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Abstract

This deliverable contains the design specification for integration of simulators
(OpenModelica, Overture and 20-sim) with the INTO-CPS the co-simulation
orchestration engine (COE) at the end of the first year of the project. The
integration of the simulation tools into COE will use Functional Mockup
Interface (FMI) with INTO-CPS extensions.
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1 Introduction

This deliverable contains the design for the integration of simulators Open-
Modelica, Overture and 20-sim with the co-simulation orchestration engine
(COE) using existing FMI and possible extensions to the standard (such as
getting the maximum step size supported by a FMU, which has already been
proposed in the literature).

The integrated simulators in these project are:

• OpenModelica [Fri04], https://openmodelica.org

• Overture [LBF+10], http://overturetool.org/

• 20-sim [Bro97], http://www.20sim.com/

1.1 The FMI standard

The Functional Mock-up Interface (FMI) [Blo14] is an open standard for ex-
porting dynamic models on the system and component level either for model
exchange or co-simulation. FMI gives model-based systems engineering the
ability to share models between tools. More than 60 commercial or open-
source simulation tools are now supporting the FMI standard.

Please see D4.1d – Design of the INTO-CPS Platform [LLW+15] for a de-
scription of the FMI standard.

1.2 Requirements

The high level requirements from the INTO-CPS requirements report D7.3
[LPH+15] with focus on the INTO-CPS Integration of Simulators are pre-
sented below for the different baseline tools.

• Requirement 0009 - The OpenModelica tool must provide an INTO-
CPS FMI tool wrapper that is compliant with the COE

• Requirement 0010 - The 20-sim tool must provide an INTO-CPS FMI
tool wrapper that is compliant with the COE

• Requirement 0011 - The Overture tool must provide an INTO-CPS
FMI tool wrapper that is compliant with the COE
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1.3 Related Work

Several approaches have been proposed in the past dealing with integration
of simulators at different levels:

• simulator tool level - the tools are called as slaves by a master (covered
by FMI for Model Exchange)

• model export level - the tool can export a model that can be imported
in another tool (covered by FMI for Co-Simulation)

• source code level - the tool can export source code that can be inte-
grated with source code exported from other tools

At the simulator tool level several tools (Adams, Modelica, etc) were inte-
grated using co-simulation within the SKF BEAST tool [SNF], [Sie10]. At
the model export level for example Dymola can export Matlab S functions.
Integration of Overture and 20-sim has been achieved [GMF12] before in the
DESTECS [DES09], [LRV+11] EU project at the simulator tool level. Please
see D5.1d – Design Principles for Code Generators [HLG+15] for related
work into integration at the source code level.

In this project the integration is performed at model export level where mod-
els are exported from tools as FMUs for co-simulation based on the FMI stan-
dard. The exported FMUs can then be co-simulated using the COE.

2 Integration of simulators

Integration of simulators in the INTO-CPS COE is achieved via the FMI
standard, namely FMI for Co-simulation. Each of the simulators has imple-
mented support for the FMI standard.

In this section we give the details of each simulator and its support for the
FMI for co-simulation integration.

2.1 Overture

This section describes the VDM platform Overture from the point of view of
its role in co-simulation scenarios.
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2.1.1 Introduction

Overture [LBF+10] is an Eclipse1-based open-source platform for the devel-
opment and validation of VDM specifications. Because it is written in Java,
it can run in any Java-enabled operating environment. Overture supports
three dialects of VDM, namely the core VDM-SL specification language,
the object-oriented VDM++ and its extension for real-time embedded sys-
tems, VDM-RT. The dialect of VDM relevant to the INTO-CPS project is
VDM-RT. The key feature of Overture relevant to its integration with the
INTO-CPS tool chain is its compliance with the FMI standard.

Compliance with the standard makes Overture usable as one of the simulation
engines in a complete FMI-based co-simulation scenario. This is achieved in
two different ways:

• Overture can wrap a VDM-RT model in an FMI-compliant interface,
and itself act as the simulation engine for the model. The result is a
tool-wrapper FMU since the Overture tool is included together with the
model for this kind of FMU. The FMI doStep function will then instruct
the VDM interpreter to execute for a specific amount of time. The
interpreter will then execute the number of expressions and statements
that can complete within this time limit.

• Overture can translate VDM-RT models written in the executable sub-
set of the language directly to compilable C code2, wrapped in the ap-
propriate FMI-compliant interface, to be used independently of Over-
ture in a co-simulation scenario. The result is a standalone FMU be-
cause it does not rely on Overture and only consists of the model in an
executable form, and the FMI functions required to interact with the
model.

Both these features are discussed in further detail below in this document,
and in deliverable[HLG+15].

2.1.2 FMI support

Overture FMU support is implemented as a tool wrapper, this means that
exported models from Overture require the Overture tool to simulate. This is

1www.eclipse.org.
2This feature is currently under development.
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Table 1: FMI functions currently not implemented
FMI 1.0 FMI 2.0
Not supported reset

getFMUstate
setFMUstate
freeFMUstate
serializedFMUstateSize
serializeFMUstatev
deSerializeFMUstate
getDirectionalDerivative
setRealInputDerivatives
getRealOutputDerivatives
cancelStep

implemented such that the VDM Interpreter and its FMI interface is included
in the exported FMU. 3

FMU export from Overture is currently done manually and supports the
FMI 2.0 standard, with the exception of support for the Initialization Mode
described in the FMI standard under Section 4.1.2. Initialization Mode is
not supported since the VDM interpreter is unable to do any calculation of
output variables unless a sufficient time step is given to doStep. The export
procedure currently consists of two tasks:

• Manual population of the ModelDescription.xml with scalar vari-
ables which are linked to either VDM-RT values or to VDM instance
variables. The mapping rules are described in Section 2.1.3.

• Copying the ModelDescription.xml and VDM source files into
the template FMU.

The VDM language is focused on modelling discrete systems and therefore
does not include the notion of derivatives. It thus does not support the
functions related to derivatives, as listed in Table 1. The VDM language
includes concurrency and as a result of its implementation in the VDM in-
terpreter [LLB11], where Java threads are used, the functions to get and set
state are also not supported.

3The Overture tool wrapper FMUs currently support Win32, Win64, Linux64, Dar-
win64 and require Java 1.7 to be installed and available in the PATH environment variable.
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In its current state, the FMI export feature supports getting and setting Re-
als, Integers and Booleans, as well as the INTO-CPS specific getMaxStepsize
function, which returns the next smallest step size where the VDM model
changes its outputs. This method is what enabled variable stepping without
the need for get-, set-state. The export does not provide a way to define
units, since these cannot be explicitly modelled in the VDM language.

2.1.3 Mapping between VDM and FMI

The VDM language dialect which supports FMU export is object-oriented
and thus does not have blocks with defined inputs and outputs. Therefore,
a custom mapping of the internal system state to the scalar variables of
FMI must be created manually. To illustrate how such a mapping can be
made, the Watertank example from the Crescendo tool [IPG+12] is used.
The Watertank is a simple model of a controller that adjusts the level in a
tank with a constant in-flow. It keeps the water level between a low and
high mark by opening and closing a valve. The system model consists of a
level sensor Listing 2, valve actuator Listing 3, the controller Listing 4 and
a system configuration Listing 1.

system System

instance variables

public static controller : [Controller] := nil;
levelSensor : LevelSensor;
valveActuator : ValveActuator;
...
end System

Listing 1: The Watertank system

class LevelSensor

instance variables
level : real := 0.0;

...
end LevelSensor

Listing 2: Level Sensor

class ValveActuator

instance variables
valveState : real := 0.0;

..
end ValveActuator

Listing 3: Valve Actuator
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class Controller

values

public minLevel : real = 0.0; -- {m}
public maxLevel : real = 0.0; -- {m}

...

end Controller

Listing 4: The Watertank controller

The mapping between VDM values (constants), instance variables, and FMI
scalar variables, is shown in Table 2. The mapping includes the VDM value
maxLevel and the instance variables level and valveState. This il-
lustration only shows how basic, unstructured VDM values and instance
variables can be mapped to FMI. Not all types of instance variable can be
exported, since it must be possible to express a path to the variable from
the system class using dots to separate fields, and the final element in the
path may not be more than just the name of a variable. This means that
instance variables and values may not come in the from of arrays, lists, sets
etc., as accessing leaf values stored in such variables would require the use
of the corresponding accessor mechanism (array index for arrays, head el-
ement retrieval for lists etc.)4. The name mapping for Table 2 is given in
Listing 5

The scalar variables must be mapped to the internal state of the VDM model
as described above. This can be done using the model description element
Overture illustrated in Table 2, where the scalar variable valueReference
is linked to the corresponding path inside the System class of the VDM
model.
<VendorAnnotations>
<Tool name="Overture">
<Overture>
<link valueReference="0" name="Controller.maxLevel"/>
<link valueReference="3" name="System.levelSensor.level"/>
<link valueReference="4"

name="System.valveActuator.valveState"/>
</Overture>

</Tool>

4The restriction on accessor mechanisms is due to a limitation of the current imple-
mentation and not the language.
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Table 2: VDM to FMI mapping
VDM FMI 2

class Controller
-- Parameter
values
maxLevel: real = 5;

end Controller

<ScalarVariable
name="maxLevel"
valueReference="0"
causality="parameter"
variability="fixed"
initial="exact">

<Real start="5"/>
</ScalarVariable>

class LevelSensor
-- input
instance variables
level : real := 0.0;

end LevelSensor

<ScalarVariable
name="level"
valueReference="3"
causality="input"
variability="continuous">

<Real start="0"/>
</ScalarVariable>

class ValveActuator
-- output
instance variables
valveState : real := 0.0;

end ValveActuator

<ScalarVariable
name="valveState"
valueReference="4"
causality="output"
variability="discrete"
initial="calculated">

<Real/>
</ScalarVariable>
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<VendorAnnotations>

Listing 5: Name mapping for the variables in Table 2

2.1.4 Step size calculation

The VDM interpreter internally uses a variable step size. The step size is
defined as the time it takes for the interpreter to execute expressions and
statements between read of inputs and write to outputs. The interpreter will
upon each call to doStep execute until it needs to read and input or write
to an output. If the time it took to perform the calculation is less that the
time + step size, then it will return Ok from doStep, and hold back any
writes until the exact time where the write should occur is requested by do
step. If the VDM interpreter is waiting for such a write then a subsequent
call to doStep must have a step size which precisely matches the time when
the write must occur. If not then Discard is returned from doStep.

The VDM interpreter supports two ways to enable the COE to obtain or pre-
dict the step size it will accept in a call to doStep. If the interpreter returns
Discard then the function getRealStatus with LastSuccessfulTime
can be used to obtain the time the interpreter will accept, or the INTO-
CPS extension function getMaxStepsize can be used before taking a step
to calculate the largest step the interpreter will accept, avoiding the need
for roll-back in other FMUs which is required to recover from a discarded
step.

2.1.5 Additional simulator capabilities

The current version of the FMU export feature embeds the Overture inter-
preter inside the FMU and thus all tracing and logging features available to
Overture can be used in the FMU. Future versions will allow the exported
FMU to connect to a debug session in the Overture IDE, making the standard
Overture debugger available.

2.2 20-sim

This section describes the simulator tool 20-sim and its FMI integration
support.
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2.2.1 Introduction

20-sim is a modeling and simulation program for mechatronic systems and
control engineering on the Windows operating system. With 20-sim multi-
domain dynamic models can be analyzed in the time and frequency domain
for modeling and control purposes. For rapid prototyping and HIL-simulation
purposes C-code generation support is available using C-code templates for
various C-code objectives.

With respect to simulation 20-sim supports continuous time simulations, dis-
crete time simulations and hybrid simulations. For variable step integration
method support, simulation back-stepping is available. External interfacing
to 20-sim is available using scripting, custom DLL functionality and CSV file
variables.

The C-code generation is designed for real-time control applications. To
guarantee non-deterministic model execution time, variable step integration
methods are not supported in the generated code. Furthermore, file ac-
cess and optional DLL function calls are not implemented in the generated
code. File access is not supported because this would violate (hard) real-time
constraints. 20-sim generated C-code uses doubles for the model equation
calculations. The variable types integer and boolean are not supported as
data type, but are transfered to doubles. There is no rigid support for strings
in the C-code generation process. Detailed information on the 20-sim code
generation process can be found in [HLG+15].

2.2.2 FMI support

20-sim FMI support is implemented as a 20-sim C-code template and is thus
reusing the 20-sim C-code generation framework. The execution model of the
20-sim model is stored in 32-bits and 64-bits windows DLL’s, and the meta
model is represented in the FMI modelDescription XML file. Furthermore
the C-code is exported to the generated FMU unit.

FMU generation can be done for the FMI 1.0 and FMI 2.0 standard. Cur-
rently only Cosimulation FMI is supported. The current state of the FMI
export does support integer, string and boolean types on the FMI interface,
while these type of variables are converted to double in the underlying model.

An overview of the FMI functions that are not implemented is listed in
Table 3. Because of limited string support, the FMI string mutator and ac-
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Table 3: FMI functions currently not implemented
FMI 1.0 FMI 2.0
fmiGetString fmi2GetString
fmiGetStringStatus fmi2GetStringStatus
fmiSetString fmi2SetString
fmiGetRealInputDerivatives fmi2GetRealInputDerivatives
fmiSetRealInputDerivatives fmi2SetRealInputDerivatives
fmiGetRealOutputDerivatives fmi2GetRealOutputDerivatives

fmi2GetFMUstate
fmi2SetFMUstate
fmi2FreeFMUstate
fmi2SerializedFMUstateSize
fmi2SerializeFMUstate
fmi2DeSerializeFMUstate
fmi2GetDirectionalDerivative

cessor are not implemented. Furthermore interpolation of input variables is
not implemented and therefore the derivative functions for inputs and out-
puts are not implemented. The concept of FMU storage is only useful for
ModelExchange and is therefore not implemented in the current 20-sim FMI
export.

The FMI model description XML file provides in a mapping of all 20-sim
model variables to their FMI counter part. All variables are accessible from
the FMI interface. The UnitDefinitions and TypeDefinitions are currently
not implemented but will be implemented later. FMI 2.0 also supports Log-
Categories to present FMU status information to the co-simulator in a nice
manner but this is currently not implemented.

2.2.3 Additional simulator capabilities

The 20-sim simulator provides in plot functionality where variables can be
plotted using multiple plot windows. To visualize (3D) simulations 3D ani-
mation is available. Furthermore the simulator provides in break point func-
tionality which allows for convenient model debugging. For the scope of
system integration it might be beneficial to reuse these functionalities in a
FMI co-simulation fashion.
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2.3 OpenModelica

This section describes the simulator tool OpenModelica and its FMI integra-
tion support.

2.3.1 Introduction

OpenModelica [Fri04] is an open-source Modelica-based modeling and sim-
ulation environment. Modelica [FE98] is an object-oriented, equation based
language to conveniently model complex physical systems containing, e.g.,
mechanical, electrical, electronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. The Modelica language (and OpenMod-
elica) supports continuous, discrete and hybrid time simulations. OpenMod-
elica always compiles Modelica models into FMU, C or C++ code for simu-
lation.

Several integration solvers both fixed step and variable step size are available
in OpenModelica: euler, rungekutta, dassl (default), radau5, radau3 and
radau1.

OpenModelica can be interfaced to other tools in serveral ways as described
in the OpenModelcia user’s manual [Ope]:

• via command line invocation of the OpenModelica compiler (omc)

• via C API calls to the omc compiler dynamic library

• via the CORBA interface

• via OMPython interface [GFR+12]

OpenModelica has its own scripting language, Modelica script (mos files)
which can be used to perform actions via the compiler API such as loading,
compilation and simulation of models or plotting of results.

OpenModelica supports Windows, Linux and Mac Os X.

2.3.2 FMI support

OpenModelica supports FMI 1.0 and FMI 2.0 export and import both for
model-exchange and co-simulation. All OpenModelica generated FMUs are
standalone. The FMI export reuses the OpenModelica templates available
for C and C++ code generation.
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Table 4: FMI functions currently not implemented
FMI 1.0 FMI 2.0
fmiGetRealInputDerivatives fmi2GetRealInputDerivatives
fmiSetRealInputDerivatives fmi2SetRealInputDerivatives
fmiGetRealOutputDerivatives fmi2GetRealOutputDerivatives

fmi2GetFMUstate
fmi2SetFMUstate
fmi2FreeFMUstate
fmi2SerializedFMUstateSize
fmi2SerializeFMUstate
fmi2DeSerializeFMUstate
fmi2GetDirectionalDerivative

An overview of the FMI functions that are not implemented is listed in
Table 4.

2.3.3 Additional simulator capabilities

OpenModelica has support for static and dynamic debugging of Modelica
models [PSA+14]. Static debugging helps the user understand how his model
has been optimized and solved by the compiler via an equation browser.
Dynamic debugging is currently available for algorithmic Modelica code and
supports breakpoint-based debugging.

Debugging support in the generated FMUs is planned for the near future.

2.4 Into-CPS FMI extensions

In this section we shall list the FMI standard extension functions. Currently
only getMaxStepsize is proposed. The function returns the maximum
step size that the FMU can take. This information can be used by the COE
to speed up the co-simulation.

fmi2Status getMaxStepsize(fmi2Component comp, fmi2Real* time);

17
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3 Conclusions

In the first year of the INTO-CPS project the focus was on the integration
of simulators (baseline tools) with the COE which has now be achieved as
described in this document.

Each of the simulators Overture, 20-sim, OpenModelica can now export
FMUs that can be simulated via the COE.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HMI Human Machine Interface
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
M&S Modelling and Simulation
MBD Model Based Design
MiL Model-in-the-Loop
OMG Object Management Group
OS Operating System
PROV-N The Provenance Notation
RPC Remote Procedure Call
SiL Software-in-the Loop
ST Softeam
SVN Subversion
SysML Systems Modelling Language
TA Test Automation
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTP Unifying Theories of Programming
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UTRC United Technologies Research Center
UY University of York
VDM Vienna Development Method
VSI Verified Systems International
WP Work Package
XML Extensible Markup Language
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