
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Examples Compendium 1

Deliverable Number: D3.4

Version: 1.0

Date: 2015

Public Document

http://into-cps.au.dk

D3.4 - Examples Compendium 1 (Public)

Contributors:

John Fitzgerald, UNEW
Carl Gamble, UNEW
Richard Payne, UNEW
Ken Pierce, UNEW
Jörg Brauer, VSI

Editors:

Richard Payne, UNEW

Reviewers:

Peter Gorm Larsen, AU
Etienne Brosse, ST
Adrian Pop, LIU

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D3.4 - Examples Compendium 1 (Public)

Document History

Ver Date Author Description
0.1 03-08-2015 Ken Pierce Draft structure of deliverable and responsibilities
0.2 25-09-2015 Richard Payne Initial example descriptions added
0.3 13-10-2015 Richard Payne Version for internal review
0.31 23-10-2015 Richard Payne Review comments addressed
0.32 26-10-2015 Richard Payne Added COE simulation text for Three-Tank pilot
0.4 14-12-2015 Richard Payne Amended to reflect revised SysML profile
1.0 15-12-2015 Richard Payne Finished revisions in light of comments

3

D3.4 - Examples Compendium 1 (Public)

Abstract

This deliverable is intended for users of the INTO-CPS technologies and contains a col-
lection of example and pilot study model descriptions demonstrating baseline INTO-CPS
technology. Each study has a description of the example and of the models available for
the study. The examples demonstrate the baseline technologies and some early INTO-
CPS tools. The deliverable also lays out a roadmap for the next 12 months of case
study and example development to test and demonstrate upcoming INTO-CPS technolo-
gies.

4

D3.4 - Examples Compendium 1 (Public)

Contents
1 Introduction 6

2 Three-tank Water Tank 8
2.1 Example Description . 8
2.2 Baseline . 8
2.3 INTO-CPS Technology . 12

3 Fan Coil Unit (FCU) 16
3.1 Example Description . 16
3.2 Baseline . 16
3.3 INTO-CPS Technology . 19

4 Line-following Robot 23
4.1 Example Description . 23
4.2 Baseline . 23
4.3 INTO-CPS Technology . 27

5 Turn Indicator 34
5.1 Example Description . 34
5.2 Baseline . 34
5.3 INTO-CPS Technology . 36

6 Roadmap for Pilot Studies 38
6.1 Future INTO-CPS Technology Demonstration Needs 38
6.2 Candidate Pilots . 39

A List of Acronyms 43

5

D3.4 - Examples Compendium 1 (Public)

1 Introduction

This deliverable provides an overview of different public example multi-models that stake-
holders who are interested in experimenting with the INTO-CPS technology can use
as a starting point. The examples have been developed using baseline technologies:
Crescendo1 (which includes two technologies: 20-sim2 and Overture/VDM-RT3); Open-
Modelica4; SysML5; and RT-Tester6). This deliverable also outlines early use of INTO-
CPS technologies; proposing initial multi-models using the INTO-CPS SysML profile
and collections of Continuous Time (CT) and Discrete Event (DE) models elicited from
the baseline models. The document concludes by laying out a roadmap for the next
12 months of case study and example development to test and demonstrate upcoming
INTO-CPS technologies.

This deliverable is structured in different sections, each of which provides a brief (2 to
3 pages) introduction to each example model. The examples each illustrate different
aspects of the baseline technology and INTO-CPS technology, as summarised here:

• Section 2 presents a Three-tank Water Tank model. This example considers the
effect of moving from a single-CT Crescendo model to a multi-CT multi-model (both
have a VDM DE model). This study demonstrates the impact of the division of CT
elements across different FMUs. The study uses SysML to model DE behaviour.

• Section 3 illustrates a Fan Coil Unit (FCU), originally presented as a baseline
OpenModelica model. The study aimed to represent this in a Crescendo model;
testing the expressiveness of both CT notations and defining a DE controller. The
study may be used as a two-model multi-model with the current version of the
INTO-CPS technology.

• Section 4 presents a Line-following Robot. The study originated as a Crescendo
co-model, and considered the representation of subsystems in the baseline Open-
Modelica notation. The study may be co-simulated as a three-model, multi-CT,
multi-model. The study uses SysML to model CT behaviour.

• Section 5 presents a Turn Indicator example. This study demonstrates the RT-
Tester baseline tool; comprising a collection of requirements, architectural model
and test cases.

In order to guide you in what models to consider inspecting, we have created tables
illustrating the different characteristics of the different publicly available multi-models.
Table 1 shows the baseline technologies applied and Table 2 shows the INTO-CPS tech-
nologies applied (technologies not considered yet are greyed out). The turn indicator
example is not used to demonstrate INTO-CPS technologies, and as such is not included
in Table 2. It should be noted that FMU export has not been tested at this stage. In
this first year, the emphasis was to define how to restructure existing models in order to
produce multi-models and consider how to connect these separate models. These models

1http://www.crescendotool.org
2http://www.20sim.com
3http://overturetool.org
4https://openmodelica.org
5Using the Modelio tool: https://www.modeliosoft.com
6https://www.verified.de/products/rt-tester/

6

http://www.crescendotool.org
http://www.20sim.com
http://overturetool.org
https://openmodelica.org
https://www.modeliosoft.com
https://www.verified.de/products/rt-tester/

D3.4 - Examples Compendium 1 (Public)

will be used to test the FMU export feature of the INTO-CPS tool chain, and in turn
the COE, in the next 12 months.

Baseline

Multi-model C
re
sc
en
do

(2
0-
si
m

&
V
D
M
-R
T
)

O
pe

nM
od

el
ic
a

‘H
ol
is
ti
c’

Sy
sM

L
m
od

el

R
T
Te

st
er

Three-tank Water Tank x x
Fan Coil Unit (FCU) x x
Line-following Robot x x x
Turn Indicator x

Table 1: Overview of baseline technologies used for pilot studies

INTO-CPS Technology

Multi-model M
ul
ti
-D

E
m
od

el

M
ul
ti
-C

T
m
od

el

20
-S
im

(f
or

F
M
U
)

O
pe

nM
od

el
ic
a
(f
or

F
M
U
)

V
D
M
-R
T

(f
or

F
M
U
)

IN
T
O
-C

P
S
Sy

sM
L

C
o-
si
m
ul
at
io
n
en
gi
ne
(C

O
E
)

Sy
sM

L
re
qu

ir
em

en
ts

Tr
ac
ea
bi
lit
y
lin

ks
in
cl
ud

ed

P
ro
ve
na

nc
e
gr
ap

h
in
cl
ud

ed

D
SE

su
pp

or
t
in
cl
ud

ed

Te
st

A
ut
om

at
io
n
su
pp

or
t

M
od

el
ch
ec
ki
ng

Si
L/

H
iL

en
ab

le
d

Three-tank Water Tank x x x x
Fan Coil Unit (FCU) x
Line-following Robot x x x x x

Table 2: Overview of INTO-CPS technologies used for pilot studies

Section 6 presents a roadmap for the next 12 months of pilot case study development.
We identify the various INTO-CPS technologies in production over the project, propose
additional examples, and consider which examples may be used to test the emerging
technologies.

7

D3.4 - Examples Compendium 1 (Public)

2 Three-tank Water Tank

2.1 Example Description

The three-tank water tank model is an augmentation of a standard 20-sim example, and
is developed to explore the impact on accuracy of multi-modelling across multiple CT
models. The example comprises three water tanks which are filled and emptied. The first
tank is filled from a source with a valve which may be turned on and off. The outflow
of the first tank constitutes the inflow of the second, and so forth. A controller monitors
the level of the third tank and controls a valve to a drain.

A key feature of this example is the close coupling required between water tank 1 and 2,
and the loose coupling to water tank 3. Water tanks 1 and 2 are tall and thin and are
connected by a pipe at the bottom of the tanks (a diagram of the example is shown in
Figure 1), and therefore changes to the level of water tank 1 (due to water entering from
the source) will quickly affect the level in water tank 2. This effect is not as prevalent
between water tank 2 and 3.

water
tank 1

water
tank 2

water tank 3

source

drain

Figure 1: Overview of the three-tank water tank example

2.2 Baseline

In the three-tank water tank study, we demonstrate the use of the SysML (Section 2.2.1)
and Crescendo (Section 2.2.2) baseline technologies.

8

D3.4 - Examples Compendium 1 (Public)

2.2.1 SysML

In the SysML model, we concentrate largely on the structure of the example: producing
block definition diagrams (BDDs) for the example composition and datatype definitions;
and an internal block diagram (IBD) defining the connections between the model ele-
ments.

The BDD in Figure 2 states that the system constitutes 3 Water Tank components (each
comprising a Measured Vessel and optionally a controllable Valve), a Pipe, a Source, a
Drain and a Controller. Given the system composition, the connections between those
components are specified in the IBD in Figure 3.

Figure 2: BDD defining the Three-tank Water Tank composition

The IBD defines input and output flow ports for each component with a directed connec-
tion between ports. The IBD states that there is a flow of water (typed by a model-specific
value type Water) from the Source instance src, through the Water Tank instances wt1,
wt2 and wt3 to the Drain instance d. A Pipe, p is situated between wt1 and wt2. There
are connections to the Controller instance c and Water Tank, wt3.

The controller is defined in Figure 4. Firstly, a UML class diagram in Figure 4(a) defines
the substructure of the controller; comprising classes for obtaining sensor data (LevelSen-
sor) and actuator control (ValveActuator). A state machine in Figure 4(b) describes the
controller behaviour; defining the order of operation calls. The controller checks the wa-
ter level of the tank, if it is higher than the max_limit, the valve is set to open and if
the level falls below the min_limit, the valve is set to closed.

2.2.2 Crescendo

CT Model

The CT model of the water tanks system uses capacitors (labelled Tank1, Tank2 and
Tank3) to represent the water tanks, with Tank3 also having a valve. The connecting pipe

9

D3.4 - Examples Compendium 1 (Public)

Figure 3: IBD defining the Three-tank Water Tank connections

(a) UML class diagram defining the Three-
tank Water Tank controller

(b) State machine diagram defining the Three-tank Water
Tank controller behaviour

Figure 4: Behavioural diagrams for Three-tank Water Tank controller

between Tank1 and Tank2, and the outflow of Tank2, are modelled using a combination
of an inductor and a resistor. Figure 5 shows the 20-sim block diagram.

DE Model

The DE model is a simple controller, which governs Tank3. The model contains a Con-
troller class, which has the main thread of control. An instance of the LevelSensor class
(sensor) is created to represent the sensor that measures the current water level, and also

10

D3.4 - Examples Compendium 1 (Public)

Figure 5: 20-sim CT model of the Three-tank Water Tank system

an instance of ValveActuator (valve) is created to represent the valve at the bottom of
the tank.

The control loop retrieves the current level of water from the sensor and determines
whether to set the valve to be open or closed depending on the level compared to some
set maximum or minimum value.

Contract

The contract with the VDM controller consists of: two shared design parameters for the
minimum and maximum levels of Tank3 – wt3_min and wt3_max, both of type real; a
monitored variable representing the current water level in Tank3 – wt3_level of type
real; and a controlled variable representing the valve being either open or closed –
wt3_valve of type bool.

Co-simulation

In performing the co-simulation, we obtain the results of the water tank levels and rate
of flow between graphs, as shown in Figure 6. We produce 5 graphs; the top two graphs
show the water levels of the three water tanks – and as can be seen, the water level
of Tank1 and Tank2 rise steadily as water flows into Tank1 through the inflow. Tank3
slowly fills once the water level of Tank2 reaches the height of the outflow port (at approx
2.5 seconds). The water level of Tank3 increases to slightly above 2.0 meters when the
controller opens the valve (shown in the bottom right graph) reducing the water level to
just below 1.0 meter.

The important feature of this model is revealed in the bottom-left and bottom-center
graphs. of Figure 6. Two arcs are shown referring to the flow of water between the tanks.
The nature of these flows differ widely due to way in which they are connected. The flow
between Tank1 and Tank2 (bottom-left) has a high frequency with a large amplitude,
in contrast to the flow between Tank2 and Tank3 (bottom-center) which has a steady
flow.

11

D3.4 - Examples Compendium 1 (Public)

Figure 6: Co-simulation results of the Three-tank Water Tank system

2.3 INTO-CPS Technology

We demonstrate the use of the INTO-CPS SysML profile in Section 2.3.1. Based upon
the design architecture defined using the SysML profile, a multi-model is constructed in
Section 2.3.2 along with the defined connections. The study is also used to demonstrate
the Co-Simulation Orchestration Engine (COE) in Section 2.3.3.

2.3.1 INTO-CPS SysML profile

A SysML model produced using the INTO-CPS profile comprises two diagrams and
focusses on the structure of the water tank model for multi-modelling; an Architecture
Structure Diagram and a Connections Diagram.

The Architecture Structure Diagram (ASD) in Figure 7 shows the system composition
in terms of component subsystems from the perspective of multi-modelling. This model
provides an example of a multi-model which does not have a subsystem composition in
line with the nominal SysML model in Section 2.2.1. Each of the constituent compo-
nent blocks identified in Figure 2 is present in the ASD, with the addition of subsystem
components.

In this Water Tank system model, the water tanks are split between two subsystems:
WaterTanks1 subsystem contains the Source, two Water Tank and Pipe components;
WaterTanks2 subsystem comprises a single Water Tank and Drain components; a final
cyber component Controller contains no other components.

The two water tank subsystems are defined as continuous time models, both with 20-
sim as the target platform. The controller component is a VDM-RT discrete event
model.

The Connections Diagram (CD) in Figure 8 defines connections similar to those in the
IBD in Figure 3. The main changes concern the addition of subsystem components. The

12

D3.4 - Examples Compendium 1 (Public)

Figure 7: Architecture Structure Diagram defining the Three-tank Water Tank system
composition

overall flow of water between physical components remains the same, with the output
of wt2 constituting the output of the WaterTanks1 subsystem and the input of the
WaterTanks2 subsystem flowing to the input port of wt3. The final change concerns the
connection between the controller c and wt3. Service-based interfaces are not included in
this version of the INTO-CPS profile, and therefore flow ports are used.

Figure 8: Connections Diagram defining the Three-tank Water Tank system connections

2.3.2 Multi-model

Models

The multi model, corresponding to the SysML model in Section 2.3.1, comprising 2 20-
sim subsystems and a VDM subsystem. We partition the original 20-sim model described
in Section 2.2.2 to reflect this as shown in Figure 9(a).

The partitioning of the 20-sim model is straightforward, with a single signal between
the two 20-sim subsystems representing the flow of water between tanks 2 and 3. The
rationale behind this split is that, as observed in Figure 6, the flow rate between tank 1

13

D3.4 - Examples Compendium 1 (Public)

and 2 has a high frequency and amplitude, suggesting that splitting the two tanks would
result in erroneous results when time steps are imposed in co-simulation. It is left for the
next 12 months of the project to investigate the effect of different COE step sizes on the
simulation results.

(a) Subsystems of Three-tank Water Tank multi-model

(b) WaterTanks1 subsystem (c) WaterTanks2 subsystem

Figure 9: 20-sim models for the Three-tank Water Tank multi-model

The VDM-RT controller model is unchanged from the original Crescendo controller.

Configuration

There are two connections in the multi-model; between WaterTanks1 and WaterTanks2,
and between WaterTanks2 and the Controller.

The first connection connects the flow port of WaterTanks1 to the inFlow of Water-
Tanks2.

The second connection mirrors the contract in the original Crescendo model. There are
two shared design parameters – wt3_min and wt3_max, both of type real; a connection
from the valveControl port of the WaterTanks2 model to the wt3_valve of the Con-
troller ; and a connection from the wt3_level of the Controller to the level port of
WaterTanks2.

2.3.3 Co-simulation

Using the INTO-CPS Co-simulation Engine (COE), we may simulate the three FMU
multi-CT model. In the current version of the COE, only input/output values of FMUs
may be logged. As such, we are not able to observe the level of tanks 1 or 2, or the flow
rate between tanks 1 and 2. We are able to log the water level of tank 3 and the flow
rate between tank 2 and 3. These values are shown in the graph in Figure 10, using a
fixed step size of 0.00001.

14

D3.4 - Examples Compendium 1 (Public)

Figure 10: Simulation results using the INTO-CPS COE

The results in the graph correspond closely to those of the baseline Crescendo model
illustrated in Figure 6. During simulation, the water level raised to the maximum value
(2.0 meters) and at 16.3 seconds the tank 3 valve is opened by the VDM-RT controller
and the level drops to just below the minimum (1.0 meters) and at 16.9 seconds the valve
is closed and the water level begins to rise again.

15

D3.4 - Examples Compendium 1 (Public)

3 Fan Coil Unit (FCU)

3.1 Example Description

This example is inspired by the Heating Ventilation and Air Conditioning (HVAC) case
study developed in Task T1.3. The Fan Coil Unit (FCU) aims to control the air temper-
ature in a room through the use of several physical components and software controllers.
Water is heated or cooled in a Heat Pump and flows to the Coil. A Fan blows air through
the Coil. The air is heated or cooled depending upon the Coil temperature, and flows
into the room. A Controller is able to alter the fan speed and the rate of the water flow
from the Heat Pump to the Coil. In addition, the room temperature is affected by the
walls and windows, which constitute the environment of the FCU.

The aim of the system is to maintain a set temperature in the single room in which the
FCU is located. The system is outlined in Figure 11.

Figure 11: Overview of the fan coil unit (FCU) example

3.2 Baseline

In the FCU study, we demonstrate the use of the OpenModelica (Section 3.2.1) and
Crescendo (Section 3.2.2) baseline technologies.

3.2.1 OpenModelica

This example was initially presented as an OpenModelica model with a CT controller
defined in the OpenModelica notation.

Utilising PID control in Figure 12, the aim of the model is to provide smooth control of
the room temperature. This model has several blocks: OAT — a table of timed outside
air temperature values; RATsp — the room temperature set point; Wall — modelling
the thermal model for the walls inside the room; Room — modelling the thermal model
for a room; and PID that provides PID control for the fanspeed and valveopen values
input into the Room.

16

D3.4 - Examples Compendium 1 (Public)

Figure 12: PID control FCU OpenModelica model

Simulating the model over a 7 day period we obtain the graph shown in Figure 13. The
room set point (purple line) fluctuates between 16 and 21 degrees as the room users
require the room to be heated. The room temperature, RAT, given by the red line rises
to the set point of 21 and maintains that temperature until the set point drops. The
heating is shown by the blue line, indication the valve is open and fan is working. The
room temperature drops then both the valve is closed and fan has stopped. It should be
noted that the temperature never reaches the minimum set point due to the density and
thermal conductivity of the wall. The graph also displays the outside air temperature
(the green line), which varies considerably over time.

Figure 13: Simulation results for the FCU OpenModelica model

17

D3.4 - Examples Compendium 1 (Public)

3.2.2 Crescendo

CT Model

A Crescendo co-model was developed that corresponds to the OpenModelica PID control
model. The 20-sim model outlined in Figure 14 has a similar structure to the OpenMod-
elica version in Figure 12. The 20-sim model has two main submodels: the Wall and
Room, a table of outside air temperatures and a Controller block. The Wall and Room
elements are defined as systems of ordinary differential equations.

Figure 14: Crescendo FCU model

DE Model

In the baseline Crescendo model, the VDM-RT controller corresponds to the PID con-
troller of the OpenModellica model in Section 3.2.1. Supporting the controller class, a
Sensor class provides access to the current room temperature, and a LimitedActuator
class provides output for the valveOpen and fanSpeed values. The actuator is limited
such that values fall only between the real values 1.0 and 0.0000001.

Figure 15: FCU DE model class structure

Contract

The contract between CT and DE models specifies that the VDM-RT controller monitors
the SetPoint and RoomTemp values from the 20-sim model, and controls the Control

18

D3.4 - Examples Compendium 1 (Public)

variable used by the Room block, which corresponds to the fan speed and valve open
setting.

Co-simulation

Figure 16 shows the outputs of the co-simulation (generated by the 20-sim tool during
a co-simulation run). Traces of the set point and RAT (top left) show the variation in
RAT as the OAT (bottom left) changes. The upper right shows (rather extreme) actions
of the control algorithm. The graph at bottom right shows the cumulative energy output
from the FCU as the co-simulation proceeds.

Figure 16: Co-simulation output from FCU co-model

Design Space Exploration can be performed by running co-simulations that sweep over the
design parameters. We may sweep over a physical parameter such as the wall’s thermal
conductivity, calculating energy consumption. If combined with a model of energy and
construction costs, we can examine overall cost of ownership for the room with the heating
controller for a given period of operation. Figure 17 shows one such analysis, illustrating
how the cost of a low conductivity will be outweighed by energy savings when taken over
a longer ownership period.

3.3 INTO-CPS Technology

The demonstration on INTO-CPS technologies with the FCU example concentrates on
the INTO-CPS SysML profile, shown in Section 3.3.1

19

D3.4 - Examples Compendium 1 (Public)

Figure 17: DSE Result: cost against thermal conductivity for a range of operating periods.

3.3.1 INTO-CPS SysML Profile

Co-model Version

Two versions of the FCU model are defined using the INTO-CPS SysML profile. The
first corresponds to the architecture used in the baseline OpenModelica and Crescendo
models. In this version, three constituent parts are defined – shown in Figure 18: the
RoomHeating subsystem, a Controller cyber component and the physicalEnvironment.
The first is a continuous subsystem and comprises the Room andWall components. The
figure defines the model platform to be 20-sim, however, this could be OpenModelica
too. All of the physical elements of the system are contained in a single CT model. The
controller subsystem is a cyber element and modelled in VDM-RT.

Figure 18: SysML Architecture Structure Diagram using INTO-CPS profile correspond-
ing to baseline models

20

D3.4 - Examples Compendium 1 (Public)

The connections between components, shown in Figure 19, are similar to those in the base-
line CT models, although it should be noted that the subsystem hierarchy is shown, with
the Room component supplying and receiving the flows of the RoomHeating subsystem.
The connections between CT and DE models show the interface that is managed during
the co-simulation. Specifically, the room air temperature (RAT) from the CT system is
communicated to the controller, which sets the fan speed fanSpeed and the valve open
state valveOpen used by the Room component model r, with the aim of achieving the
room air temperature set point RATSP provided by the user in the Environment.

Figure 19: SysML Connection Diagram using INTO-CPS profile corresponding to baseline
models

Multi-model Version

Moving to a more ‘pure’ multi-modelling approach, the next model proposes an alterna-
tive subsystem structure. In this model, the ASD in Figure 20 shows the HeatingSystem
comprises four subsystems; the components comprising the RoomHeating subsystem in
Figure 18 are lifted to be top-level components in their own right.

Figure 20: SysML Architecture Structure Diagram using INTO-CPS profile correspond-
ing to ‘pure’ multi-model approach

This is reflected in the CD in Figure 21, with direct connections between the elements.
Each of the CT components (Room, Wall and Environment) may now be modelled in
different notations.

21

D3.4 - Examples Compendium 1 (Public)

Figure 21: SysML Connection Diagram using INTO-CPS profile corresponding to ‘pure’
multi-model approach

22

D3.4 - Examples Compendium 1 (Public)

4 Line-following Robot

4.1 Example Description

This example, originally developed in the DESTECS project and presented in [IPG+12].
The model simulates a robot that can follow a line painted on the ground. The line
contrasts from the background and the robot uses a number of sensors to detect light and
dark areas on the ground. The robot has two wheels, each powered by individual motors
to enable the robot to make controlled changes in direction. The number and position
of the sensors may be configured in the model. A controller takes input from the sensors
and encoders from the wheels to make outputs to the motors.

Figure 22 provides an overview of different aspects of the example: the real robot; an
example path the robot will follow; and a 3D representation in 20-sim.

The robot moves through a number of phases as it follows a line. At the start of each line
is a specific pattern that will be known in advance. Once a genuine line is detected on
the ground, the robot follows it until it detects that the end of the line has been reached,
when it should go to an idle state.

(a) A line-following robot (b) A line-follow path (c) 3D representation of the line-
following robot

Figure 22: The line-following robot

4.2 Baseline

In the line-following robot study, we demonstrate the use of the Crescendo (Section 4.2.1),
OpenModelica (Section 4.2.2) and SysML (Section 4.2.3) baseline technologies.

4.2.1 Crescendo

The line-following robot model was initially developed in the DESTECS project, and
detailed in [IPG+12]. The Crescendo robot model comprises a 20-sim body with sensors,
motors, actuators and wheels, and a VDM-RT model controlling the speed and direction
of the motors based upon the sensor input. The model is a co-model of an embedded
system, in that this division of modelling has a DE controller and CT plant model.

23

D3.4 - Examples Compendium 1 (Public)

The model description is not given here, more information about the example (the
Crescendo contract, a 20-sim CT model and a VDM-RT model) is provided in the
DESTECS example compendium [IPG+12]. In addition, the DESTECS report describes
uses of DSE with this example.

4.2.2 OpenModelica

The OpenModelica model “LineFollowerSensor” is a direct translation from the 20-Sim
collection of sensors. The purpose of this model is to simulate the sensors of the line
following robot in place of the 20-Sim version.

The structure between both versions of the sensors is almost identical. As seen in Fig-
ure 23, the connections from inputs and outputs are not visible in the OpenModelica
version; however they are still there programmatically. A notable difference in this ver-
sion is the location of the “map” block, which now resides in each sensor individually, and
not as its own block (as seen in the 20-Sim model).

(a) A comparison between the OpenModelica and 20-Sim LineFollowerSensors model structure

(b) A comparison between the OM and 20-Sim sensor structure

Figure 23: Modelling line-following sensors in OpenModelica

The Sensor block in OM contains blocks from the 20-Sim version translated into OM. The

24

D3.4 - Examples Compendium 1 (Public)

“response_delay” and “stuck_fault” blocks that are present in the 20-Sim implementation
have been omitted in OM due to technical issues; however these blocks do not affect the
final signal output. OM uses a different method for noise generation than 20-Sim in the
“AD_8bit” block, this currently results in a different set of ranges for the noise signal
output (Figure 24).

Figure 24: Different ranges between noise signal outputs

A set of tests were performed to check the output of both models. To do this the same
input was introduced into both models to make sure the line was detected within the
map.

The input introduced corresponds to a constant value for the y-axis (0), and an integrated
value for the x-axis (0.01-0.6). The purpose of this is to sweep across the map to detect
the line. The outputs for both versions are shown for OM and 20-Sim (Figure 25), in red
and blue respectively.

4.2.3 SysML

An architectural description of the robot is produced in SysML, taking a broadly similar
structure as the 20-sim block diagram. The SysML model comprises diagrams describing
the system structure and behaviour.

Two structural diagrams are defined: in Figure 26 a BDD defining the system compo-
sition and Figure 27 an IBD identifying the connections between the components. The
BDD corresponds to the 20-sim block diagram, stating that the robot comprises several
components, with varying cardinality. The BDD also includes the specification of the

25

D3.4 - Examples Compendium 1 (Public)

Figure 25: Test input introduced into both the OM and 20-Sim Sensor model block

robot’s environment, comprising the line to be followed. The IBD of the system in Fig-
ure 27 describes the flow of signals (using real numbers) and different forces (rotational
force from the motors and transitional force between wheels and the body).

Figure 26: BDD of the line-following robot SysML model

The behaviour of the controller is defined in a state machine diagram (STD) in Figure 28.
This diagram specifies the state transitions from calibrating the robot, reading sensors
and determining directions to move the robot. The state machine is decomposed in
Figure 29 to specify the order in which the sensors are read and how the sensor readings
relate to the values of the model.

26

D3.4 - Examples Compendium 1 (Public)

Figure 27: IBD of the line-following robot SysML model

Finally, the model includes diagrams to define the continuous behaviour of the robot
architecture. In Figure 30, a BDD defines a collection of constraint equations regarding
force. These equations are then linked in a parametric diagram (PD) in Figure 31 to
define the overall continuous behaviour of the system.

4.3 INTO-CPS Technology

We demonstrate the use of the INTO-CPS SysML profile in Section 4.3.1. Based upon
the design architecture defined using the SysML profile, a multi-model is constructed in
Section 4.3.2 along with the defined connections.

4.3.1 INTO SysML profile

The multi-model architecture, defined in the INTO-CPS SysML profile, splits the original
SysML model into three subsystems, as shown in the Architecture Structure Diagram
in Figure 32. This version comprises BodyParts and SensorParts subsystems and a
Controller cyber component. The BodyParts subsystem, with a target platform as 20-
sim as a CT model, comprises the Body, Encoder, Wheel and Motor components. The
SensorParts subsystem contains only Sensor components. The Controller component
remains the same as the original SysML model.

27

D3.4 - Examples Compendium 1 (Public)

Figure 28: State Machine Diagram 1 of the line-following robot SysML model

Figure 29: State Machine Diagram 2 of the line-following robot SysML model

The connections between components remain largely the same as the nominal SysML
model, as shown in Figure 33, with the same value types flowing between components.
Connections are made between the different subsystems, and the underlying components
realising the source and destination of values.

28

D3.4 - Examples Compendium 1 (Public)

Figure 30: BDD defining constraint equations of the line-following robot SysML model

Figure 31: Parametric Diagram defining constraint relationships of the line-following
robot SysML model

Figure 32: The line-following robot Architecture Structure Diagram

29

D3.4 - Examples Compendium 1 (Public)

Figure 33: The line-following robot Connections Diagram

4.3.2 Multi-model

Models

The multi-model produced and analysed using INTO-CPS technology stems from the
baseline Crescendo co-model. The multi-model comprises 3 models, splitting the Crescendo
model as depicted in Figure 34. This example, therefore is a multi-CT model, with a
single DE model.

The Crescendo elements (a VDM-RT controller and a 20-sim plant) are largely unchanged,
modified so that the 20-sim model is partitioned into 2 high-level submodels: a body and
the body’s environment. This environment block corresponds to the other parts of the
system to be modelled in other notations. By modelling in this way, each submodel can
be exported as a separate FMU. This is shown in Figure 35.

For the purposes of multi-modelling, we concentrate on the 20-sim Body subsystem which
does not contain the sensors, as shown in Figure 36. In their place, the body sub-
model contains ports for the robot position: robot_x, robot_y, robot_z and robot_theta.
The other ports are the same as in the baseline Crescendo model (wheel_left_location,
wheel_right_location, total_energy_used, servo_left_input and servo_right_input) for
interfacing with the controller and visualisation models.

30

D3.4 - Examples Compendium 1 (Public)

OpenModelica

20-sim

VDM-RT

Figure 34: Splitting the line-following robot Crescendo model

Figure 35: Modified 20-sim model of the line-following robot

The VDM-RT controller model is unchanged from the original Crescendo controller.

The OpenModelica model produced for the line-following robot concentrates on describing
a collection of robot components; the sensors. This model is described in the previous
section.

At present, it is unclear where the robot’s environment – that is the map to follow – is
modelled. It could be modelled as a part of an existing model or as a separate FMU.
Experiments are required to determine this.

Configuration

There are several connections between the models in the multi-model.

The first collection of connections is between the Body 20-sim model and the Controller
VDM-RT model. In this collection, there are several connections corresponding to signals
for the actuators that power the motors for the wheels, and feed back information about
the rotations of the wheels:

• from the Controller servo_left variable of type real to the servo_left_input
port of the Body ;

31

D3.4 - Examples Compendium 1 (Public)

Figure 36: 20-sim model of the line-following robot body

• from the Controller servo_right variable of type real to the servo_right_input
port of the Body ;

• from the Body encoder_left_output port to the encoder_left variable of the
Controller ; and

• from the Body encoder_right_output port to the encoder_right variable of the
Controller.

This connection also includes seven shared design parameters: wheel radius, in metres
(wheel_radius); encoder resolution, in counts per revolution (encoder_resolution);
and two shared variables representing controller aggression in terms of the ratio betwen
target and maximum wheel speed (fast_wheel_speed) and the turn ratio (slow_wheel_ratio),
both in the range [0,1].

The second collection of connections is present between the Sensor OpenModelica model
and the Controller VDM-RT model. For each sensor there is one connection to the
controller to represent inputs from line-following sensors that can detect areas of light
and dark on the ground. Therefore for a two-sensor model there are two connections:

• from the Sensor sensor_value port7 to the Controller lf_left variable; and

• from the Sensor sensor_value port to the Controller lf_right variable.

Two shared design parameters are present also: the separation of the line-following sensors
from the centre line, in metres (line_follow_x); and the distance forward of the line-
following sensors from the centre of the robot, in metres (line_follow_y).

7The sensor_value port is defined as an array in the OpenModelica model, which is flattened on
FMU export.

32

D3.4 - Examples Compendium 1 (Public)

A third collection of connections exist between the body and the sensors related to the
robot position:

• from the Body robot_x port to the Sensor robot_state port8;

• from the Body robot_y port to the Sensor robot_state port;

• from the Body robot_z port to the Sensor robot_state port; and

• from the Body robot_theta port to the Sensor robot_state port.

Connections will also exist between the Body and Environment and the Sensors and
Environment. As described above, the nature of the Environment is not yet defined,
therefore the connections are yet to be determined.

8The robot_state port is defined as an array in the OpenModelica model, which is flattened on FMU
export.

33

D3.4 - Examples Compendium 1 (Public)

5 Turn Indicator

5.1 Example Description

The turn indicator model discussed here is an adaption of a model that was designed with
an industrial partner from the automotive domain9. The model specifies the behaviour
of a turn indication controller, which essentially supports left and right flashing as well
as emergency flashing. The functionality is modelled using three inputs (the voltage, the
control lever and the emergency flash button) and two outputs (the states of the left and
right turn indication lights, respectively). The model can then be used to automatically
generate test cases for a system that shall implement the specified behaviour using the
RT-Tester Model-Based Test Case Generator (RTT-MBT).

A key feature of this example is that it combines several features which are important for
effective modelling of system specifications using SysML state charts: It uses variables
of different types (voltage is real-valued, the other ones are integral), it uses hierarchical
state machines and concurrent component. The overall composite structure of this test
model in Modelio is depicted in Figure 37.

Figure 37: Composite structure diagram of the turn indicator model.

5.2 Baseline

The turn indicator study is primarily used to demonstrate the SysML and RT-Tester
baseline technologies, shown in Section 5.2.1.

5.2.1 SysML and RT-Tester

In this section, we concentrate on the structure of the turn indicator model in Mode-
lio. As highlighted in Figure 37, the top-level structure of the model consists of four
components:

9The detailed model is described in [PVL11].

34

D3.4 - Examples Compendium 1 (Public)

• The desired behaviour of the turn indicator is specified using a state chart called
SystemUnderTest, which is annotated with stereotype SUT.

• The environment is modelled using a state chart called TestEnvironment, which is
annotated with stereotype TE.

• The input variables to the system-under-test are specified in Interface1, which is
annotated with stereotype TE2SUT. This interface specifies all signals whose values
are chosen by the environment and read by the system-under-test.

• The output variables of the system-under-test are specified in Interface2, which
is annotated with stereotype SUT2TE. These variables are written by the system-
under-test and evaluated by the test environment.

Observe that the correct stereotype annotations of the components are important for test
case generation using RTT-MBT.

In the example, the TestEnvironment does not constrain the input variables in any way
(RTT-MBT automatically ensures that the values assigned during test case generation are
within the specified range). The relevant logic is thus implemented in SystemUnderTest,
which is divided into two hierarchical state charts called FLASH_CTRL (Figure 38) and
OUTPUT_CTRL (Figure 39).

Figure 38: The FLASH_CTRL state machine.

OUTPUT_CTRL implements two modes for setting the outputs. It can be in either idle or
flashing mode, where the flashing mode itself is implemented as composite state that can
switch from off to on and vice versa. It does so in a regular interval if the system has
enough power and a lever or the emergency button has been used.

The FLASH_CTRL state machine controls the impact of emergency flashing, which may
both override and be override by the normal operation of the turn indication lever since
there are requirements which state that “Left/right flashing overrides emergency
flashing” (REQ-006 in Figure 40) and “Emergency flashing overrides left/right
flashing” (REQ-005 in Figure 40). Likewise, if regular flashing is enabled before emer-
gency flashing is activated, then regular flashing shall be resumed once emergency flashing
is deactivated again (REQ-008 in Figure 38).

35

D3.4 - Examples Compendium 1 (Public)

Figure 39: The OUTPUT_CTRL state machine.

5.3 INTO-CPS Technology

Recently, a connection between the baseline technologies Modelio and RTT-MBT has
been established via XMI export from Modelio. RTT-MBT can import such XMI files
without any adaptations. The imported model is then used by RTT-MBT to generate test
cases depending on the specified coverage criterion, which can be, for example, transition
coverage or requirements coverage10.

10Observe that certain transitions in the model have been annotated with requirements. For example,
the transition from state TURN_IND_OVERRIDE→ EMER_ACTIVE in Figure 40 has been linked to require-
ment REQ-007 via a satisfy relation. Likewise, state TURN_IND_OVERRIDE has been linked to requirement
REQ-006. Requirements coverage then means that RTT-MBT generates test cases which are required
to exhaustively exercise the linked requirements.

36

D3.4 - Examples Compendium 1 (Public)

Figure 40: The EMER_ON composite state in the FLASH_CTRL state machine.

37

D3.4 - Examples Compendium 1 (Public)

6 Roadmap for Pilot Studies

In the next 12 months of the project, the pilot studies must begin to address a wider
range of INTO-CPS technologies; those available during the first year and as they be-
come available during the second year. In addition, future pilot studies must exhibit the
property of CPSs not covered in current studies; network communication.

6.1 Future INTO-CPS Technology Demonstration Needs

In the next 12 months, various technologies developed in the project should be demon-
strable by the pilot studies. As a part of producing a roadmap, the technology developers
in the project were asked for some properties required of future studies. In this section, we
briefly outline characteristics the future studies should target. We do not aim to identify
which studies may test these specific areas, only that they should be targets.

INTO-CPS application An example should exhibit: some changes in the simulation
in terms of FMU and their connections e.g. replace a given FMU to a another one
(provided by another tool); changing some parameters of the simulation (time step,
total duration); the need to perform a simulation due to the result of a previous
co-simulation; and the ability to manage several simulation or simulation results.

COE To test the COE, examples are sought to: use a fixed step size; uses variable
step size; and exercise the constraint checking (this is the part that checks that a
calculated variable step is valid and is able to reject it and calculate an alternative
step size). A multi-model that becomes unstable if the wrong step size is used
would be of use.

Code Generation Models are required to demonstrate both non-distributed (single
CPU) and distributed (multiple CPUs) simulation.

Design-Space Exploration Examples should demonstrate the different DSE techniques.
Such an example should contain 2-3 simple FMUs with short simulations, allow-
ing us to run a complete set of parameters to determine if they reach objective;
and determine how the different DSE search techniques reach best objective using
rankings.

Test Automation A pilot study is required with one or more manual implementations
of a system under test, so there is something to run the tests against. There should
be at least one example with a (deliberate) functional fault, i.e., one where we
have an implementation that deviates from the design model in one aspect. A
timing fault should also be present (too slow / too fast). These deliberate faults
should be documented in the case study description as such, to avoid confusion. In
addition, as a matter for discussion, a system requirement that does not directly
map to states/transitions should be constructed (e.g., using the requirement model
in OpenModelica).

Model Checking Pilot studies should include purely discrete event (DE) models, con-
tinuous time (CT) models and, also a multi-model to try out the approximation
technique. Ideally, one model would be scalable in the sense that the number of
components for a concrete system is a selectable parameter N ; this would allow to

38

D3.4 - Examples Compendium 1 (Public)

explore the limits of technical feasibility. One or more (deliberate) modelling faults
would be helpful, e.g., a failure state that cannot be left, because a reset operation
is missing (deadlock).

It would be helpful to indicate a few “interesting” model properties that could be
model-checked, like time response queries. For example: “After the operator selects
temperature value X, it does not take longer than time Y until a temperature X+/-
epsilon has been established.” These could be part of the system requirements.

Traceability Pilots should give us the opportunity to exercise different workflows span-
ning varying combinations of the INTO-CPS tool chain. This will test and demon-
strate the various provenance and traceability links between models and model
elements.

INTO-CPS profile A study should exhibit non-trivial dependencies between the in-
puts and outputs of multi-models. In particular, there should be a cycle in their
connection, so that investigation of absence of cycles in the graph of dependencies
is of interest.

It is clear that there are different scales in requirements – some require small facets of
the examples to demonstrate or test particular technologies, and others require larger
scale examples. We propose in the forthcoming pilot studies work that we use the ‘AAA
categories’ observations as proposed in the COMPASS project [NFS+12]. That is ex-
amples should progress from adequacy, through application to adventure – progressively
testing the INTO-CPS technologies and identifying areas in the CPSE state of the art
to push. There is a requirement covering this (see Deliverable D7.3 [LPH+15]), R0081
“The examples should push the tools where possible”. However this requirement requires
careful thought to have testable acceptance criteria. This requirement will be revised at
the start of Year 2 after discussions with the tool providers.

6.2 Candidate Pilots

Choosing which studies will be carried out is a task for year 2, however there are several
candidates for future pilot studies in the next 12 months and in this section we outline
some of those candidates. We give a brief description along with some intuition as to
how they may demonstrate INTO-CPS technologies. We will also seek input from the
INTO-CPS Industry Follower Group in collaboration with Task T6.2 for issues the pilots
should address.

Tedway The Tedway study is a prototype self-balancing scooter [Pie15]. This example
currently exists as a real, physical, prototype as shown in Figure 41. In the next
year, we would propose building multi-models to represent the scooter (including
gyroscope sensors, motors and wheels) and behaviours of the driver (a controllable
mannequin). This example provides the possibility of demonstrating traceability
and provenance features during multi-model construction, and SiL/HiL testing.

Swarm of robots This example build upon previous work in developing models of robot
swarms. In [FPL14] a swarm of Kilobots is used to detect a black line of tape on a
table top and for all the robots to gather together on the line. Kilobots, as shown

39

D3.4 - Examples Compendium 1 (Public)

(a) (b) (c)

Figure 41: The Tedway self-balancing scooter

in Figure 42(a), are small cheap robots, are designed for swarm robotic experi-
ments and may communicate of short distances using infrared (IR) light emitting
diodes (LEDS). Initial work may be built upon in the use of ‘TurtleBots’ (shown
in Figure 42(b)) which have an arduino-compatible controller, providing the option
for wireless networked communication. This example provides the possibility of
demonstrating traceability and provenance features during multi-model construc-
tion, SiL/HiL testing and DSE.

(a) Kilobot robots (b) Turtlebot robot

Figure 42: Swarm robot examples

Whilst both these studies use homogenous robots, we could consider heterogenous
physical and cyber models, and target software hardware. Introducing heteroge-
neous models expands the use of multi-DE and multi-CT modelling.

Smart grid A smart grid is a modernised electricity grid that gathers and acts on a
wide variety of data in order to control energy generation, distribution and con-
sumption. Initial models have been produced using baseline technologies (SysML

40

D3.4 - Examples Compendium 1 (Public)

and Crescendo) (see Figure 43, reproduced from [PF15]), which provides the oppor-
tunity to demonstrate a multi-model approach and would be useful in demonstrating
COE simulation, applying DSE techniques and traceability.

!

Figure 43: Smart Grid 20-sim block diagram

41

D3.4 - Examples Compendium 1 (Public)

References

[FPL14] John Fitzgerald, Ken Pierce, and Peter Gorm Larsen. Co-modelling and co-
simulation in the engineering of systems of cyber-physical systems. In System
of Systems Engineering (SoSE), 2011 6th International Conference on, 2014.

[IPG+12] Claire Ingram, Ken Pierce, Carl Gamble, Sune Wolff, Martin Peter Chris-
tensen, and Peter Gorm Larsen. Examples compendium. Technical report,
The DESTECS Project (INFSO-ICT-248134), October 2012.

[LPH+15] Peter Gorm Larsen, Ken Pierce, Francois Hantry, Joey W. Coleman, Sune
Wolff, Kenneth Lausdahl, Marcel Groothuis, Adrian Pop, Miran Hasanagić,
Jörg Brauer, Etienne Brosse, Carl Gamble, Simon Foster, and Jim Woodcock.
Requirements Report year 1. Technical report, INTO-CPS Deliverable, D7.3,
December 2015.

[NFS+12] C. B. Nielsen, J. S. Fitzgerald, R. Lloyd Stevens, S. Perry, S. Riddle, A. Ro-
manovsky, M. Forcolin, and L. Lorenzen. Convergence report 1. Technical
report, COMPASS Deliverable, D11.1, February 2012.

[PF15] Richard Payne and John Fitzgerald. Visualising Cyber-Physical Systems in
the Decision Theatre. Technical report, Science Central Project, August 2015.

[Pie15] Ken Pierce. Cyber-Physical Lab: Initiating Public Engagement. Technical
report, Science Central Project, August 2015.

[PVL11] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated Test Case
Generation with SMT-Solving and Abstract Interpretation. In Mihaela Bo-
baru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, Nasa
Formal Methods, Third International Symposium, NFM 2011, pages 298–312,
Pasadena, CA, USA, April 2011. NASA, Springer LNCS 6617.

42

D3.4 - Examples Compendium 1 (Public)

A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
AI Agro Intelligence
ASD Architecture Structure Diagram
AU Aarhus University
BDD Block Definition Diagram
CD Connections Diagram
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
COMPASS Comprehensive Modelling for Advanced Systems of Systems
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FCU Fan Coil Unit
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HVAC Heating, Ventilation, and Air Conditioning
HW Hardware
IBD Internal Block Diagram
IFG Industry Follow Group
MBD Model Based Design
MiL Model-in-the-Loop
PROV-N The Provenance Notation
RTT-MBT RT-Tester Model-Based Test Case Generator
SiL Software-in-the Loop
SoS System of Systems
ST Softeam
STD State Machine Diagram
SUT System Under Test
SysML Systems Modelling Language
TA Test Automation
TWT TWT GmbH Science & Innovation
UCD Use Case Diagram
UNEW University of Newcastle upon Tyne
UTRC United Technology Research Center
UY University of York
VDM-RT Vienna Development Method for Real Time
VSI Verified Systems International

43

	Introduction
	Three-tank Water Tank
	Example Description
	Baseline
	INTO-CPS Technology

	Fan Coil Unit (FCU)
	Example Description
	Baseline
	INTO-CPS Technology

	Line-following Robot
	Example Description
	Baseline
	INTO-CPS Technology

	Turn Indicator
	Example Description
	Baseline
	INTO-CPS Technology

	Roadmap for Pilot Studies
	Future INTO-CPS Technology Demonstration Needs
	Candidate Pilots

	List of Acronyms

