• output

• parameter

The scalar variable may only have on of the following types:

• real

• integer

• boolean

E Co-simulation Configuration File Format

The co-simulation configuration file format is defined as follows:

• node Configuration [1]

– node Fmus [1]

∗ node Fmu [0..*]

· attribut path:String (mandatory)

– node Connections [1]

∗ node Connection [0..*]

· attribut sourceFmu:String (mandatory)
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· attribut sourceVariable:String (mandatory)

· attribut targetFmu:String (mandatory)

· attribut targetVariable:String (mandatory)

– node Parameters [1]

∗ node Parameter[0..*]

· attribut fmu:String (mandatory)

· attribut name:String (mandatory)

· attribut init:String (mandatory)

– node Algorithm [1]

∗ attribut type:String "fixed" or "variable" (mandatory)

∗ attribut stepSize:Float (optional)

– node Time

∗ attribut startTime:Float (mandatory)

∗ attribut endTime:Float (mandatory)

In Listing 9 an XSD Schema is also given for the co-simulation configuration
file format that enabled automated validation.
<xs:schema attributeFormDefault="unqualified" elementFormDefault

="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Configuration">

<xs:complexType>
<xs:sequence>

<xs:element name="Fmus">
<xs:complexType>

<xs:choice maxOccurs="unbounded" minOccurs="0">
<xs:element name="Fmu">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="path"
use="mandatory"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
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<xs:element name="Connections">
<xs:complexType>

<xs:sequence>
<xs:element name="Connection" maxOccurs="unbounded

" minOccurs="0">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="
sourceFmu" use="mandatory"/>

<xs:attribute type="xs:string" name="
sourceVariable" use="mandatory"/>

<xs:attribute type="xs:string" name="
targetFmu" use="mandatory"/>

<xs:attribute type="xs:string" name="
targetVariable" use="mandatory"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Parameters">

<xs:complexType>
<xs:sequence>

<xs:element name="Parameter" maxOccurs="unbounded"
minOccurs="0">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="fmu"

use="mandatory"/>
<xs:attribute type="xs:string" name="name"

use="mandatory"/>
<xs:attribute type="xs:float" name="init"

use="mandatory"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Algorithm">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="type">
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<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="fixed"/>
<xs:enumeration value="variable"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute type="xs:string" name="stepSize"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Time">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:float" name="startTime"/>
<xs:attribute type="xs:float" name="endTime"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Listing 9: Co-simulation configuration file schema Model Description XSD
Schema
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F List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
API Application Programmers Interface
AST Abstract Syntax Tree
AU Aarhus University
CIF Compositional Interchange Format
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
COTS Commercial Off-The-Shelf
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HLA High Level Architecture
HMI Human Machine Interface
HRC Heterogeneous Rich Components
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
JSON JavaScript Object Notation
M&S Modelling and Simulation
MBD Model Based Design
MC Model Checking
MiL Model-in-the-Loop
OMG Object Management Group
OS Operating System
PROV-N The Provenance Notation
REST Representational State Transfer
RPC Remote Procedure Call
SiL Software-in-the Loop
SoS System of Systems
ST Softeam
SVN Subversion
SysML Systems Modelling Language
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TA Test Automation
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTP Unifying Theories of Programming
UTRC United Technology Research Center
UY University of York
VDM Vienna Development Method
VSI Verified Systems International
WP Work Package
XML Extensible Markup Language
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