
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Method Guidelines 1

Deliverable Number: D3.1a

Version: 1.0

Date: December 2015

Public Document

http://into-cps.au.dk

D3.1a - Method Guidelines 1 (Public)

Contributors:

John Fitzgerald, UNEW
Carl Gamble, UNEW
Richard Payne, UNEW
Ken Pierce, UNEW

Editors:

Richard Payne, UNEW

Reviewers:

Christian König, TWT
Andrey Sadovykh, ST
Claes Dühring Jaeger, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D3.1a - Method Guidelines 1 (Public)

Document History

Ver Date Author Description
0.1 03-08-2015 Ken Pierce Draft structure of deliverable and responsibilities
0.2 22-09-2015 Richard Payne First version of concepts base with initial com-

ments addressed
0.3 28-10-2015 Richard Payne Deliverable editor comments addressed
0.4 05-11-2015 Ken Pierce Introduction added
0.5 06-11-2015 Ken Pierce Workflow material added
0.6 09-11-2015 Ken Pierce Workflow material revised after comments
0.65 13-11-2015 Ken Pierce Abstract added
0.9 24-11-2015 Richard Payne Revised in light of comments
0.95 15-12-2015 Richard Payne Amended to reflect revised SysML profile
1.0 15-12-2015 Ken Pierce Finished revisions in light of comments

3

D3.1a - Method Guidelines 1 (Public)

Abstract

This document is the first of three that will give methods guidance for the INTO-CPS
technologies. It is aimed at end users of the technologies. This first version presents
an initial concepts base, which describes the terminology used within INTO-CPS; ex-
pected workflows for INTO-CPS, focusing on how two existing workflows are enhanced
by the technologies; and the use of SysML for holistic architectural modelling for CPSs,
complementing the work in Deliverable D2.1a [APCB15].

4

D3.1a - Method Guidelines 1 (Public)

Contents

1 Introduction 6

2 Concepts and Terminology 7
2.1 Systems . 7
2.2 Models . 7
2.3 Tools . 9
2.4 Analysis . 10
2.5 Existing Tools and Languages . 10
2.6 Formalisms . 11

3 Workflows for INTO-CPS 13
3.1 Workflow Activities . 13
3.2 Embedded Systems Waterfall Workflow 15
3.3 Embedded Systems V-Model Workflow 17

4 SysML for Multi-modelling 20
4.1 SysML Modelling Approaches . 20

A List of Acronyms 30

B Glossary 31

5

D3.1a - Method Guidelines 1 (Public)

1 Introduction

The material in this document is aimed primarily at new and prospective users of the
INTO-CPS technologies. Readers seeking a progress report on the methods work should
refer to the companion deliverable, D3.1b Methods Progress Report.

The INTO-CPS technologies bring together a variety of baseline tools and technologies.
Each technology has its own culture, abstractions and approaches to problem solving
that inform how they are used. Many of these things are tacit, and tend to be discovered
only after trying to combine them. The aim of the methods work is to understand how
best to use these technologies, to pilot approaches and techniques, and to distill this into
a set of guidelines aimed at the users of the technologies— engineers wishing to build
cyber-physical systems (CPSs).

As the project continues and the tool chain evolves and matures, this guidance will expand
to cover all the engineering processes enabled by the new technology. By the time of the
final release of the technologies, the guidelines document will comprehensively cover the
INTO-CPS workflow.

In this first version of the guidelines document however, with the combined INTO-CPS
technology in its infancy, the guidance focuses on laying the foundations for future. The
guidance is broken down into three sections, all aimed at engineers who are new to the
INTO-CPS technologies, or who are considering adopting them. These areas are:

Concepts and Terminology (Section 2) This section is an introduction to the con-
cepts and terminology used in INTO-CPS. It explains many terms from the various base-
line technologies, as well as other model-based design terminology. In parts this involved
reconciling terms used differently in different areas, and finding common, agreed-upon
terms for similar concepts. These concepts are applicable for all documents produced by
INTO-CPS (this document, user manuals, deliverables, and publications).

Workflows (Section 3) All groups of engineers using model-based design for CPS
development will follow a workflow, either implicitly or explicitly. The linking and com-
bining of technologies in INTO-CPS will enable new workflows and alter existing ones.
This section gives an initial vision of the types of workflows for model-based design of CPS
that will be enabled by the INTO-CPS technologies as they mature, and how these relate
to existing workflows. This section is intended to help engineers decide how INTO-CPS
technology may help their design process, by comparing current (“pre-INTO”) workflows
with expected (“post-INTO”) enhanced workflows. This is the first step towards guidance
on aligning INTO-CPS with existing practice.

SysML for Multi-modelling (Section 4) A profile for modelling CPS in SysML has
been developed in the project (see Deliverable D2.1a) and implemented in Modelio (see
Deliverable D4.1c). This profile requires that blocks map one-to-one to the elements of a
multi-model for FMI simulation— DE and CT models packaged as Functional Mockup
Units FMUs. However SysML also has utility at an earlier stage in the modelling process,
to capture a holistic view of the system, often before assignment to DE and CT domains
can be made. This section describes how SysML can be used in this way, and its relation
to the SysML profile embodied in the tools.

6

D3.1a - Method Guidelines 1 (Public)

2 Concepts and Terminology

This section introduces the basic concepts used in the INTO-CPS project. CPSs bring
together domain experts from diverse backgrounds, from software engineering to control
engineering. Each discipline has developed their own terminologies, principles and phi-
losophy for years — in places they use similar terms for quite different meanings and
different terms that have the same meaning. In addition, the INTO-CPS project aims to
produce a tool chain for CPS engineering resulting in the need for common tool-based ter-
minology. INTO-CPS requires experts from diverse fields to work collaboratively, so this
section gives some core concepts of INTO-CPS that will be used throughout the project.
We divide the concepts into several broad areas in the remainder of this section.

2.1 Systems

A System is defined as being “a combination of interacting elements organized to achieve
one or more stated purposes” [INC15]. Any given system will have an environment ,
considered to be everything outside of the system. The behaviour exhibited by the envi-
ronment is beyond the direct control of the developer [BFG+12]. We also define a system
boundary as being the common frontier between the system and its environment. The
definition of the system boundary is application-specific [BFG+12]. Cyber-Physical
Systems (CPSs) refer to “ICT systems (sensing, actuating, computing, communica-
tion, etc.) embedded in physical objects, interconnected (including through the Internet)
and providing citizens and businesses with a wide range of innovative applications and
services” [Tho13, DAB+15]. A System of Systems (SoS) is a “collection of constituent
systems that pool their resources and capabilities together to create a new, more com-
plex system which offers more functionality and performance than simply the sum of the
constituent systems” [HIL+14]. CPSs may exhibit the characteristics of SoSs.

2.2 Models

In the INTO-CPS project, we concentrate on “model-based design” of CPSs. A model is
a potentially partial and abstract description of a system, limited to those components
and properties of the system that are pertinent to the current goal [HIL+14]. A model
should be “just complex enough to describe or study the phenomena that are relevant
for our problem context” [vA10]. Models should be abstract “in the sense that aspects of
the product not relevant to the analysis in hand are not included” [FL98]. A model “may
contain representations of the system, environment and stimuli” [FLV14]1.

In a CPS model, we model systems with cyber, physical and network elements. These
components are often drawn from different domains, and are modelled in a variety of
languages, with different notations, concepts, levels of abstraction, and semantics, which
are not necessarily easily mapped one to another. This heterogeneity presents a signifi-
cant challenge for simulation in CPSs [HIL+14]. In INTO-CPS we use continuous time

1Further discussion is required in the second year of INTO-CPS regarding the definition of aspects
of models in particular; environment models, test models in RT-Tester and their correspondence in the
INTO-CPS SysML profile.

7

D3.1a - Method Guidelines 1 (Public)

(CT) and discrete event (DE) models to represent physical and cyber elements as ap-
propriate. A CT model has state that can be changed and observed continuously [vA10]
and are described using either explicit continuous functions of time either implicitly as
a solution of differential equations. A DE model has state that can be changed and ob-
served only at fixed, discrete, time intervals [vA10]. The approach used in the DESTECS
project was to use co-models – “a model comprising a DE model, a CT model and a
contract” [BFG+12]. In INTO-CPS we propose the use of multi-models – “comprising
multiple constituent DE and CT models”.

We cover the main features of the notations used in INTO-CPS in Section 2.5. Here we
consider some general terms used in models. A design parameter is a property of a
model that can be used to affect the model’s behaviour, but remains constant during a
given simulation [BFG+12]. A variable is feature of a model that may change during
a given simulation [BFG+12]. Non-functional properties (NFPs) pertain to char-
acteristics other than functional correctness. For example, reliability, availability, safety
and performance of specific functions or services are NFPs that are quantifiable. Other
NFPs may be more difficult to measure [PF10].

The activity of creating models may be referred to as modelling [FLV14] and related
terms include co-modelling and multi-modelling . A workflow is a sequence of ac-
tivities performed to aid in modelling. A workflow has a defined purpose, and may cover
a subset of the CPS engineering development lifecycle.

The term architecture has many different definitions, and range in scope depending
upon the scale of the product being ‘architected’. In the INTO-CPS project, we use the
simple definition from [PHP+14]: “an architecture defines the major elements of a system,
identifies the relationships and interactions between the elements and takes into account
process. Those elements are referred to as components . An architecture involves both a
definition of structure and behaviour. Importantly, architectures are not static but must
evolve over time to reflect the change in a system as it evolves to meet changes to its
requirements”. In a CPS architecture, components may be either cyber components or
physical components corresponding to some functional logic or an entity of the physical
world respectively.

In INTO-CPS we consider both a holistic architecture and a design architecture .
An example of their use is given in Section 4. The aim of a holistic architecture is
to identify the main units of functionality of the system reflecting the terminology and
structure of the domain of application. It describes a conceptual model that highlights
the main units of the system architecture and the way these units are connected with
each other, taking a holistic view of the overall system. The design architectural model
of the system is effectively a multi-model. The INTO-CPS SysML profile [APCB15]
is designed to enable the specification of CPS design architectures, which emphasises a
decomposition of a system into subsystems , where each subsystem is an assembly of
cyber and physical components and possibly other subsystems, and modelled separately
in isolation using a special notation and tool designed for the domain of the subsystem.
Evolution refers to the ability of a system to benefit from a varying number of alternative
system components and relations, as well as its ability to gain from the adjustments of
the individual components’ capabilities over time (Adjusted from SoS [NLF+13]).

Considering the interactions between components in a system architecture, an inter-

8

D3.1a - Method Guidelines 1 (Public)

face “defines the boundary across which two entities meet and communicate with each
other” [HIL+14]. Interfaces may describe both digital and physical interactions: digital
interfaces contain descriptions of operations and attributes that are provided and required
by components. Physical interfaces describe the flow of physical matter (for example fluid
and electrical power) between components.

There are many methods of describing an architecture. In the INTO-CPS project, an
architecture diagram refers to the symbolic representation of architectural information
contained in a model. An architectural framework is a “defined set of viewpoints
and an ontology” and “is used to structure an architecture from the point of view of a
specific industry, stakeholder role set, or organisation. [HIL+14]. In the application of
an architecture framework, an architectural view is a “work product (for example an
architecture diagram) expressing the architecture of a system from the perspective of
specific system concerns” [PHP+14].

The INTO-CPS SysML profile comprises two diagram types. The Architecture Struc-
ture Diagram (ASD) specialises SysML block definition diagrams to support the spec-
ification of a system architecture described in terms of a system’s components. Con-
nections Diagrams (CDs) specialise SysML internal block diagrams to convey the
internal configuration of the system’s components and the way they are connected.

2.3 Tools

The INTO-CPS tool chain is a collection of software tools, based centrally around
FMI-compatible co-simulation, that supports the collaborative development of CPSs. The
INTO-CPS Application is a front-end to the INTO-CPS tool chain. The application
allows the specification of the co-simulation configuration to be orchestrated by the COE.
Central to the INTO-CPS tool chain is the use of the Functional Mockup Interface (FMI)
standard.

The Functional Mockup Interface (FMI) is a tool-independent standard to sup-
port both model exchange and co-simulation of dynamic models using a combination of
XML-files and compiled C-code [Blo14]. Part of the FMI standard for model exchange is
specification of a model description file. This is an XML file that supplies a descrip-
tion of all properties of a model (for example input/output variables). A Functional
Mockup Unit (FMU) is a tool component that implements FMI. Data exchange be-
tween FMUs and the synchronisation of all simulation solvers [Blo14] is controlled by a
Master Algorithm (MA).

Co-simulation is the simultaneous, collaborative, execution of models and allowing in-
formation to be shared between them. The models may be CT-only, DE-only or a combi-
nation of both. The Co-simulation Orchestration Engine (COE) combines existing
co-simulation solutions and scales them to the CPS level, allowing CPS multi-models to
be evaluated through co-simulation. The COE will also allow real software and physical
elements to participate in co-simulation alongside models, enabling both Hardware-in-
the-Loop (HiL) and Software-in-the-Loop (SiL) simulation. The co-simulation config-
uration is the configuration that the COE needs to initialise a co-simulation. It contains
paths to all FMUs, their inter connection, parameters and step size configuration. When
this is combined with a start and end time, a co-simulation can be performed.

9

D3.1a - Method Guidelines 1 (Public)

Code generation is the transformation of a model into generated code suitable for
compilation into one or more target languages (e.g. C or Java).

The INTO-CPS project considers two tool-supported methods for recording the ratio-
nale of design decisions in CPSs. Traceability is the association of one model element
(e.g. requirements, design artefacts, activities, software code or hardware) and specifi-
cally requirements traceability “refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction” [GF94]. Provenance “is in-
formation about entities, activities, and people involved in producing a piece of data or
thing, which can be used to form assessments about its quality, reliability or trustworthi-
ness” [MG13].

2.4 Analysis

Design-Space Exploration (DSE) is “an activity undertaken by one or more engineers
in which they build and evaluate [multi]-models in order to reach a design from a set
of requirements” [BFG+12]. “The design space is the set of possible solutions for a
given design problem” [BFG+12]. Where two or more models represent different possible
solutions to the same problem, these are considered to be design alternatives . Each
choice involves making a selection from alternatives on the basis of an objective – criteria
or constraints that are important to the developer, such as cost or performance. The
alternative selected at each point constrains the range of design alternatives that may be
viable next steps forward from the current position.

Test Automation (TA) is defined as the machine assisted automation of system tests.
In INTO-CPS we concentrate on various forms of model-based testing – centering
on testing system models, against the requirements on the system. The System Un-
der Test (SUT) is “the system currently being tested for correct behaviour. An alias
for system of interest, from the point of view of the tester” [HIL+14]. The SUT is
tested against a collection of test cases – a finite structure of input and expected
output [UPL06], alongside a test model , which specifies the expected behaviour of
a system under test [CMC+13]. TA uses a test suite – a collection of test proce-
dures . These test procedures are detailed instructions for the set-up and execution of a
given set of test cases, and instructions for the evaluation of results of executing the test
cases [WG-92].

INTO-CPS considers three main types of TA: Hardware-in-the-Loop (HiL) testing
with DE models running on target hardware components; Software-in-the-Loop (SiL)
testing with software running on CT model simulator; and Model-in-the-Loop (MiL)
testing with co-simulated CT/DE models.

2.5 Existing Tools and Languages

The INTO-CPS tool chain uses several existing modelling tools. Overture2 supports
modelling and analysis in the design of discrete, typically, computer-based systems using
the VDM-RT notation. VDM-RT is based upon the object-oriented paradigm where

2http://overturetool.org/

10

http://overturetool.org/

D3.1a - Method Guidelines 1 (Public)

a model is comprised of one or more objects . An object is an instance of a class where
a class gives a definition of zero or more instance variables and operations an object
will contain. Instance variables define the identifiers and types of the data stored within
an object, while operations define the behaviours of the object.

The 20-sim3 tool can represent continuous time models in a number of ways. The core
concept is that of connected blocks . Bond graphs may implement blocks. Bond graphs
offer a domain-independent description of a physical system’s dynamics, realised as a
directed graph. The vertices of these graphs are idealised descriptions of physical phe-
nomena, with their edges (bonds) describing energy exchange between vertices. Blocks
may have input and output ports that allow data to be passed between them. The energy
exchanged in 20-sim is the product of effort and flow , which map to different concepts
in different domains, for example voltage and current in the electrical domain.

OpenModelica4 is an open-source Modelica-based modelling and simulation environ-
ment. Modelica is an “object-oriented language for modelling of large, complex, and
heterogeneous physical systems” [FE98]. Modelica models are described by schematics ,
also called object diagrams , which consist of connected components. Components are
connected by ports and are defined by sub components or a textual description in the
Modelica language.

Modelio5 is an open-source modelling environment supporting industry standards like
UML and SysML. INTO-CPS will make use of Modelio for high-level system architecture
modelling using the SysML language and proposed extensions for CPS modelling. The
systems modelling language (SysML) [Sys12] extends a subset of the UML to support
modelling of heterogeneous systems.

2.6 Formalisms

The semantics of a language describes the meaning of a (grammatically correct) pro-
gram [NN92] (or model). There are different methods of defining a language semantics:
structural operational semantics , denotational semantics and axiomatic se-
mantics .

A structural operational semantics (SOS) describes how the individual steps of a program
are executed on an abstract machine [Plo81]. An SOS definition is akin to an interpreter
in that it provides the meaning of the language in terms of relations between beginning
and end states. The relations are defined on a per-construct basis. Accompanying the
relations are a collection of semantic rules which describe how the end states are achieved.
Where an operational semantics defines how a program is executed, a denotational ap-
proach defines a language in terms of denotations, in the form of abstract mathematical
objects, which represent the semantic function that maps over the inputs and outputs of
a program [SS71].

The Unifying Theories of Programming (UTP) [HJ98] is a technique to for describing
language semantics in a unified framework. A theory of a language is composed of an
alphabet , a signature and a collection of healthiness conditions .

3http://www.20sim.com/
4https://www.openmodelica.org/
5http://www.modelio.org/

11

http://www.20sim.com/
https://www.openmodelica.org/
http://www.modelio.org/

D3.1a - Method Guidelines 1 (Public)

The Communicating Sequential Processes CSP notation [Hoa85] is a formal process
algebra for describing communication and interaction. INTO-CSP is a version of CSP,
which will be used to provide a model for the SysML-FMI profile, FMI, VDM-RT and
Modelica semantics. It is a front end for a UTP theory of reactive concurrent continuous
systems customised for the needs of INTO-CPS. Hybrid-CSP is a continuous version
of CSP defined originally by He Jifeng [Jif94]. It will be used as a basis to inform the
design of INTO-CSP.

Several forms of verification are enabled through the use of formally defined languages.
Refinement is a verification and formal development technique pioneered by [BW98]
and [Mor90]. It is based on a behaviour preserving relation that allows the transformation
of an abstract specification into more and more concrete models, potentially leading to
an implementation. Proof is the process of showing how the validity of one statement
is derived from others by applying justified rules of inference [BFL+94].

For the purposes of verification in INTO-CPS, and in particular the work of WP2, we
make use of the Isabelle/HOL theorem prover and the FDR3 refinement checker. These
are not considered part of the INTO-CPS tool chain, and are used in the INTO-CPS
project primarily to support the development of foundation work.

12

D3.1a - Method Guidelines 1 (Public)

3 Workflows for INTO-CPS

As described in the concepts base (Section 2), a workflow is a sequence of activities
performed during the development of a CPS. The workflow should have some defined
goal, with the activities in the workflow being steps towards that goal. These steps may
be repeated, and feed back to into each other, as part of an iterative development.

Engineering teams will, either explicitly or implicitly, follow some workflow, either pre-
scribed within their team or based on experience. Many of these existing workflows may
already involve model-based design, while others may not. In both cases the INTO-CPS
technologies could enhance their existing workflows, but the use of the technologies will
differ in each case.

This section is intended to help engineers decide how INTO-CPS technology may help
their design process, in particular in how they align to existing practice. The fundamental
question that we hope to answer in the workflows work is: how does the INTO-CPS
approach, and its supporting technologies, affect the development process for cyber-physical
systems? In answering this question, we hope to provide insight and guidance on when
companies should adopt the INTO-CPS approach. This should take into account their
existing workflows, the makeup of their teams skills, and so on.

At this stage of INTO-CPS work, the first version of the technologies are just emerging,
so guidance given in this section is speculative, setting out a vision for INTO-CPS. As the
technologies mature, the guidance will be updated to take into account real experience of
using the technologies. In this first version, we focus on identifying how current workflows
could be enhanced by INTO-CPS technologies.

Existing embedded systems developers are an obvious candidate to become developers
of CPS. Either moving into this area proactively, or simply finding themselves building
increasing complicated, networked systems. This is an area in which guidelines for model-
based design have been published, from baseline projects such as DESTECS [FLV14]. For
these reasons, in this first version of the guidance, we focus on how embedded systems
workflows can be enhanced by INTO-CPS technologies. Further releases of the guidance
will be more comprehensive as real experience is gained.

3.1 Workflow Activities

In this section, we list activities that are used appear in the later workflows. The choice of
granularity for defining an activity will affect the size of such a list, however we have tried
to select a level that is instructive for describing workflows, but one that does not make
the described workflows overly long. Activities are grouped into broad categories. Note
that these include both existing, embedded systems activities and activities enabled by
INTO-CPS. Since we consider a variety of workflows, both existing and expected, there
is overlap between them. For example, those under the Design will often be supported
by Modelling activities, but not necessarily.

In the following descriptions (and corresponding summary in Table 1), we identify the
tools that support the activities, where applicable, using the following icons:

13

D3.1a - Method Guidelines 1 (Public)

The INTO-CPS Application, COE and its extensions.

Modelio.

The Overture tool.

The Crescendo tool.

OpenModelica.

20-sim.

Descriptions of these tools can be found in the concepts base at the beginning of this
document in Section 2.5.

Requirements and Traceability Writing Design Notes () includes documenta-
tion about what has been done during a design, why a decision was made and so on.
Requirements () includes requirements gathering and analysis. Validation () is any
form of validation of a design or implementation against its required behaviour.

Architectural Modelling INTO-CPS primarily supports architectural modelling in
SysML. Holistic Architectural Modelling () and Design Architectural Modelling () are
described in Section 4. The former focuses on a domain-specific view, whereas the latter
targets multi-modelling using a special SysML profile. The Export Model Descriptions
() activity indicated passing component descriptions from the Design Architectural
Model to other modelling tools.

Modelling The Import Model Description () activity means taking a compo-
nent interface description from the Design Architectural Model into another modelling
tool. Cyber Modelling () means capturing a “cyber” component of the system, e.g. using
a formalism/tool such as VDM/Overture. Physical Modelling () means capturing
the “physical” component of the system, e.g. in 20-sim or OpenModelica. Collectively
these can be referred to as Simulation Modelling () to distinguish from other
forms, such as Architectural Modelling (). Co-modelling () means producing a system
model with one DE and one CT part, e.g. in Crescendo. Multi-modelling () means
producing a system model with multiple DE or CT parts with several tools.

Design Supervisory Control Design means designing some control logic that deals with
high-level such as modal behaviour or error detection and recovery. Low Level Control
Design means designing control loops that control physical processes, e.g. PID control.
Software Design is the activity of designing any form of software (whether or not mod-
elling is used). Hardware Design means designing physical components (whether or not
modelling is used).

Analysis In INTO-CPS, the RT-Tester tools enables the activities of Model Checking
(), Creating Tests () and creating a Test Oracle () FMU. The Create a Con-
figuration () activity means preparing a multi-model for co-simulation. The Define
Design Space Exploration Configurations () activity means preparing a multi-model
for multiple simulations. Export FMU () means to generate an FMU from a
model of a component. Co-simulation () means simulating a co-model, e.g. using
Crescendo baseline technology or the COE.

14

D3.1a - Method Guidelines 1 (Public)

Prototyping Manual Code Writing means creating code for some cyber component
by hand. Generate Code () means to automatically create code from a model of
a cyber component. Hardware-in-the-Loop (HiL) Simulation () and Software-in-the-
Loop (HiL) Simulation () mean simulating a multi-model with one or more of the
models replaced by real code or hardware.

The above activities are summarised in Table 1. Terms in italics correspond to INTO-
CPS activities that produce traceable artifacts, as described in the traceability ontology
in Deliverable D3.1b [FGPP15].

3.2 Embedded Systems Waterfall Workflow

Current Workflow In this first pre-INTO workflow we consider an engineering team
that already uses model-based design, following a waterfall approach. They predomi-
nantly build models of physical and control systems. This is because design and low-level
control are most critical to their processes. In Fitzgerald et al. [FLV14] this type of work-
flow is called “continuous-time first” (CT-first) as this is the most common modelling
paradigm used in modelling physical systems. In an INTO-CPS context however we coin
the term physical-first for clarity.

The steps in this example workflow are as follows:

• Requirements gathering

• Plant modelling

• Validation

• Control loop design

• Validation

• Software-in-the-loop (SiL) simulation

• Software design

• Hardware-in-the-loop simulation

• Integration and integration testing

The steps above are visualised in Figure 1a. Requirements are gathered from the customer
and an initial plant model is built in order to clarify these requirements and decide on the
physical parameters of the device to be built. Existing model components can be reused
as appropriate. Validation at this stage involves discussions with the customer to ensure
their requirements are met by the design at this stage. The low level control laws are then
developed based on the plant model, and another step of validation occurs. Where the
system being designed is sufficiently similar to previous products, software-in-the-loop
simulation (SiL) can be used to test the model against existing software. Software design
can then begin properly, taking into account the control laws previously developed. This
can be tested against the plant model as a hardware-in-the-loop simulation (HiL). The
plant model can then inform creation of a prototype plant and this can be integrated
with the software.

15

D3.1a - Method Guidelines 1 (Public)

Table 1: Activities in existing embedded systems design workflows or enhanced INTO-
CPS workflows. Entries in italics correspond to traceable artifacts in INTO-CPS (see
Deliverable D3.1b [FGPP15])

Requirements and Traceability
Design Notes
Requirements
Validation
Architectural Modelling
Holistic Architectural Modelling
Design Architectural Modelling
Export Model Descriptions
Modelling
Import a Model Description
Physical Modelling (Simulation Modelling)
Cyber Modelling (Simulation Modelling)
Co-modelling
Multi-modelling
Design
Supervisory Controller Design
Low Level Controller Design
Software Design
Hardware Design
Analysis
Create Tests
Model Checking
Create Test Oracle
Create a Configuration
Define Design Space Exploration Configurations
Export FMU
Co-simulation
Prototyping
Generate Code
Hardware-in-the-Loop (HiL) Simulation
Software-in-the-Loop (SiL) Simulation
Manual Code Writing

16

D3.1a - Method Guidelines 1 (Public)

Validation meetings can be lengthy, particularly later in the development process as large
amounts of information produced by various parts of the team need to be assessed in
order to validate each design step. Such workflows are also highly at risk from late-
stage discovery of design errors and are not robust to requirements changes from the
customer.

Enhanced Workflow In an enhanced workflow using the INTO-CPS technologies we
can imagine steps as follows. The double vertical lines indicate that cyber- and physical-
modelling occur in parallel:

• Requirements gathering

• Architectural Modelling

• Physical modelling || Cyber modelling

• Co-simulation

• Hardware-in-the-loop testing

• Code generation

The steps above are visualised in Figure 1b. Using SysML, engineers are able to build
a model of the system that captures the users requirements, deferring choice of “cyber”
or “physical” elements if necessary. Guidance on this can see found in Section 4 of this
document. The SysML profile (Deliverable D2.1a) can then be used to describe the
system in terms that allow model descriptions to be exported to supported modelling
tools. Crucially, modelling of the physical elements and control laws can proceed in
parallel with modelling of the software. Co-simulation can be used to test these models
against each other. Simulation with existing software or hardware (HiL / SiL) is still
possible, for example if one modelling activity produces results faster than the other, or
before potentially expensive real-world integration of hardware and software.

At each step in the workflow, engineers can store and retrieve artifacts using the INTO-
CPS App. Design rationale and design notes can be attached to artifacts, as well as
information about which engineer created or modified them. This data can be retrieved
to reconstruct evidence for validation at any time, reducing the time required in face-
to-face meetings decoupling the validation process from the design process. Initial work
to define the services required to support this has been carried out and is reported in
Deliverable D3.1b [FGPP15]. It is not currently targeted at end users, but may be of
interest.

3.3 Embedded Systems V-Model Workflow

Current Workflow In this second pre-INTO workflow, we consider an engineering
team that follows the V-model in designing embedded systems. They predominantly
worked in software before and use discrete-event modelling in their controller design. The
V-model can be seen as an extension to the waterfall model, where the system is designed
as a whole, components are identified, designed, tested and finally integrated back to a full
realisation. At each stage of the design and implementation, a corresponding validation
is carried out. While discrete-event modelling can help for design and validation of cyber

17

D3.1a - Method Guidelines 1 (Public)

(a) Waterfall workflow for a physical-first design

(b) Enhanced workflow using INTO-CPS technologies

Figure 1: Two workflows for model-based design of CPSs based around an iterative
waterfall approach. The first (top) uses single-domain modelling, focusing on the physical
plant and defers software design. The second (bottom) shows enhancements by the INTO-
CPS technologies in red. The double vertical lines indicate that cyber- and physical-
modelling can now occur in parallel.

18

D3.1a - Method Guidelines 1 (Public)

Figure 2: V-model enhanced with INTO-CPS-enabled activities

elements, an enhanced workflow using multi-modelling will allow for improved validation
against both models of hardware, and real hardware through HiL simulation.

Enhanced Workflow A representation of the V-model, marked with these enhanced
activities, is given in Figure 2. Note that the steps in the V-model here are abstract and
do not map to those in Table 1, while the annotated activities do.

Requirements gathering and analysis are enhanced through holistic architectural mod-
elling in SysML, allowing aspects of the system to be captured and understood. System
design is enhanced through design architectural modelling in SysML, which, informed
by the holistic model, allows components to be assigned to the cyber and physical do-
mains. From the design architectural model, model descriptions can be exported to the
domain-specific modelling tools (Overture, 20-sim, and OpenModelica). Component de-
sign is enhanced through cyber and physical modelling in these tools. Code generation
enhances the implementation phase. These component models can be tested through sim-
ulation, and tested together through co-simulation, enhancing both Component Testing
and Integration Testing. HiL simulation enhances system testing, along with test cases
that can be generated from the design model and run against the component models,
multi-models, and the final realisation of the system.

19

D3.1a - Method Guidelines 1 (Public)

4 SysML for Multi-modelling

A system architecture defines the major elements (components) of that system, and
identifies their relationships, behaviour and interactions. A model of the architecture is
potentially partial (representing some or all of the system) and abstract, limited to those
elements pertinent to the modelling goal. In CPS engineering, this goal may include
understanding the system in terms of the application domain, or capturing the system
components in a way that targets multi-modelling. These different goals may give rise to
very different models.

In this section we consider different methods for constructing SysML models for use
with the INTO-CPS tool chain, in particular the relation between holistic and design
architectural models.

4.1 SysML Modelling Approaches

The INTO-CPS SysML profile, defined in Deliverable D2.1a [APCB15], proposes the
structuring of a CPS architectural model into ‘subsystems’. These subsystems may be
composed of cyber or physical components. Using the INTO-CPS tool chain, each sub-
system corresponds to a FMI model description, and therefore an individual model in a
multi-model.

Thinking of a system in this way is not necessarily natural – especially when designing a
system ab initio and with systems comprising entities across different domains requiring
diverse domain expertise. Whilst both holistic and design architecting advocate mod-
elling a system in a modular way, it may not be natural to split model elements by the
notations they are to be ultimately modelled in.

In this section we use a smart grid example to show the different architectural modelling
approaches, and provide some commentary and guidance on how to model in a way which
is natural for domain experts, and how to move to a multi-modelling approach.

Example Introduction

A smart grid is an electricity power grid where integrated ICT systems play a role in
the control and management of the electricity power supply. Such ICT elements include
distributed control in households, control of renewable energies and networked commu-
nications. In this section we outline a Smart Grid model to explore different design
decisions in the cyber control of an electricity power grid. The model presented here is a
small illustrative example, which omits complexities of a real Smart Grid. For example,
the change from three-phase AC power to one-phase DC power allowing us to use simpler
physical models. A second simplification is in the number of houses present in the grid
model. We model only 5 houses, assumed to be in a small local area supplied by a single
substation. We do not consider the remainder of the grid. To ensure that any effect
due to changes in the power consumption by those properties are observed by the other
houses, we skew the resistance of the transmission lines between the power generation
and substation, and substation to houses.

20

D3.1a - Method Guidelines 1 (Public)

Holistic Architecture

The first diagram, the Block Definition Diagram (BDD) of the Smart Grid, is given in
Figure 3. The figure shows that the Smart Grid system comprises two top-level physical
elements: Power Generation and Transmission Lines ; a single top-level cyber elements:
the Data Network ; and two cyber-physical systems: a Substation and several Houses.
The two elements may be further decomposed. The Substation elements is composed of a
cyber Substation Controller and physical Substation Meter and Step-down Transformer.
The House element comprises: a cyber House Controller, physical House Meter and
Devices, and a Owner/Usage Profile.

Figure 3: Block Definition Diagram of Smart Grid

The second SysML diagram in Figure 4 is the Internal Block Diagram (IBD) of the smart
grid. The diagram shows there are two main connection types in the model, corresponding
to the physical power connections and the cyber data connections. The model also shows
the connections between the cyber and physical parts of the models – currently modelled
using data-type connections.

The first type of connection – the physical power connections – show a flow of Power from
the Power Generation, through the Transmission Lines to the Houses, via the Substation.
In the Substation, the Stepdown Transformer is connected to the Substation Meter.
Similarly, in each House (only one is shown in the figure), the Power flows through the
House Meter to each Device (again only one is shown for readability).

The data connections exist between the Substation Controller and House Controllers.
The Data Network is explicitly modelled and links the various controllers.

Finally, there are links between the cyber controllers and the physical systems. In this
model, the Substation Controller is connected to the Substation Meter, and the House
Controller is linked to the House Meter and Devices.

21

D3.1a - Method Guidelines 1 (Public)

Figure 4: Internal Block Diagram of Smart Grid

22

D3.1a - Method Guidelines 1 (Public)

A Co-modelling Approach

There are degrees to the extent of splitting the modelling elements into separate subsys-
tems in a design architecture. To highlight the different ways in which the INTO-CPS
profile may be used to model the architecture, we first consider how this model could be
represented as a co-model – that is a multi-model with one DE and one CT model de-
fined in 20-sim and VDM-RT respectively. In this section, we use the INTO-CPS SysML
profile to define the architecture of the Smart Grid from the perspective of informing a
co-model.

In the Architecture Structure Diagram (ASD) in Figure 5 we decompose the Smart Grid
system into two subsystems: Physical Elements and Cyber Elements, which contain the
physical and cyber elements respectively. This corresponds to two models – the Physical
Elements subsystem is modelled in 20-sim and the Cyber Elements subsystem is modelled
in VDM-RT.

Figure 5: Architecture Structure Diagram for co-model of Smart Grid

The connections between the components are defined in the Connections Diagram (CD)
in Figure 6, with the interface between subsystems defined as the interaction points
between cyber and physical components. For example, as the physical Substation Meter
communicates with the cyber Substation Controller, an interface is defined between the
subsystems to allow this communication.

Multi-model

In contrast to the above co-model, INTO-CPS allows for multiple cyber- and physical-
models. This gives more freedom of choice in the target platform and model types.

23

D3.1a - Method Guidelines 1 (Public)

Figure 6: Connection Diagram for co-model of Smart Grid

Looking again at the holistic architecture defined in Figures 3 and 4 and moving towards
a pure multi-model, we achieve and architecture structure shown in the ASD in Figure 7.
This structure removes all subsystem structures such that each element is to be defined
in a single FMU. Each element is defined as either a Physical or Cyber component, with
the model type and platform identified.

Figure 7: Architecture Structure Diagram for multi-model of Smart Grid

The CD, shown in Figure 8, lifts all the previously defined components to the top-level
but is otherwise the same as in Figure 6.

Commentry

Contrasting the architectures shown in the initial model (Figures 3 and 4) to that in the
multi-model (Figures 7 and 8), whilst the same base components are present in both, we

24

D3.1a - Method Guidelines 1 (Public)

Figure 8: Connections Diagram for multi-model of Smart Grid

lose some of the intuitive domain-specific structures when moving to a multi-model. For
example, it is now not clear where the substation or house elements are in the multi-
model. This is primarily due to the fact that the INTO-CPS profile does not support
subsystems with mixed model types and platforms.

An important and subtle issue here is in the reason behind producing the different archi-
tectural model types. As defined in the INTO-CPS concept base, using SysML diagrams
in a holistic approach, a CPS engineer describes the model using a structure natural to
the application domain. As such, the reason for modelling is not in the ultimate analysis
to perform, but to define and understand the structure and behaviour of a system. In
contrast, the design architecture approach advocated in INTO-CPS requires the modeller
to define the system structure directly in terms of the target model.

Both approaches are clearly valid, and as shown in the co-modelling and multi-modelling
approaches, there are degrees to the extent of splitting the modelling elements into sep-
arate subsystems. This may be guided by the modelling goals (e.g. understanding the
system in terms of the application domain, or capturing the system components in a way
that targets multi-modelling).

Figure 9 presents an overview of the relationships between the different models in INTO-
CPS. The figure shows that the ‘real’ system may be modelled in different forms; the
holistic and design architectures and the multi-model.

As illustrated in the figure, one approach can inform another. In some cases this may be a
natural process; for example in the Smart Grid example, isolating each of the lowest level
components in Figure 3 to be individual FMUs in a multi-model is an evolution which will
likely result in a feasible model. It may, therefore be advisable to define the architecture
using the INTO-CPS profile ab initio. However, the Three-tank Water Tank pilot study
(described in detail in Deliverable D3.4 [FGP+15]) shows an example of a model which
requires close coupling of components. This therefore may result in a model that would
not be intuitively reached using domain knowledge only. It is therefore important to

25

D3.1a - Method Guidelines 1 (Public)

Holistic
Architecture

Model
Real

System

Design
Architecture

Model

Multi-model

is modelled in

informs

generates
config for

is modelled in

is modelled in

Holistic
Architecture

Model
Real

System

Design
Architecture

Model

Multi-model

is modelled in

informs

generates
config for

is modelled in

is modelled in

Holistic
Architecture

Model
Real

System

Design
Architecture

Model

Multi-model

is modelled in

informs

generates
config for

is modelled in

is modelled in

Holistic
Architecture

Model
Real

System

Design
Architecture

Model

Multi-model

is modelled in

informs

generates
config for

is modelled in

is modelled in

Figure 9: Relating holistic and design architectures

define the architecture holistically at the start of the CPS engineering design stage and
move to a design architecture with experience and understanding of the nature of the
modelling notations and analysis goals.

26

D3.1a - Method Guidelines 1 (Public)

References

[APCB15] Nuno Amalio, Richard Payne, Ana Cavalcanti, and Etienne Brosse. Founda-
tions of the SysML profile for CPS modelling. Technical report, INTO-CPS
Deliverable, D2.1a, December 2015.

[BFG+12] Jan F. Broenink, John Fitzgerald, Carl Gamble, Claire Ingram, Angelika
Mader, Jelena Marincic, Yunyun Ni, Ken Pierce, and Xiaochen Zhang.
Methodological guidelines 3. Technical report, The DESTECS Project
(INFSO-ICT-248134), October 2012.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian
Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag,
1994. ISBN 3-540-19813-X.

[Blo14] Torsten Blochwitz. Functional mock-up interface for model exchange and
co-simulation. https://www.fmi-standard.org/downloads, July 2014. Torsten
Blochwitz Editor.

[BW98] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A Systematic
Introduction. Springer, 1998.

[CMC+13] Joey Coleman, Anders Kaels Malmos, Luis Couto, Peter Gorm Larsen,
Richard Payne, Simon Foster, Uwe Schulze, and Adalberto Cajueiro. Third
release of the COMPASS tool — symphony ide user manual. Technical report,
COMPASS Deliverable, D31.3a, December 2013.

[DAB+15] Lipika Deka, Zoe Andrews, Jeremy Bryans, Michael Henshaw, and John
Fitzgerald. D1.1 definitional framework. Technical report, The TAMS4CPS
Project, April 2015.

[FE98] Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented
Language for System Modelling and Simulation. In ECCOP ’98: Proceedings
of the 12th European Conference on Object-Oriented Programming, pages 67–
90. Springer-Verlag, 1998.

[FGP+15] John Fitzgerald, Carl Gamble, Richard Payne, Ken Pierce, and Jörg Brauer.
Examples Compendium 1. Technical report, INTO-CPS Deliverable, D3.4,
December 2015.

[FGPP15] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Methods
Progress Report 1. Technical report, INTO-CPS Deliverable, D3.1b, Decem-
ber 2015.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools
and Techniques in Software Development. Cambridge University Press, The
Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FLV14] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Col-
laborative Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2014.

27

D3.1a - Method Guidelines 1 (Public)

[GF94] Orlena C.Z. Gotel and Anthony C.W. Finkelstein. An analysis of the re-
quirements traceability problem. In Proceedings of the First International
Conference on Requirements Engineering, pages 94–101, April 1994.

[HIL+14] J. Holt, C. Ingram, A. Larkham, R. Lloyd Stevens, S. Riddle, and A. Ro-
manovsky. Convergence report 3. Technical report, COMPASS Deliverable,
D11.3, September 2014.

[HJ98] Tony Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall,
April 1998.

[Hoa85] Tony Hoare. Communication Sequential Processes. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey 07632, 1985.

[INC15] INCOSE. Systems Engineering Handbook. A Guide for System Life Cycle
Processes and Activities, Version 4.0. Technical Report INCOSE-TP-2003-
002-04, International Council on Systems Engineering (INCOSE), January
2015.

[Jif94] He Jifeng. A classical mind. chapter From CSP to Hybrid Systems, pages
171–189. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1994.

[MG13] Luc Moreau and Paul Groth. PROV-Overview. Technical report, World Wide
Web Consortium, 2013.

[Mor90] Carroll Morgan. Programming from Specifications. Prentice-Hall, London,
UK, 1990.

[NLF+13] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Wood-
cock, and Jan Peleska. Model-based engineering of systems of systems. Sub-
mitted to ACM Computing Surveys, June 2013.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics With Applications – A
Formal Introduction. John Wiley & Sons Ltd, 1992.

[PF10] Richard J. Payne and John S. Fitzgerald. Evaluation of Architectural Frame-
works Supporting Contract-based Specification. Technical Report CS-TR-
1233, School of Computing Science, Newcastle University, December 2010.

[PHP+14] Simon Perry, Jon Holt, Richard Payne, Jeremy Bryans, Claire Ingram, Al-
varo Miyazawa, Luís Diogo Couto, Stefan Hallerstede, Anders Kaels Malmos,
Juliano Iyoda, Marcio Cornelio, and Jan Peleska. Final Report on SoS Archi-
tectural Models. Technical report, COMPASS Deliverable, D22.6, September
2014. Available at http://www.compass-research.eu/.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, 1981.

[SS71] Dana Scott and Christopher Strachey. Towards a mathematical semantics for
computer language. Technical Report PRG-6, Oxford Programming Research
Group Technical Monograph, 1971.

[Sys12] OMG Systems Modeling Language (OMG SysMLTM). Tech-
nical Report Version 1.3, SysML Modelling team, June 2012.
http://www.omg.org/spec/SysML/1.3/.

28

D3.1a - Method Guidelines 1 (Public)

[Tho13] Haydn Thompson, editor. Cyber-Physical Systems: Uplifting Europe’s Inno-
vation Capacity. European Commission Unit A3 - DG CONNECT, December
2013.

[UPL06] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing. Technical Report 04/2006, Department of Computer
Science, University of Waikato, Hamilton, New Zealand, 2006.

[vA10] Job van Amerongen. Dynamical Systems for Creative Technology. Controllab
Products, Enschede, Netherlands, 2010.

[WG-92] RTCA SC-167/EUROCAE WG-12. Software Considerations in Airborne Sys-
tems and Equipment Certification. Technical Report RTCA/DO-178B, RTCA
Inc, 1140 Connecticut Avenue, N.W., Suite 1020, Washington, D.C. 20036,
December 1992.

29

D3.1a - Method Guidelines 1 (Public)

A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automated Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HMI Human Machine Interface
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
M&S Modelling and Simulation
MBD Model Based Design
MiL Model-in-the-Loop
OMG Object Management Group
OS Operating System
PROV-N The Provenance Notation
RPC Remote Procedure Call
SiL Software-in-the Loop
ST Softeam
SVN Subversion
SysML Systems Modelling Language
TA Test Automation
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTP Unifying Theories of Programming
UTRC United Technology Research Center
UY University of York
VDM Vienna Development Method
VSI Verified Systems International
WP Work Package
XML Extensible Markup Language

30

D3.1a - Method Guidelines 1 (Public)

B Glossary

20-sim The 20-sim tool can represent continuous time models in a number of ways. The
core concept is that of connected blocks.

Abstraction Models may be abstract “in the sense that aspects of the product not
relevant to the analysis in hand are not included” [FL98]. CPS models may rea-
sonably contain multiple levels of abstraction, for representing views of individual
constituent systems and for the view of the CPS level. Adapted from [HIL+14].

Architecture The term architecture has many different definitions, and range in scope
depending upon the scale of the product being ‘architected’. In the INTO-CPS
project, we use the simple definition from [PHP+14]: “an architecture defines the
major elements of a system, identifies the relationships and interactions between the
elements and takes into account process. An architecture involves both a definition
of structure and behaviour. Importantly, architectures are not static but must
evolve over time to reflect the change in a system as it evolves to meet changes to
its requirements.”

Architecture Diagram In the INTO-CPS project, a diagram refers to the symbolic
representation of information contained in a model.

Architectural Framework “A defined set of viewpoints and an ontology” and “is used
to structure an architecture from the point of view of a specific industry, stakeholder
role set, or organisation. [HIL+14]. [HIL+14].

Architecture Structure Diagram (ASD) The INTO-CPS SysML profile ASDs spe-
cialise SysML block definition diagrams to support the specification of a system
architecture described in terms of a system?s components.

Architecture View “work product expressing the architecture of a system from the
perspective of specific system concerns” [PHP+14].

Bond graph Bond graphs offer a domain-independent description of a physical system’s
dynamics, realised as a directed graph. The vertices of these graphs are idealised
descriptions of physical phenomena, with their edges (bonds) describing energy
exchange between vertices.

Co-model “The term co-model is used to denote a model comprising a DE model, a CT
model and a contract” [BFG+12].

Code generation Transformation of a model into generated code suitable for compila-
tion into one or more target languages (e.g. C or Java).

Collaborative simulation (co-simulation) The simultaneous, collaborative, execu-
tion of models and allowing information to be shared between them. The models
may be CT-only, DE-only or a combination of both.

Co-simulation Configuration The configuration that the COE needs to initialise a co-
simulation. It contains paths to all FMUs, their inter connection, parameters and
step size configuration. When this is combined with a start and end time, a co-
simulation can be performed.

31

D3.1a - Method Guidelines 1 (Public)

Co-simulation Orchestration Engine (COE) The Co-simulation Orchestration En-
gine combines existing co-simulation solutions and scales them to the CPS level,
allowing CPS co-models to be evaluated through co-simulation. The COE will also
allow real software and physical elements to participate in co-simulation alongside
models, enabling both Hardware-in-the-Loop (HiL) and Software-in-the-Loop (SiL)
simulation.

Component The constituent elements of a system.

Connections Diagram (CD) The INTO-CPS SysML profile CDs specialise SysML
internal block diagrams to convey the internal configuration of the system’s com-
ponents and the way they are connected.

Continuous Time (CT) model A model with state that can be changed and observed
continuously [vA10], and are described using either explicit continuous functions of
time either implicitly as a solution of differential equations.

Cyber Physical System (CPS) Cyber-Physical Systems “refer to ICT systems (sens-
ing, actuating, computing, communication, etc.) embedded in physical objects,
interconnected (including through the Internet) and providing citizens and busi-
nesses with a wide range of innovative applications and services” [Tho13, DAB+15].

Discrete Event (DE) model A model with state that can be changed and observed
only at fixed, discrete, time intervals [vA10].

Denotational Semantics Where an operational semantics defines how a program is
executed, a denotational approach defines a language in terms of denotations, in
the form of abstract mathematical objects, which represent the semantic function
that maps over the inputs and outputs of a program [SS71].

Design Alternatives Where two or more models represent different possible solutions
to the same problem. Each choice involves making a selection from alternatives on
the basis of criteria that are important to the developer, such as cost or performance.
The alternative selected at each point constrains the range of design alternatives
that may be viable next steps forward from the current position.

Design Architecture The design architectural model of the system is effectively a
multi-model. The INTO-CPS SysML profile [APCB15] is designed to enable the
specification of CPS design architectures, which emphasises a decomposition of a
system into subsystems , where each subsystem is modelled separately in isolation
using a special notation and tool designed for the domain of the subsystem.

Design Parameter A design parameter is a property of a model that can be used to af-
fect the model’s behaviour, but remains constant during a given simulation [BFG+12].

Design Space “The design space is the set of possible solutions for a given design prob-
lem” [BFG+12].

Design-Space Exploration (DSE) “an activity undertaken by one or more engineers
in which they build and evaluate co-models in order to reach a design from a set of
requirements” [BFG+12].

Effort and Flow The energy exchanged in 20-sim is the product of effort and flow,

32

D3.1a - Method Guidelines 1 (Public)

which map to different concepts in different domains, for example voltage and cur-
rent in the electrical domain.

Environment A system’s environment is everything outside of the system. The be-
haviour exhibited by the environment is beyond the direct control of the devel-
oper [BFG+12].

Evolution This refers to the ability of a system to benefit from a varying number of
alternative system components and relations, as well as its ability to gain from the
adjustments of the individual components’ capabilities over time (Adjusted from
SoS [NLF+13]).

Functional Mockup Interface (FMI) The Functional Mock-up Interface (FMI) is a
tool independent standard to support both model exchange and co-simulation of
dynamic models using a combination of XML-files and compiled C-code [Blo14].

Functional Mockup Unit (FMU) Component that implements FMI is a Functional
Mockup Unit (FMU) [Blo14].

Hardware-in-the-Loop Testing Testing with DE models running on target hardware
components.

Holistic Architecture The aim of a holistic architecture is to identify the main units
of functionality of the system reflecting the terminology and structure of the domain
of application. It describes a conceptual model that highlights the main units of the
system architecture and the way these units are connected with each other, taking
a holistic view of the overall system.

Hybrid-CSP This is a continuous version of CSP defined originally by He Jifeng [Jif94].
It will be used as a basis to inform the design of INTO-CSP.

Interface “Defines the boundary across which two entities meet and communicate with
each other” [HIL+14]. Interfaces may describe both digital and physical interactions:
digital interfaces contain descriptions of operations and attributes that are provided
and required by components. Physical interfaces describe the flow of physical matter
(for example fluid and electrical power) between components.

INTO-CPS Application The INTO-CPS Application is a front-end to the INTO-CPS
tool chain. The application allows the specification of the co-simulation configura-
tion to be orchestrated by the COE.

INTO-CPS tool chain The INTO-CPS tool chain is a collection of software tools,
based centrally around FMI-compatible co-simulation, that supports the collabora-
tive development of CPSs.

INTO-CSP A version of CSP, which will be used to provide a model for the SysML-FMI
profile, FMI, VDM-RT and Modelica semantics. It is a front end for a UTP theory
of reactive concurrent continuous systems customised for the needs of INTO-CPS.

Master Algorithm A Master Algorithm (MA) controls the data exchange between
FMUs and the synchronisation of all simulation solvers [Blo14].

Model a potentially partial and abstract description of a system, limited to those compo-
nents and properties of the system that are pertinent to the current goal [HIL+14].

33

D3.1a - Method Guidelines 1 (Public)

“A model is a simplified description of a system, just complex enough to describe or
study the phenomena that are relevant for our problem context” [vA10]. A model
“may contain representations of the system, environment and stimuli” [FLV14]

Model Description The model description file is an XML file that supplies a descrip-
tion of all properties of a model (for example input/output variables) [Blo14].

Model-in-the-Loop Testing Testing with co-simulated CT/DE models.

Modelling “The activity of creating models” [FLV14]. See also co-modelling and
multi-modelling.

Modelica Modelica is an “object-oriented language for modelling of large, complex,
and heterogeneous physical systems” [FE98]. Modelica models are described by
schematics , also called object diagrams , which consist of connected compo-
nents. Components are connected by ports and are defined by sub components or
a textual description in the Modelica language.

Multi-model “A model comprising multiple DE and CT models”.

Non-functional Property Non-functional properties (NFPs) pertain to characteristics
other than functional correctness. For example, reliability, availability, safety and
performance of specific functions or services are NFPs that are quantifiable. Other
NFPs may be more difficult to measure [PF10].

Objective Criteria or constraints that are important to the developer, such as cost or
performance

Port 20-sim blocks may have input and output ports that allow data to be passed be-
tween them. In SysML, blocks own ports — the points of interaction between
blocks.

Proof The process of showing how the validity of one statement is derived from others
by applying justified rules of inference [BFL+94].

Provenance “Provenance is information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments about
its quality, reliability or trustworthiness.” [MG13].

Refinement Refinement is a verification and formal development technique pioneered
by [BW98] and [Mor90]. It is based on a behaviour preserving relation that allows
the transformation of an abstract specification into more and more concrete models,
potentially leading to an implementation.

Semantics Describes the meaning of a (grammatically correct) language [NN92].

Software-in-the-Loop Testing Testing with software running on CT model simulator

Structural Operational Semantics (SOS) Describes how the individual steps of a
program are executed on an abstract machine [Plo81]. An SOS definition is akin to
an interpreter in that it provides the meaning of the language in terms of relations
between beginning and end states. The relations are defined on a per-construct
basis. Accompanying the relations are a collection of semantic rules which describe
how the end states are achieved.

34

D3.1a - Method Guidelines 1 (Public)

SysML The systems modelling language (SysML) [Sys12] extends a subset of the Unified
Modelling language (UML) to support modelling of heterogeneous systems.

System “A combination of interacting elements organized to achieve one or more stated
purposes” [INC15].

System boundary The system boundary is the common frontier between the system
and its environment. System boundary definition is application-specific [BFG+12].

System of Systems (SoS) “A System of Systems (SoS) is a collection of constituent
systems that pool their resources and capabilities together to create a new, more
complex system which offers more functionality and performance than simply the
sum of the constituent systems” [HIL+14]. CPSs may exhibit the characteristics of
SoSs.

System Under Test “The system currently being tested for correct behaviour. An alias
for system of interest, from the point of view of the tester. The same concept can
be extended from systems engineering to SoS engineering, changing the focus from
a single system of interest to an SoS under test.
The system of systems currently being tested for correct behaviour” [HIL+14].

Test Automation Test Automation (TA) is defined as the machine assisted automation
of system tests. In INTO-CPS we concentrate on various forms of model-based
testing, centering on testing system models against their requirements.

Test Case A finite structure of input and expected output [UPL06].

Test model Specifies the expected behaviour of a system under test. Note that a test
model can be different from a design model. It might only describe a part of a
system under test that is to be tested and it can describe the system on a different
level of abstraction [CMC+13].

Test procedures Detailed instructions for the set-up and execution of a set of test cases,
and instructions for the evaluation of results of executing the test cases [WG-92,
CMC+13].

Test suite A collection of test procedures.

Traceability The association of one model element (e.g. requirements, design arte-
facts, activities, software code or hardware) and specifically requirements traceabil-
ity “refers to the ability to describe and follow the life of a requirement, in both a
forwards and backwards direction” [GF94].

Unifying Theories of Programming (UTP) The Unifying Theories of Programming
(UTP) [HJ98] is a technique to for describing language semantics in a unified
framework. A theory of a language is composed of an alphabet , a signature and
a collection of healthiness conditions .

Variable A variable is feature of a model that may change during a given simula-
tion [BFG+12].

VDM-RT VDM-RT is based upon the object-oriented paradigm where a model is
comprised of one or more objects . An object is an instance of a class where a
class gives a definition of zero or more instance variables and operations an

35

D3.1a - Method Guidelines 1 (Public)

object will contain. Instance variables define the identifiers and types of the data
stored within an object, while operations define the behaviours of the object.

Workflow A sequence of activities performed to aid in modelling. A workflow has
a defined purpose, and may cover a subset of the CPS engineering development
lifecycle.

36

	Introduction
	Concepts and Terminology
	Systems
	Models
	Tools
	Analysis
	Existing Tools and Languages
	Formalisms

	Workflows for INTO-CPS
	Workflow Activities
	Embedded Systems Waterfall Workflow
	Embedded Systems V-Model Workflow

	SysML for Multi-modelling
	SysML Modelling Approaches

	List of Acronyms
	Glossary

