
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Method Guidelines 2

Deliverable Number: D3.2a

Version: 1.1

Date: December 2016

Public Document

http://into-cps.au.dk

D3.2a - Method Guidelines 2 (Public)

Contributors:

John Fitzgerald, UNEW
Carl Gamble, UNEW
Richard Payne, UNEW
Ken Pierce, UNEW

Editors:

Ken Pierce, UNEW

Reviewers:

Christian König, TWT
Etienne Brosse, ST
Martin Peter Christiansen, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D3.2a - Method Guidelines 2 (Public)

Document History

Ver Date Author Description
0.1 04-04-2016 Richard Payne Initial document
0.2 19-05-2016 Richard Payne Initial requirements engineering material
0.3 31-09-2016 Richard Payne SysML extensions detailed
0.4 10-10-2016 Richard Payne Updated requirements engineering
0.5 12-10-2016 Richard Payne DSE SysML added
0.6 26-10-2016 Ken Pierce Network modelling section added
0.7 01-11-2016 Ken Pierce Workflows section added
0.8 01-11-2016 Richard Payne Version for review
0.9 07-12-2016 Ken Pierce First revision after comments and new section

headers added
1.0 08-12-2016 Ken Pierce New Initial Multi-modelling section added
1.1 13-12-2016 Richard Payne SysML diagrams updated. Final version

3

D3.2a - Method Guidelines 2 (Public)

Abstract

This document is the second of three that will give methods guidance for the INTO-CPS
technologies. It is aimed at end users of the technologies. This second version presents a
revised and updated concepts base, which describes the terminology used within INTO-
CPS; guidelines on incorporating requirements engineering in the INTO-CPS technologies
and workflows; descriptions and examples of the use of the updated INTO-SysML profile;
guidance on modelling networks in multi-models; guidelines for the use of Design Space
Exploration features of the INTO-CPS tool chain; and guidelines for traceability and
model management in INTO-CPS.

4

D3.2a - Method Guidelines 2 (Public)

Contents

1 Introduction 6
1.1 Overview of Sections . 6
1.2 Differences over the Previous Version . 7

2 Concepts and Terminology 8
2.1 Systems . 8
2.2 Models . 8
2.3 Tools . 10
2.4 Analysis . 11
2.5 Existing Tools and Languages . 13
2.6 Formalisms . 13

3 Workflows 15
3.1 Workflow Activities . 15
3.2 Activities Covered in this Document . 16
3.3 Getting Started . 18

4 Requirements Engineering 19
4.1 Requirements Engineering and Cyber Physical Systems 19
4.2 Applying SoS-ACRE in the INTO-CPS Tool Chain 20

5 SysML and Multi-modelling 27

6 Initial Multi-modelling 30
6.1 The DE-first Approach . 30
6.2 DE-first within INTO-CPS . 32
6.3 FMU Creation . 32

7 Modelling Networks in Multi-models 34
7.1 Representing VDM Values as Strings . 35
7.2 Using the Ether FMU . 35
7.3 Consequences of Using the Ether . 37
7.4 Modelling True Message Passing and Quality of Service 37

8 Design Space Exploration 39
8.1 Guidelines for Designing DSE in SysML 39
8.2 An Approach to Effective DSE . 47

9 Forward Look 52

A Glossary 57

B Ether Class Listing 63

5

D3.2a - Method Guidelines 2 (Public)

1 Introduction

The material in this document is aimed primarily at new and prospective users of the
INTO-CPS technologies. Readers seeking a progress report on the methods work should
refer to the companion deliverable, D3.1b Methods Progress Report.

The INTO-CPS technologies bring together a variety of baseline tools and technologies.
Each technology has its own culture, abstractions, and approaches to problem solving
that inform how they are used. Many of these things are tacit and tend to be discovered
only after trying to combine them. The aim of the methods work is to understand how
best to use these technologies, to pilot approaches and techniques, and to distill this into
a set of guidelines aimed at the users of the technologies— engineers wishing to build
cyber-physical systems (CPSs).

This is the second version of the guidelines document. Now that the INTO-CPS tech-
nologies have begun to form a stable tool chain, with the INTO-CPS Application as a
central point of interaction, we present more concrete guidance on using the technolo-
gies. We will continue to expand this guidance as we discover the best ways to work
with the INTO-CPS technologies. The next and final version of this document will cover
all the engineering processes enabled by the new technology, comprehensively covering
INTO-CPS workflows.

1.1 Overview of Sections

Concepts and Terminology (Section 2) This section is an introduction to the con-
cepts and terminology used in INTO-CPS. It explains many terms from the various base-
line technologies, as well as other model-based design terminology. In parts this involved
reconciling terms used differently in different areas, and finding common, agreed-upon
terms for similar concepts. These concepts are applicable for all documents produced by
INTO-CPS (this document, user manuals, deliverables, and publications).

Workflows (Section 3) This section identifies activities that engineers designing CPS
will undertake. These activities are elements of both existing workflows and those en-
abled by the INTO-CPS technologies. Various sections of this document provide further
guidance on specific activities identified here. This section also presents some initial “get-
ting started” workflows that engineers wishing to try out the INTO-CPS technologies can
follow (supported by training material which reflect these).

Requirements Engineering (Section 4) This section focuses on a key initial ac-
tivity for CPS design, specifically requirements engineering (RE) in a CPS context, and
the specification and documentation of requirements placed upon a CPS. This section
describes an approach called SoS-ACRE in the context of INTO-CPS, and includes de-
scriptions of how this approach can be realised using tools identified as useful by the
industrial partners (specifically SysML and Excel). By following these guidelines, engi-
neers can bridge the gap between natural language requirements and multi-models.

6

D3.2a - Method Guidelines 2 (Public)

SysML and Multi-modelling (Section 5) A SysML profile for representing CPSs
has been defined (see Deliverable D2.2a [ACM+16]) and implemented in Modelio (see
Deliverable D4.1c [BQ16]). This profile is used to generate model descriptions (to be
imported into modelling tool for creating FMUs) and to configure multi-models and co-
simulations. The profile is being extended to allow for modelling of CPSs in a way which
better reflects the architecture of the system, and to allow for description of analysis
techniques such as DSE (see below). This section motivates the extensions to the profile
and explains how they affect architectural modelling in INTO-CPS with an illustrative
example.

Initial Multi-modelling (Section 6) This section looks at producing an initial multi-
model through the creation of abstract, discrete-event FMUs. These simplified FMUs can
then be replaced by higher-fidelity versions in more appropriate tools such as 20-sim. This
is referred to as a DE-first approach [FLPV13].

Modelling Networks in Multi-models (Section 7) Designing software for dis-
tributed controllers is an important aspect of CPS design. When using multi-modelling
as a design approach, it is useful to also model realistic communications between con-
trollers as well. This section describes how this can be achieved by introducing an FMU
that represents an abstract communication mechanism, the ether. Initial guidance on
the consequences of adopting such an approach is included, as well as extensions to cover
quality-of-service modelling.

Design Space Exploration (Section 8) As DSE (Design Space Exploration) is a
key analysis technique offered by the INTO-CPS technologies, this section gives guidance
on DSE, including the types of search algorithms that can be used to explore a design
space, and how the upcoming SysML profile extensions help in the design of experiments.
An illustrative example is included based on the line-following robot example. The line-
following example is available in the INTO-CPS Application and is described in the
Examples Compendium, Deliverable D3.5 [PGP+16].

1.2 Differences over the Previous Version

Since this document builds on Deliverable D3.1a [FGPP15a], some material is retained
and updated, while other material is entirely new. The list below gives an overview of
new and updated material for each section.

Section 2: Concepts and Terminology The concepts base appeared in the previous
version, but has been updated to include new terms from the tool chain.

Section 3: Workflows This section appeared in the previous version and primarily
gives context to the later sections. The “getting started” material is new.

Section 4: Requirements Engineering This section is new and was produced after
a need was identified to provide guidance on requirements within INTO-CPS.

Section 5: SysML and Multi-modelling This section has been updated significantly
to reflect the expanded INTO-CPS SysML profile.

Section 6: Initial Multi-modelling This section is entirely new.
Section 7: Modelling Networks in Multi-models This section is entirely new.
Section 8: Design Space Exploration This section is entirely new.

7

D3.2a - Method Guidelines 2 (Public)

2 Concepts and Terminology

This section introduces the basic concepts used in the INTO-CPS project. This is an
update of the concept base in [FGPP15a] with new and adjusted terminology. CPSs
bring together domain experts from diverse backgrounds, from software engineering to
control engineering. Each discipline has developed their own terminologies, principles and
philosophy for years — in places they use similar terms for quite different meanings and
different terms that have the same meaning. In addition, the INTO-CPS project aims to
produce a tool chain for CPS engineering resulting in the need for common tool-based
terminology. INTO-CPS requires experts from diverse fields to work collaboratively,
so this section gives some core concepts of INTO-CPS that will be used throughout
the project. We divide the concepts into several broad areas in the remainder of this
section.

2.1 Systems

A System is defined as being “a combination of interacting elements organized to achieve
one or more stated purposes” [INC15]. Any given system will have an environment ,
considered to be everything outside of the system. The behaviour exhibited by the envi-
ronment is beyond the direct control of the developer [BFG+12]. We also define a system
boundary as being the common frontier between the system and its environment. The
definition of the system boundary is application-specific [BFG+12]. Cyber-Physical
Systems (CPSs) refer to “ICT systems (sensing, actuating, computing, communica-
tion, etc.) embedded in physical objects, interconnected (including through the Internet)
and providing citizens and businesses with a wide range of innovative applications and
services” [Tho13, DAB+15]. A System of Systems (SoS) is a “collection of constituent
systems that pool their resources and capabilities together to create a new, more com-
plex system which offers more functionality and performance than simply the sum of the
constituent systems” [HIL+14]. CPSs may exhibit the characteristics of SoSs.

2.2 Models

In the INTO-CPS project, we concentrate on “model-based design” of CPSs. A model is
a potentially partial and abstract description of a system, limited to those components
and properties of the system that are pertinent to the current goal [HIL+14]. A model
should be “just complex enough to describe or study the phenomena that are relevant
for our problem context” [vA10]. Models should be abstract “in the sense that aspects of
the product not relevant to the analysis in hand are not included” [FL98]. A model “may
contain representations of the system, environment and stimuli” [FLV14]1.

In a CPS model, we model systems with cyber, physical and network elements. These
components are often drawn from different domains, and are modelled in a variety of
languages, with different notations, concepts, levels of abstraction, and semantics, which

1Further discussion is required in the final year of INTO-CPS regarding the definition of aspects of
models in particular; environment models, test models in RT-Tester and their correspondence in the
INTO-CPS SysML profile.

8

D3.2a - Method Guidelines 2 (Public)

are not necessarily easily mapped one to another. This heterogeneity presents a signifi-
cant challenge for simulation in CPSs [HIL+14]. In INTO-CPS we use continuous time
(CT) and discrete event (DE) models to represent physical and cyber elements as ap-
propriate. A CT model has state that can be changed and observed continuously [vA10]
and is described using either explicit continuous functions of time either implicitly as a
solution of differential equations. A DE model has state that can be changed and ob-
served only at fixed, discrete, time intervals [vA10]. The approach used in the DESTECS
project was to use co-models – “a model comprising a DE model, a CT model and a
contract” [BFG+12]. In INTO-CPS we propose the use of multi-models – “comprising
multiple constituent DE and CT models”. Related to this is a Hybrid Model , which
contains both DE and CT elements.

A requirement may impose restrictions, define system capabilities or identify qualities
of a system and should indicate some value or use for the different stockholders of a CPS.
Requirements Engineering (RE) is the process of the specification and documentation
of requirements placed upon a CPS. Requirements may be considered in relation to
different contexts – that is the point of view of some system component or domain, or
interested stakeholder.

We cover the main features of the notations used in INTO-CPS in Section 2.5. Here we
consider some general terms used in models. A design parameter is a property of a
model that can be used to affect the model’s behaviour, but remains constant during a
given simulation [BFG+12]. A variable is feature of a model that may change during
a given simulation [BFG+12]. Non-functional properties (NFPs) pertain to char-
acteristics other than functional correctness. For example, reliability, availability, safety
and performance of specific functions or services are NFPs that are quantifiable. Other
NFPs may be more difficult to measure [PF10].

The activity of creating models may be referred to as modelling [FLV14] and related
terms include co-modelling and multi-modelling . A workflow is a sequence of ac-
tivities performed to aid in modelling. A workflow has a defined purpose, and may cover
a subset of the CPS engineering development lifecycle.

The term architecture has many different definitions, and range in scope depending
upon the scale of the product being ‘architected’. In the INTO-CPS project, we use the
simple definition from [PHP+14]: “an architecture defines the major elements of a system,
identifies the relationships and interactions between the elements and takes into account
process. Those elements are referred to as components . An architecture involves both a
definition of structure and behaviour. Importantly, architectures are not static but must
evolve over time to reflect the change in a system as it evolves to meet changes to its
requirements”. In a CPS architecture, components may be either cyber components or
physical components corresponding to some functional logic or an entity of the physical
world respectively.

In INTO-CPS we consider both a holistic architecture and a design architecture .
An example of their use is given in Section 5. The aim of a holistic architecture is
to identify the main units of functionality of the system reflecting the terminology and
structure of the domain of application. It describes a conceptual model that highlights
the main units of the system architecture and the way these units are connected with
each other, taking a holistic view of the overall system. The design architectural model

9

D3.2a - Method Guidelines 2 (Public)

of the system is effectively a multi-model. The INTO-CPS SysML profile [APCB15]
is designed to enable the specification of CPS design architectures, which emphasises a
decomposition of a system into subsystems , where each subsystem is an assembly of
cyber and physical components and possibly other subsystems, and modelled separately
in isolation using a special notation and tool designed for the domain of the subsystem.
Evolution refers to the ability of a system to benefit from a varying number of alternative
system components and relations, as well as its ability to gain from the adjustments of
the individual components’ capabilities over time (Adjusted from SoS [NLF+13]).

Considering the interactions between components in a system architecture, an inter-
face “defines the boundary across which two entities meet and communicate with each
other” [HIL+14]. Interfaces may describe both digital and physical interactions: digital
interfaces contain descriptions of operations and attributes that are provided and required
by components. Physical interfaces describe the flow of physical matter (for example fluid
and electrical power) between components.

There are many methods of describing an architecture. In the INTO-CPS project, an
architecture diagram refers to the symbolic representation of architectural information
contained in a model. An architectural framework is a “defined set of viewpoints
and an ontology” and “is used to structure an architecture from the point of view of a
specific industry, stakeholder role set, or organisation. [HIL+14]. In the application of
an architecture framework, an architectural view is a “work product (for example an
architecture diagram) expressing the architecture of a system from the perspective of
specific system concerns” [PHP+14].

The INTO-CPS SysML profile comprises diagrams for architectural modelling and de-
sign space exploration specification. There are two architectural diagrams. The Ar-
chitecture Structure Diagram (ASD) specialises SysML block definition diagrams to
support the specification of a system architecture described in terms of a system’s com-
ponents. Connections Diagrams (CDs) specialise SysML internal block diagrams
to convey the internal configuration of the system’s components and the way they are
connected. The system architecture defined in the profile should inform a co-simulation
multi-model and therefore all components interact through connections between flow
ports. The profile permits the specification of cyber and physical components and also
components representing the environment and visualisation elements. The INTO-
CPS SysML profile includes three design space exploration diagrams: a parameters
diagram ; an objective diagram ; and a ranking diagram . See Section 2.4 for con-
cepts relating to design space exploration.

2.3 Tools

The INTO-CPS tool chain is a collection of software tools, based centrally around
FMI-compatible co-simulation, that supports the collaborative development of CPSs.
The INTO-CPS Application is a front-end to the INTO-CPS tool chain. The appli-
cation allows the specification of the co-simulation configuration, and the co-simulation
execution itself. The application also provides access to features of the tool chain without
an existing user interface (such as design space exploration and model checking). Cen-
tral to the INTO-CPS tool chain is the use of the Functional Mockup Interface (FMI)
standard.

10

D3.2a - Method Guidelines 2 (Public)

The Functional Mockup Interface (FMI) is a tool-independent standard to sup-
port both model exchange and co-simulation of dynamic models using a combination of
XML-files and compiled C-code [Blo14]. Part of the FMI standard for model exchange is
specification of a model description file. This is an XML file that supplies a descrip-
tion of all properties of a model (for example input/output variables). A Functional
Mockup Unit (FMU) is a tool component that implements FMI. Data exchange be-
tween FMUs and the synchronisation of all simulation solvers [Blo14] is controlled by a
Master Algorithm .

Co-simulation is the simultaneous, collaborative, execution of models and allowing in-
formation to be shared between them. The models may be CT-only, DE-only or a combi-
nation of both. The Co-simulation Orchestration Engine (COE) combines existing
co-simulation solutions (FMUs) and scales them to the CPS level, allowing CPS multi-
models to be evaluated through co-simulation. This means that the COE implements a
Master Algorithm . The COE will also allow real software and physical elements to
participate in co-simulation alongside models, enabling both Hardware-in-the-Loop (HiL)
and Software-in-the-Loop (SiL) simulation.

In the INTO-CPS Application, a project comprises: a number of FMUs, optional source
models (from which FMUs are exported); a collection of multi-models ; and an optional
SysML architectural model. A multi-model includes a list of FMUs, defined instances
of those FMUs, specified connections between the inputs/outputs of the FMU instances,
and defined values for design parameters of the FMU instances. For each multi-model
a co-simulation configuration defines the step size configuration, start and end time
for the co-simulation of that multi-model. Several configurations can be defined for each
multi-model.

Code generation is the transformation of a model into generated code suitable for
compilation into one or more target languages (e.g. C or Java).

The INTO-CPS project considers two tool-supported methods for recording the ratio-
nale of design decisions in CPSs. Traceability is the association of one model element
(e.g. requirements, design artefacts, activities, software code or hardware) to another.
Requirements traceability “refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction” [GF94]. Provenance “is in-
formation about entities, activities, and people involved in producing a piece of data
or thing, which can be used to form assessments about its quality, reliability or trust-
worthiness” [MG13]. In INTO-CPS traceability between model elements defined in the
various modelling tools is achieved through the use of OSLC messages , handled by a
traceability daemon tool . This supports the impact analysis and general traceability
queries .

2.4 Analysis

Design-Space Exploration (DSE) is “an activity undertaken by one or more engineers
in which they build and evaluate [multi]-models in order to reach a design from a set
of requirements” [BFG+12]. “The design space is the set of possible solutions for a
given design problem” [BFG+12]. Where two or more models represent different possible
solutions to the same problem, these are considered to be design alternatives . In

11

D3.2a - Method Guidelines 2 (Public)

INTO-CPS design alternatives are defined using either a range of parameter values or
different multi-models. Each choice involves making a selection from alternatives on the
basis of an objective – criteria or constraints that are important to the developer, such as
cost or performance. The alternative selected at each point constrains the range of design
alternatives that may be viable next steps forward from the current position. Given a
collection of alternatives with corresponding objective results, a ranking may be applied
to determine the ‘best’ design alternative.

Test Automation (TA) is defined as the machine assisted automation of system tests.
In INTO-CPS, we concentrate on various forms of model-based testing – centering
on testing system models, against the requirements on the system. The System Un-
der Test (SUT) is “the system currently being tested for correct behaviour. An alias
for system of interest, from the point of view of the tester” [HIL+14]. The SUT is
tested against a collection of test cases – a finite structure of input and expected
output [UPL06], alongside a test model , which specifies the expected behaviour of
a system under test [CMC+13]. TA uses a test suite – a collection of test proce-
dures . These test procedures are detailed instructions for the set-up and execution of a
given set of test cases, and instructions for the evaluation of results of executing the test
cases [WG-92].

INTO-CPS considers three main types of test automation: Hardware-in-the-Loop
(HiL), Software-in-the-Loop (SiL) and Model-in-the-Loop (MiL). In HiL there
is (target) hardware involved, thus the FMU is mainly a wrapper that interacts (timed)
with this hardware; it is perceivable that realisation heavily depends on hardware in-
terfaces and timing properties. In Software-in-the-Loop (SiL) testing the object of
the test execution is an FMU that contains a software implementation of (parts of) the
system. It can be compiled and run on the same machine that the COE runs on and has
no (defined) interaction other than the FMU-interface. Finally, in Model-in-the-Loop
(MiL) the test object of the test execution is a (design) model, represented by one or
more FMUs. This is similar to the SiL (if e.g., the SUT is generated from the design
model), but MiL can also imply that running the SUT-FMU has a representation on
model level; e.g., a playback functionality in the modelling tool could some day be used
to visualise a test run.

Model Checking (MC) exhaustively checks whether the model of the system meets
its specification [CGP99], which is typically expressed in some temporal logic such as
Linear Time Logic (LTL) [Pnu77] or Computation Tree Logic (CTL) [CE81]. As
opposed to testing, model checking examines the entire state space of the system and is
thus able to provide a correctness proof for the model with respect to its specification.
In INTO-CPS, we can concentrate on Bounded Model Checking (BMC) [CBRZ01,
CKOS04, CKOS05], which is based on encodings of the system in propositional logic,
for a timed variant of LTL. The key idea of this approach is to represent the semantics
of the model as a Boolean formula and then apply a Satisfiability Modulo Theory
(SMT) [KS08] solver in order to check whether the model satisfies its specification. A
powerful feature of model checking is that, if the specification is violated, it provides a
counterexample trace that shows exactly how an undesired state of the system can be
reached [CV03].

12

D3.2a - Method Guidelines 2 (Public)

2.5 Existing Tools and Languages

The INTO-CPS tool chain uses several existing modelling tools. Overture2 supports
modelling and analysis in the design of discrete, typically, computer-based systems using
the VDM-RT notation. VDM-RT is based upon the object-oriented paradigm where
a model is comprised of one or more objects . An object is an instance of a class where
a class gives a definition of zero or more instance variables and operations an object
will contain. Instance variables define the identifiers and types of the data stored within
an object, while operations define the behaviours of the object.

The 20-sim3 tool can represent continuous time models in a number of ways. The core
concept is that of connected blocks . Bond graphs may implement blocks. Bond graphs
offer a domain-independent description of a physical system’s dynamics, realised as a
directed graph. The vertices of these graphs are idealised descriptions of physical phe-
nomena, with their edges (bonds) describing energy exchange between vertices. Blocks
may have input and output ports that allow data to be passed between them. The energy
exchanged in 20-sim is the product of effort and flow , which map to different concepts
in different domains, for example voltage and current in the electrical domain.

OpenModelica4 is an open-source Modelica-based modelling and simulation environ-
ment. Modelica is an “object-oriented language for modelling of large, complex, and
heterogeneous physical systems” [FE98]. Modelica models are described by schematics ,
also called object diagrams , which consist of connected components. Components are
connected by ports and are defined by sub components or a textual description in the
Modelica language.

Modelio5 is an open-source modelling environment supporting industry standards like
UML and SysML. INTO-CPS will make use of Modelio for high-level system architecture
modelling using the SysML language and proposed extensions for CPS modelling. The
systems modelling language (SysML) [Sys12] extends a subset of the UML to support
modelling of heterogeneous systems.

2.6 Formalisms

The semantics of a language describes the meaning of a (grammatically correct) pro-
gram [NN92] (or model). There are different methods of defining a language semantics:
structural operational semantics ; denotational semantics ; and axiomatic se-
mantics .

A structural operational semantics (SOS) describes how the individual steps of a program
are executed on an abstract machine [Plo81]. An SOS definition is akin to an interpreter
in that it provides the meaning of the language in terms of relations between beginning
and end states. The relations are defined on a per-construct basis. Accompanying the
relations are a collection of semantic rules which describe how the end states are achieved.

2http://overturetool.org/
3http://www.20sim.com/
4https://www.openmodelica.org/
5http://www.modelio.org/

13

http://overturetool.org/
http://www.20sim.com/
https://www.openmodelica.org/
http://www.modelio.org/

D3.2a - Method Guidelines 2 (Public)

Where an operational semantics defines how a program is executed, a denotational ap-
proach defines a language in terms of denotations, in the form of abstract mathematical
objects, which represent the semantic function that maps over the inputs and outputs of
a program [SS71].

The Unifying Theories of Programming (UTP) [HJ98] is a technique to for describing
language semantics in a unified framework. A theory of a language is composed of an
alphabet , a signature and a collection of healthiness conditions .

The Communicating Sequential Processes CSP notation [Hoa85] is a formal process
algebra for describing communication and interaction. INTO-CSP is a version of CSP,
which will be used to provide a model for the SysML-FMI profile, FMI, VDM-RT and
Modelica semantics. It is a front end for a UTP theory of reactive concurrent continuous
systems customised for the needs of INTO-CPS. Hybrid-CSP is a continuous version
of CSP defined originally by He Jifeng [Jif94]. It will be used as a basis to inform the
design of INTO-CSP.

Several forms of verification are enabled through the use of formally defined languages.
Refinement is a verification and formal development technique pioneered by [BW98]
and [Mor90]. It is based on a behaviour preserving relation that allows the transformation
of an abstract specification into more and more concrete models, potentially leading to
an implementation. Proof is the process of showing how the validity of one statement
is derived from others by applying justified rules of inference [BFL+94].

For the purposes of verification in INTO-CPS, and in particular the work of WP2, we
make use of the Isabelle/HOL theorem prover and the FDR3 refinement checker. These
are not considered part of the INTO-CPS tool chain, and are used in the INTO-CPS
project primarily to support the development of foundation work.

14

D3.2a - Method Guidelines 2 (Public)

3 Workflows

In this section, we list the types of activities that we expect engineers to perform when
using the INTO-CPS technologies. The later sections of this document provide specific
guidance on some of these activities, and we aim in the final version of this document to
have complete coverage of the activities, as well as descriptions of how they come together
to form different workflows that suit different modelling contexts.

3.1 Workflow Activities

The choice of granularity for defining “activities” naturally affects the size of a list such as
the one below. We have tried to select a level that is instructive for describing workflows,
but one that does not make the described workflows overly long. Activities are grouped
into broad categories. Note that these include both existing, embedded systems activities
and activities enabled by INTO-CPS, since there is obviously overlap between traditional
embedded systems design and CPS design.

In the following descriptions (and corresponding summary in Table 1), we identify the
tools that support the activities, where applicable, using the following icons:

The INTO-CPS Application, COE and its extensions.

Modelio.

The Overture tool.

The Crescendo tool.

OpenModelica.

20-sim.

Descriptions of these tools can be found in the concepts base at the beginning of this
document in Section 2.5.

Requirements and Traceability Writing Design Notes () includes documenta-
tion about what has been done during a design, why a decision was made and so on.
Requirements () includes requirements gathering and analysis. Validation () is any
form of validation of a design or implementation against its required behaviour.

Architectural Modelling INTO-CPS primarily supports architectural modelling in
SysML. Holistic Architectural Modelling () and Design Architectural Modelling () are
described in Section 5. The former focuses on a domain-specific view, whereas the latter
targets multi-modelling using a special SysML profile. The Export Model Descriptions
() activity indicated passing component descriptions from the Design Architectural
Model to other modelling tools.

Modelling The Import Model Description () activity means taking a compo-
nent interface description from the Design Architectural Model into another modelling
tool. Cyber Modelling () means capturing a “cyber” component of the system, e.g. using

15

D3.2a - Method Guidelines 2 (Public)

a formalism/tool such as VDM/Overture. Physical Modelling () means capturing
the “physical” component of the system, e.g. in 20-sim or OpenModelica. Collectively
these can be referred to as Simulation Modelling () to distinguish from other
forms, such as Architectural Modelling (). Co-modelling () means producing a system
model with one DE and one CT part, e.g. in Crescendo. Multi-modelling () means
producing a system model with multiple DE or CT parts with several tools.

Design Supervisory Control Design means designing some control logic that deals with
high-level such as modal behaviour or error detection and recovery. Low Level Control
Design means designing control loops that control physical processes, e.g. PID control.
Software Design is the activity of designing any form of software (whether or not mod-
elling is used). Hardware Design means designing physical components (whether or not
modelling is used).

Analysis In INTO-CPS, the RT-Tester tools enables the activities of Model Checking
(), Creating Tests () and creating a Test Oracle () FMU. The Create a Con-
figuration () activity means preparing a multi-model for co-simulation. The Define
Design Space Exploration Configurations () activity means preparing a multi-model
for multiple simulations. Export FMU () means to generate an FMU from a
model of a component. Co-simulation () means simulating a co-model, e.g. using
Crescendo baseline technology or the COE.

Prototyping Manual Code Writing means creating code for some cyber component
by hand. Generate Code () means to automatically create code from a model of
a cyber component. Hardware-in-the-Loop (HiL) Simulation () and Software-in-the-
Loop (HiL) Simulation () mean simulating a multi-model with one or more of the
models replaced by real code or hardware.

The above activities are summarised in Table 1. Terms in italics correspond to INTO-
CPS activities that produce traceable artifacts, as described in the traceability ontology
in Deliverable D3.1b [FGPP16].

3.2 Activities Covered in this Document

The remaining sections of this document give guidance relevant to the following activities
(see Table 1):

• Section 3.3 describes suggested workflows for training including Co-simulation, De-
sign Architectural Modelling, Import a Model Description, and Multi-modelling
activities.
• Section 4 covers Design Notes and Requirements from the Requirements and
Traceability category.
• Section 5 covers Holistic Architectural Modelling and Design Architectural Mod-

elling from the Architectural Modelling category.
• Section 6 and Section 7 cover material relevant to Multi-modelling and Cyber Mod-

elling (Simulation Modelling) from the Modelling and Design categories.
• Section 8 covers the Co-simulation and Define Design Space Exploration Configu-
rations activities under the Analysis category.

16

D3.2a - Method Guidelines 2 (Public)

Table 1: Activities in existing embedded systems design workflows or enhanced INTO-
CPS workflows. Entries in italics correspond to traceable artifacts in INTO-CPS (see
Deliverable D3.1b [FGPP15b])

Requirements and Traceability
Design Notes
Requirements
Validation
Architectural Modelling
Holistic Architectural Modelling
Design Architectural Modelling
Export Model Descriptions
Modelling
Import a Model Description
Physical Modelling (Simulation Modelling)
Cyber Modelling (Simulation Modelling)
Co-modelling
Multi-modelling
Design
Supervisory Controller Design
Low Level Controller Design
Software Design
Hardware Design
Analysis
Create Tests
Model Checking
Create Test Oracle
Create a Configuration
Define Design Space Exploration Configurations
Export FMU
Co-simulation
Prototyping
Generate Code
Hardware-in-the-Loop (HiL) Simulation
Software-in-the-Loop (SiL) Simulation
Manual Code Writing

17

D3.2a - Method Guidelines 2 (Public)

3.3 Getting Started

A key requirement identified by engineers [FGPP15a] for adoption of new technologies
such as INTO-CPS was the need for training materials and “toy examples” to be available.
These allow for rapid assessment of the capabilities of technologies, such as identifying
technologies and methods might be integrated into current practice, as well provide ma-
terials for internal training. For the INTO-CPS technologies, we identify the following
three mini-workflows as first steps.

A — Interested User

1. Install tool(s)
2. Load Three Tank Water Tank example
3. Run co-simulation

B — Keen User

1. Install tool(s)
2. Load Line-following Robot example
3. Alter SysML to add new block and connections
4. Export new multi-model configuration
5. Associate a pre-compiled FMU with the multi-model configuration
6. Configure and run a co-simulation

C — Adventurous User

1. Install tool(s)
2. Load LineFollowingRobot exercise
3. Alter SysML to add new block and connections
4. In Overture

(a) Import model description
(b) Complete controller model
(c) Export FMU

5. Add the new FMU to project
6. Create multi-model configuration
7. Configure and run a co-simulation

These workflows are reflected in tutorial material that includes instructions and initial
models (Tutorial 1 — Getting Started, Tutorial 2 — Adding FMUs, and Tutorial 3 —
Generating FMUs). They intentionally start with analysis activities (i.e. co-simulation)
to give context before extending backwards in the design process to modelling activities.
We will extend the above by including a variation of Generating FMUs for 20-sim and
OpenModelica, and will also extend to additional first-steps in architectural modelling,
DSE, test automation, traceability, HiL simulation, and code generation.

18

D3.2a - Method Guidelines 2 (Public)

4 Requirements Engineering

In this section, we consider the requirements engineering (RE) activities for the design
of CPSs. Specifically, we consider the specification and documentation of requirements
placed upon a CPS. These requirements may, for example, impose restrictions, define
system capabilities or identify qualities of a system. The requirements should indicate
some value or use for the different stockholders of a CPS. In this project, we consider the
state in the art of RE in both CPS and Systems of Systems (SoSs), reusing a previously
defined approach to RE as applicable.

4.1 Requirements Engineering and Cyber Physical Systems

In the academic literature, the main issue of concern for RE in CPSs is that of differ-
ing domain contexts [WGS+14]. In addition, it has been noted that there are overlaps
in challenges in CPSs and SoSs [PE12] – especially independence, evolution and increas-
ingly distribution. As described by Lewis et al. [LMP+09], as system architectures become
more complex, there is often a need to consider requirements and structural architectures
during the RE process. The authors suggest that an engineer should identify the sys-
tem needs, component interactions and stakeholders, and map those needs onto those
interested parties. In Deliverable D3.1b [FGPP15b], we also surveyed several projects
that had RE as a focus, or part of their focus. As research in RE in CPS is a nascent
field, we consider approaches to RE from the SoS world, rather than defining an ap-
proach specifically for CPSs. In particular, we consider SoS-ACRE (System of Systems
Approach to Context-based Requirements Engineering) [HPP+15], an approach adapted
from standard systems engineering, tailored for SoSs – enabling the identification and
reasoning about requirements across constituent systems of an SoS and understanding
multi-stakeholder contexts.

INTO-CPS industry partners and RE

At the beginning of the INTO-CPS project, the four industrial partners were surveyed
about their use of various technologies and methods, including requirements engineer-
ing [FGPP15b]. Microsoft Excel was quoted as being used by three partners (UTRC,
TWT and CLE), IBM Rational Doors used by one partner (UTRC), and Microsoft Word
by one partner (AI).

Issues raised by industrial partners include:

• Language/terminology of the requirements not consistent

• Different people involved in the workflow do not have common understandings of
requirements

• Requirements traceability is considered to be highly inefficient and time consuming

• Different people have to meet together and generate proofs among each other to
validate dependable requirements

19

D3.2a - Method Guidelines 2 (Public)

• Stakeholders do not have a clear vision about the product and tend to disagree on
the objectives.

As can be seen, the above issues may be due to not having a rigorous RE approach,
but also due to the challenges in CPSs – that of different domains. In this section, we
consider how a context-based approach to RE (SoS-ACRE) may be incorporated into
the INTO-CPS tool chain, in particular using both the INTO-CPS technologies and the
industrial partners’ baseline technologies.

4.2 Applying SoS-ACRE in the INTO-CPS Tool Chain

The Views of SoS-ACRE

We first consider the collection of views defined in SoS-ACRE, their applicability to CPS
engineering and the INTO-CPS tool chain. Examples of each view are shown in Figures 1,
2, 3 and 4 using technologies relevant to INTO-CPS.

Source Element View (SEV) The SEV defines a collection of source materials from
which requirements are derived. In SoS-ACRE, a SysML block definition diagram
is considered. In INTO-CPS, this view could also be represented using an Excel
table or Word document (with each source having a unique identifier), or by simply
referring to source documents using OSLC traces.

Requirement Description View (RDV) The RDV is used to define the requirements
of a system and forms the core of the requirement definition. SoS-ACRE suggests
the use of SysML requirements diagram or in tabulated form, such as through the
use of Excel. In addition, specifying requirements in Doors would support this view.

Context Definition View (CDV) The CDV is a useful view for CPS engineering in
order to explicitly identify interested stakeholders and points of context in the sys-
tem development, including customers, suppliers and system engineers themselves.
In SoS-ACRE, they are defined using SysML block definition diagrams, and could
also be represented using an Excel table or Word document (with each context
having a unique identifier). This diagram type could be useful when identifying the
divide in CT/DE and cyber-physical elements of a system.

Requirement Context View (RCV) In SoS-ACRE, a RCV is defined for each con-
stituent system context identified in CDVs. This is appropriate when there is a
set of diverse system owners – typical for SoSs. A Context Interaction View
(CIV) is then defined to understand the overlap of contexts and any common/con-
flicted views on requirements. In a CPS, however, there may not be such a clear
delineation between the owners of constituent system components. However, if we
consider the different domains (e.g. CT/DE or cyber/physical divides) as differ-
ent contexts, then this approach would be useful. In SoS-ACRE, RCVs and CIVs
are both defined with SysML use case diagrams. Excel could be used if unique
identifiers are defined for contexts and requirements as described earlier.

Validation View (VV) VVs, defined as SysML sequence diagrams in SoS-ACRE de-
scribe validation scenarios for a SoS to ensure each constituent system context

20

D3.2a - Method Guidelines 2 (Public)

understands the correct role of the requirements in the full SoS. We feel this is not
an obvious fit in CPS engineering and is therefore not required in INTO-CPS.

The SoS-ACRE RE Process

We think that the SoS requirements engineering process of SoS-ACRE may be useful as a
starting place for defining requirements in a CPS engineering workflow. The requirements
management is considered to be too heavyweight a target for translation. This is largely
due to the fact that we are currently less concerned with requirement change/different
processes.

We can consider the simplified CPS RE process to be:

1. Identify and record source elements. This would be using a SEV, or simply recording
paths to relevant files/documents.

2. Record system-level functional and non-functional requirements. Requirements may
be derived using RDVs, and we could consider domain-specific requirements (e.g.
cyber or physical), or analysis-specific requirement types (e.g. DSE or testing re-
quirements).

3. Model initial System structure using INTO-System ASD. This will identify the
cyber and physical elements and the domain/phenomena of the CPS. This may
also give initial idea of component functionalities, which may lead to a repeat of
step 2 above6

4. Define the various contexts in CDVs – both external stakeholders, and if appropri-
ate, contexts for the different components. If only a single system context is defined,
then a single RCV is defined. However, if multiple contexts are defined for a CPS,
then several RCVs are to be defined, along with a CIV to explore requirements from
multiple contexts.

5. Trace the requirements through INTO-CPS tool chain models and results. We
consider this slightly in the next section, however the bulk of the traceability and
provenance work shall be reported in Deliverable 3.2b [FGPP16] and in deliverables
next year.

Using technologies with SoS-ACRE

In this final section, we consider initial approaches to realise the relevant SoS-ACRE
views using the INTO-CPS technologies and those used by industrial partners. This is
not expected to constitute final guidelines on this area, as we would make use of INTO-
CPS technology currently in development – namely traceability and provenance support.
We therefore describe a range of permutations of the use of models and documents for
recording the requirements engineering process described above. In addition, we include
discussions on the links between requirements and architectural models – identified above

6In the process of architectural modelling, it may also be necessary to redefine contexts depending on
whether different simulation tools, or indeed different components of a model, are better able to provide
the requirements of the CPS.

21

D3.2a - Method Guidelines 2 (Public)

Line Follow Robot SysML Requirement and Architectural Model

ASD Robot Composition

Robot

Sensor

Body and
MotorController

RDV Robot Requirements

<<requirement>>
R1

id = R1
description = The
robot must sense a
black line

<<requirement>>
R2

id = R2
description = The
robot must move
faster than 5cm/sec

<<trace>>

SEV Source Elements

<<source element>>
UserDocument

id = URI
description = text
document

<<trace>>

cd Robot Connections

r: Robot

b: Body and
Motor

s:
LibrarySensor

c: Controller

CDV Robot Requirements

<<stakeholder>>
Sensor

manufacturer

<<stakeholder>>
Actuator

manufacturer

<<stakeholder>>
System Engineer

<<trace>>

RCV Robot Requirements in Context

Sense black
line

Must not move too
fast

System
 Engineer

Sensor
manufacturer

Actuator
manufacturer

<<trace>> <<trace>>

<<trace>>

Figure 1: Single SysML model – model overview

as a key method for requirements engineering in CPSs. In the subsequent permutations,
we refer to OSLC and Prov links. For more information of the types of links, and their
descriptions, see Deliverable D3.2b [FGPP16].

Single SysML model The first permutation is to use a single SysML model for both
requirements engineering and architectural modelling. Such a model will contain
all SoS-ACRE views (SEV, RDV, CDV, RCV and CIV), in addition to diagrams
defined using the INTO-CPS profile for the CPS composition and connections.

Modelling in this way enables trace links to be defined inside a single SysML model,
using << trace >> relationships. Figure 1 presents an example SysML model with
trace relationships.

SysML requirements and SysML architectural models The second option is to
use SysML for both requirements engineering and architectural modelling, however
to use two separate models for the two activities (one containing the RE views
(SEV, RDV, CDV, RCV and CIV) and another for architectural diagrams (ASD
and CD)). We consider this permutation with two SysML models in addition to

22

D3.2a - Method Guidelines 2 (Public)

Line Follow Robot SysML Architectural Model

ASD Robot Composition

Robot

Sensor

Body and
MotorController

cd Robot Connections

r: Robot

b: Body and
Motor

s:
LibrarySensor

c: Controller

Line Follow Robot SysML Requirement Model

RDV Robot Requirements

<<requirement>>
R1

id = R1
description = The
robot must sense a
black line

<<requirement>>
R2

id = R2
description = The
robot must move
faster than 5cm/sec

OSLC_Sat

SEV Source Elements

<<source element>>
UserDocument

id = URI
description = text
document

OSLC_Sat

CDV Robot Requirements

<<stakeholder>>
Sensor

manufacturer

<<stakeholder>>
Actuator

manufacturer

<<stakeholder>>
System Engineer

<<trace>>

RCV Robot Requirements in Context

Sense black
line

Must not move too
fast

System
 Engineer

Sensor
manufacturer

Actuator
manufacturer

<<trace>> <<trace>>

<<trace>>

OSLC_SatOSLC_Sat

Figure 2: SysML requirements and SysML architectural models – model overview

the single SysML model, because the requirements engineering and architectural
modelling activities are often considered separately, with different engineering teams
comprised of engineers with specialist skills. As such we can assume there are
cases where these teams have ownership of different models. Trace links may be
used within each individual model (for example, tracing from source elements to
requirements in a RE model), and OSLC links defined to trace between requirements
elements and architectural elements. Figure 2 presents an example with two SysML
models with trace relationships and OSLC links between the models.

URI, Excel and SysML Next, we consider an approach using URIs for the source el-
ements, an Excel document (or a collection of Excel tables) for the RDV, CDV,
RCV and CIV of SoS-ACRE. As above, SysML can then be used to define the
architecture in a single SysML model. Trace links using OSLC may then be used

23

D3.2a - Method Guidelines 2 (Public)

to link the source elements, rows of Excel documents (with internal tracing us-
ing unique identifiers referenced between sheets), and architectural elements of the
SysML architectural model. Figure 3 presents an example with URI, Excel and
SysML models and OSLC links between the artefacts.

Excel and SysML The final approach defined here uses Excel to define the SEV and
RDV of SoS-ACRE, a SysML model to define the context-oriented views (CDV,
RCV and CIV) and a separate architectural model to define the CPS architecture.
OSLC links may trace between elements of the Excel requirements and context views
in SysML, and between the different requirement artefacts and the architectural
model. Figure 4 presents an example with URI, Excel and two SysML models with
OSLC links between the artefacts.

24

D3.2a - Method Guidelines 2 (Public)

File System

Line Follow Robot SysML Architectural Model

ASD Robot Composition

Robot

Sensor

Body and
MotorController

cd Robot Connections

r: Robot

b: Body and
Motor

s:
LibrarySensor

c: Controller

Line Follow Robot Excel Requirement Document

Requirement
ID

Sense
Line

Description

URI#1

The robot must move
faster than 5cm/sec

R1 The robot must sense
a black line

URI#2R2 Robot
Speed

Name Trace to
Source

Context ID

System Engineer

Actuator Manufacturer

C1

C2 Sensor Manufacturer

Context Name

C3

Requirement
ID

C1

C1

C3

R1

R1 C2

Stakeholder
ID

R2

R2

OSLC_Sat

OSLC_Elab

Figure 3: URI, Excel and SysML – model overview

25

D3.2a - Method Guidelines 2 (Public)

File System

Line Follow Robot SysML Architectural Model

ASD Robot Composition

Robot

Sensor

Body and
MotorController

cd Robot Connections

r: Robot

b: Body and
Motor

s:
LibrarySensor

c: Controller

Line Follow Robot Excel Requirement Document

Requirement
ID

Sense
Line

Description

URI#1

The robot must move
faster than 5cm/sec

R1 The robot must sense
a black line

URI#2R2 Robot
Speed

Name Trace to
Source

OSLC_Elab

Line Follow Robot SysML Context Model

CDV Robot Requirements

<<stakeholder>>
Sensor

manufacturer

<<stakeholder>>
Actuator

manufacturer

<<stakeholder>>
System Engineer

RCV Robot Requirements in Context

Sense black
line

Must not move too
fast

System
 Engineer

Sensor
manufacturer

Actuator
manufacturer

<<trace>>

<<trace>>

OSLC_Sat OSLC_Elab

Figure 4: Excel and SysML – model overview

26

D3.2a - Method Guidelines 2 (Public)

5 SysML and Multi-modelling

In the previous version of this deliverable (Deliverable D3.1a [FGPP15a]), we outlined
guidelines for architectural modelling moving from a ‘holistic’ to a ‘design’ architecture
using the INTO-SysML profile [APCB15]. In this document, we present extensions to the
INTO-SysML profile, which allow us to model a CPS for co-simulation in a way which
better reflects the architecture of the system.

Using the INTO-CPS tool chain, we generate co-simulation configurations using an archi-
tectural model defined with the INTO-SysML profile. This model defines the structure
of a system in terms of the composition of its components and their connections. As is
defined in D2.1a [APCB15], a component is “a logical or conceptual unit of the system,
corresponding to software or a physical entity”. This is a problem when we wish to visu-
alise the model using 3D visualisations as provided by 20-sim with an FMU defined purely
for visualisation. This FMU must be connected to the system components, however is
not itself a system component. This is also true when considering the environment of the
system.

Finally, we wish to provide the ability to logically group EComponents7 into collections
– allowing system engineers to better reflect the holistic architecture. We propose the
addition of a new component type – ‘CComponent’ – corresponding to a component
collection. The CComponent has no ports or behaviour itself, and exists purely to allow
logical groupings.

The extension of the INTO-CPS SysML profile to incorporate these changes is reported in
Deliverable D4.2c [BQ16]. Here we present a small example of the use of these extensions,
using a simple robot example (based on the line-following robot pilot study) to illustrate
the use of the new ComponentKind enumerations and the CComponent stereotype.

The INTO-SysML architecture structure diagram in Figure 5 gives examples of these
extensions. The System_Env block is an «EComponent», defined as an Environment
FMU, the 3D_View block is an «EComponent», defined as an Visualisation FMU.
Finally, the Example_Robot block is an «EComponent», defined as an Composition of
two FMUs.

The example has two Connection Diagrams, shown in Figures 6 and 7. The first – in Fig-
ure 6 – shows only those connections with respect to the System and its constituent com-
ponents. This diagram shows a block instance cps1 containing the environment (e) and
the example robot (r) which contains two the controller and hardware components.

The second Connection Diagram in Figure 7 depicts the use of the block instance 3D of
type 3D_View. In this diagram, we show additional ports of the original block instances
to output internal model details and connect these to the 3D instance. The diagram
includes the System connectors as shown in Figure 6.

7An EComponent, as defined in Deliverable D2.1a [APCB15] is an Encapusulating Component, cor-
responding to an element of a system that encapsulates a model.

27

D3.2a - Method Guidelines 2 (Public)

Figure 5: Example Architecture Structure Diagram of robot system

Figure 6: Connections Diagram for robot showing only system and environment connec-
tors

28

D3.2a - Method Guidelines 2 (Public)

Figure 7: Connections Diagram for the robot system showing the system and visualisation
components

29

D3.2a - Method Guidelines 2 (Public)

6 Initial Multi-modelling

In this section we provide guidance on producing initial multi-models from architec-
tural descriptions produced using the INTO-CPS SysML profile. We focus on using
discrete-event (DE) models to produce initial, abstract FMUs that allow integration test-
ing through co-simulation before detailed modelling work is complete. This is called a
“DE-first” approach [FLPV13, FLV13]. The principles outlined in this section can be
applied even if the SysML profile is not used, and multi-models are configured manually.
In future, these guidelines will be expanded to include how and when to continuous-time
(CT) formalisms in initial modelling.

6.1 The DE-first Approach

After carrying out requirements engineering (RE), as described in Section 4, and design
architectural modelling in SysML, as described in Section 5, the engineering team should
have the following artifacts available:

• One or more Architecture Structure Diagrams (ASDs) defining the composition of
«EComponent»s (to be realised as «Cyber» or «Physical» FMUs) that will form
the multi-model.
• Model descriptions exported for each «EComponent».
• One or more Connections Diagrams (CDs) that will be used used to configure a

multi-model.

The next step is to generate a multi-model configuration in the INTO-CPS Application
and populate it with FMUs, then run a first co-simulation. This however requires the
source models for each FMU to be ready. If they already exist this is easy, however
they may not exist if this is a new design. In order to generate these models, the model
descriptions for each «EComponent» can be passed to relevant engineering teams to build
the models, then FMUs can be passed back to be integrated.

It can be useful however to create and test simple, abstract FMUs first (or in parallel),
then replace these with higher-fidelity FMUs as the models become available. This allows
the composition of the multi-model to be checked early, and these simple FMUs can be
reused for regression testing. This approach also mitigates the problem of modelling
teams working at different rates.

Where these simple FMUs are built within the DE formalism (such as VDM), this is
called a DE-first approach. This approach is particularly appropriate where complex
DE control behaviours —such as supervisory control or modal behaviours— are identi-
fied as a priority or where the experience of the modelling team is primarily in the DE
domain [FLV14].

Guidance on how to produce DE approximations for use in multi-modelling, and in partic-
ular approximations of CT behaviour, can be found in material describing the Crescendo
baseline technology [FLV13], which is also available via the Crescendo website8.

8See http://crescendotool.org/documentation/

30

http://crescendotool.org/documentation/

D3.2a - Method Guidelines 2 (Public)

Figure 8: Class diagram showing two simplified FMU classes created within a single
VDM-RT project, and an object diagram showing them being instantiated as a test.

Figure 9: Class and object diagrams showing a linked class within its own project for
FMU creation.

31

D3.2a - Method Guidelines 2 (Public)

6.2 DE-first within INTO-CPS

Given an architectural structure diagram, connections diagram and model descriptions
for each «EComponent», the suggested approach is to begin by building a single VDM-RT
project in Overture with the following elements:

• A class for each «EComponent» representing an FMU. Each class should define port-
type instance variables (i.e. of type IntPort, RealPort, BoolPort, or StringPort)
corresponding to the model description and a constructor to take these ports as
parameters. Each FMU class should also define a thread that calls a Step operation,
which should implement some basic, abstract behaviour for the FMU.
• A system class that instantiates port and FMU objects based on the connections

diagram. Ports should be passed to constructor of each FMU object. Each FMU
object should be deployed on its own CPU.
• A World class that starts the thread of each FMU objects.

Class and object diagrams giving an example of the above is shown in Figure 8. In this
example, there are two «EComponent»s (called FMU1 and FMU2) joined by a single
connection of type real. Such a model can be simulated within Overture to test the
behaviour of the FMUs. This approach can be combined with the guidance in Section 7 to
analyse more complicated networked behaviour. Once the behaviour of the FMU classes
has been tested, actual FMUs can be produced and integrated into a first multi-model
by following the guidance below.

6.3 FMU Creation

To generate FMUs, a project must be created for each «EComponent» with:

• One of the FMU classes from the main project.
• A HardwareInterface class that defines the ports and annotations required by the

Overture FMU export plug-in, reflecting those defined in the model description.
• A system class that instantiates the FMU class and passes the port objects from

the HardwareInterface class to its constructor.
• A World class that starts the thread of the FMU class.

The above structure is shown in Figure 9. A skeleton project with a correctly annotated
HardwareInterface class can be generated using the model description import feature of
the Overture FMU plug-in. The FMU classes can be linked into the projects (rather than
hard copies being made) from the main project, so that any changes made are reflected
in both the main project and the individual FMU projects. These links can be created
by using the Advanced section of the New > Empty VDM-RT File dialogue, using the
PROJECT-1-PARENT_LOC variable to refer to the workspace directory on the file system
(as shown in Figure 10). Note that if the FMU classes need to share type definitions,
these can be created in a class called Types in the main project, then this class can be
linked into each of the FMU projects in the same way.

From these individual project, FMUs can be exported and co-simulated within the INTO-
CPS tool. These FMUs can then be replaced as higher-fidelity versions become available,
however they can be retained and used for regression and integration testing by using
different multi-model configurations for each combination.

32

D3.2a - Method Guidelines 2 (Public)

Figure 10: Linking files in the New > Empty VDM-RT File dialogue.

Figure 11: Project structure of an Overture workspace showing a main project and two
projects used for generating FMUs from linked class files.

33

D3.2a - Method Guidelines 2 (Public)

7 Modelling Networks in Multi-models

In this section, we address the problem of modelling networked controllers in multi-
models, presenting a solution using VDM. When modelling and designing distributed
controllers, it is necessary to model communications between controllers as well. While
controller FMUs can be connected directly to each other through for co-simulation, this
quickly becomes unwieldy due to the number of connections increasing exponentially. For
example, consider the case of five controllers depicted in Figure 12. In order to connect
each controller together, 20 connections are needed (i.e. for a complete bidirected graph).
Even with automatic generation of multi-model configurations, this is in general not a
feasible solution.

Figure 12: Topology of five controllers connected to each other

We suggest employing a pattern described initially as part of the Crescendo technol-
ogy [FLV14], in which a representation of an abstract communications medium called the
‘ether’ is introduced. In the INTO-CPS setting, the ether is an FMU that is connected
to each controller that handles message-passing between them. This reduces the number
of connections needed, particularly for large numbers of controllers such as swarms. For
five controllers, only 10 connections are needed, as shown in Figure 13.

Figure 13: Topology of five controllers connected via a shared medium

In the remainder of this section, we describe how to pass messages between VDM FMUs
using string types, how the ether class works, some of the consequences of using the ether
pattern, and finally some extensions for providing quality of service (QoS) guarantees. A
class listing for a reference implementation of the Ether class is given in Appendix B. An
example multi-model built using this class, called Case Study: Ether, is available from the
INTO-CPS Application. It is also described in the Examples Compendium, Deliverable
D3.5 [PGP+16].

34

D3.2a - Method Guidelines 2 (Public)

7.1 Representing VDM Values as Strings

Connections between FMUs are typically numerical or Boolean types. This works well for
modelling of discrete-time (DT) controllers and continuous-time (CT) physical models,
however one of the advantages of VDM is the ability to represent more complex data types
that better fit the abstractions of supervisory control. Therefore in a multi-modelling
setting, it is advantageous if VDM controllers can communicate with each other using
data types that are not part of the FMI specification.

This can be achieved by passing string between VDM FMUs (which are now supported by
the Overture FMU export plug-in) and the VDMUtil standard library included in Over-
ture, which can convert VDM types to their string representations and back again.

The VDMUtil library provides a (polymorphic) function called val2seq_of_char, that
converts a VDM type to a string. It is necessary to tell the function what type to expect
as a parameter in square brackets. For example, in the following listing, a 2-tuple is
passed to the function, which will produce the output "mk_(2.4, 1.5)":�

VDMUtil ‘val2seq_of_char[real*real](mk_(2.4, 1.5))
� �
The above can be used when sending messages as strings. In the model receiving mes-
sage, the inverse function seq_of_char2val can be used. This function returns two
values, a Boolean value indicating if the conversion was successful, and the value that
was received:�

let mk_(b,v) = VDMUtil ‘val2seq_of_char[real*real](msg) in
if b then ...
� �

In the first few steps of co-simulation, empty or invalid strings are often passed as values,
so it is necessary to check if the conversion was successful (as in the above listing) before
using the value.

Note that currently (as of Overture 2.4.0), the VDMUtil library is called in the default
scope, meaning that it does not know about custom types defined in the model. Therefore
it is recommended to pack values in a tuple (as in the above example) for message passing,
then convert to and from any custom types in the sending and receiving models.

7.2 Using the Ether FMU

By encoding VDM values as strings, it is possible to define a simple broadcast ether
that receives message strings on its input channel(s) and sends them to its output chan-
nel(s). As a concrete example, we consider the Case Study: Ether (see Deliverable
D3.5 [PGP+16]), which contains a Sender, a Receiver and an Ether, as depicted in
Figure 14. In this example, the three FMUs have the following roles:

Sender Generates random 3-tuple messages of type real * real * real, encodes them
as strings using the VDMUtil library and puts them on its output port.

Receiver Receives strings on its input port and tries to convert them to single messages
of type real * real * real or to a sequence of messages of type of type seq of
(real * real * real).

35

D3.2a - Method Guidelines 2 (Public)

Figure 14: Case Study: Ether example

Ether Has an input port and output port, each assigned a unique identifer, i.e. as a map
Id to StringPort. It also has a mapping of input to output ports as a set of pairs:
set of (Id * Id). It has a list that holds messages for each output destination,
because multiple messages might arrive for one destination. It gathers messages
from each input and passes them to the outputs defined in the above mapping.

In this simple example the sender and receiver are asymmetrical, but in more complicated
examples controllers can be both senders and receivers by implementing both of the
behaviours described above.

The Case Study: Ether example contains two multi-models that allow the sender and
receiver to be connected directly (connection diagram shown in Figure 15(a)), or to be
connected via the ether (connection diagram shown in Figure 15(b)). The description
in the Examples Compendium, Deliverable D3.5 [PGP+16], explains how to run the two
different multi-models. This approach shows that the use of string ports and the VDMUtil
library can be useful even without the ether for message passing between controllers in
simple topologies.

For the sender, this connection is transparent, it does not care whether it is connected to
the ether or not. For the receiver, in the direct connection it will receive single messages,
whereas when receiving from the ether it will receive a list of messages (even for a single
value). So the receiver is able to deduce when it is directly connected or connected via
the ether.

The ether defined in this example is intended to be generic enough that it can be used
in other case studies that need a simple broadcast ether without guarantees of delivery.
To use it, you can:

1. Import the Ether model from the case-study_ether/Models directory into Overture;
2. Update the HardwareInterface9 class to provide input and/or output ports for all

controllers that will be connected to the ether.
3. Update the System class to assign identifiers to all input and output ports; and
4. Update the set of identifer pairs that define connections.
9A class that provides annotated definitions of the ports for a VDM FMU.

36

D3.2a - Method Guidelines 2 (Public)

(a) Connection diagram of the Direct multi-model in
the Case Study: Ether example

(b) Connection diagram of the Ether multi-model in the Case Study: Ether example

Figure 15: Alternative multi-models in the Case Study: Ether example

7.3 Consequences of Using the Ether

The ether as presented above, and listed in Appendix B, is fairly basic. In each update
cycle, it passes values from its input variables to their respective output variables. This
essentially replicates the shared variable style of direct FMU-FMU connections, which
means that the relative update speeds of the FMUs may lead to the following:

Values may be delayed The introduction of an intermediate FMU means that an ex-
tra update cycle is required to pass values from sender to ether and ether to receiver.
This may delay messages unless the ether updates at least twice as fast as the re-
ceiver.

Values may not be read If a value is not read by the receiver before it is changed,
then that value is lost.

Values may be read more than once If a value is not changed by the sender before
the receiver updates, then the value is read twice. In the simple ether, the receiver
cannot distinguish an old message from a new message with the same values.

In the Examples Compendium, Deliverable D3.5 [PGP+16], the Case Study: Ether ex-
ample is described along with some suggested experiments to see the effects of the above
examples by changing the controller frequency parameters of the sender, ether and re-
ceiver. In the final part of this section we outline ways to overcome such problems if it is
necessary to guarantee that messages arrive and are read during a co-simulation.

7.4 Modelling True Message Passing and Quality of Service

The key to achieving a true message-passing is to overcome the problem of distinguishing
old messages from new messages with the same values. This can be done by attaching a
unique identifier to each message, which could be, for example, an identifier of the sender
plus a message number:

37

D3.2a - Method Guidelines 2 (Public)

Figure 16: Topology of controller to Ether connection with dedicated channels for mes-
sages and acknowledgements

�
instance variables

id: seq of char := "a";
seqn: nat1 := 1;

...

VDMUtil ‘val2seq_of_char[seq of char*real*real](
mk_(id ^ [seqn], 2.4, 1.5));

seqn := seqn + 1
� �
The advantage of assigning an identifier to each controller is that messages could also
contain destination addresses, instead of the broadcast model presented above. In order
to achieve these, some changes are needed to allow for acknowledging receipt of messages.
Controllers should:

1. Send a queue of messages on their output channel along with message identifiers of
(recently received) messages;

2. Expect to receive a queue of messages along with message identifiers of successfully
sent messages; and

3. Senders should remove messages from their output queue once their receipt has
been acknowledged.

The Ether class must be extended to:

1. Inspect the message identifier (and destination if required) using VDMUtil;
2. Pass message identifiers back to senders to acknowledge receipts; and
3. Listen for message identifiers from receivers to know when to remove messages from

the queue.

A dedicated channel for acknowledging messages could also be introduced, which would
simplify the above. Therefore each controller would have four connections to the ether:
send and acknowledge, receive and acknowledge, as depicted in Figure 16.

The advantages of guaranteed message delivery as described here are that realistic and
faulty behaviour of the communication medium can be studied. An ether can be pro-
duced that provides poorer quality of service (delay, loss, repetition, reordering). These
behaviours could be parameterised and explored using DSE (see Section 8). By control-
ling for problems introduced by the nature of co-simulation, any reduction in performance
of the multi-model can be attributed to the realistic behaviour introduced intentionally
into the model of communications.

38

D3.2a - Method Guidelines 2 (Public)

8 Design Space Exploration

In this section, we outline guidelines for DSE over co-models of CPSs that: (a) support
decision management by helping engineers to articulate clearly the parameters, objectives
and metrics of a DSE analysis (Section 8.1); and (b) enable the tuning of DSE methods
for given domains and systems of interest (Section 8.2).

8.1 Guidelines for Designing DSE in SysML

8.1.1 Rationale

Designing DSE experiments can be complex and tied closely to the multi-model being
analysed. The definitions guiding the DSE scripts should not just appear with no mean-
ingful links to the any other artefacts in the INTO-CPS Tool chain. There are two main
reasons for this, firstly there is no traceability back to the requirements from which we
might understand why the various objectives (measures) were being evaluated or why
they were included in the ranking definition. Secondly, if DSE configurations are created
manually for each new DSE experiment it is easy to imagine that the DSE analysis and
ranking might not be consistent among the experiments.

Engineers need, therefore, to be able to model at an early stage of design how the exper-
iments relate to the model architecture, and where possible trace from requirements to
the analysis experiments. Here we describe the first step towards this vision: a SysML
profile for modelling DSE experiments. The profile comprises five diagrams for defining
parameters, objectives and rankings.

We take the same approach to defining the SysML profile for DSE as that used to define
the INTO-SysML profile. A metamodel is defined (see Deliverable D3.2b [FGPP16])
and the collection of profile diagrams that implement this metamodel are defined in
Deliverable D4.2c [BQ16].

In this, section, we present an illustrative example of the use of the DSE-SysML profile
– from requirements engineering through defining parameters and objectives in the DSE-
SysML profile to the final DSE .json configuration files. We present result of the execution
of DSE for the defined configuration.

As an example, we use the line follower robot pilot study. More details can be found in
Deliverable D3.5 [PGP+16].

8.1.2 Requirements

We propose the use of a subset of the SoS-ACRE method detailed in Section 4 (as this
section concentrates on the application of the DSE-SysML profile, we don’t consider the
full SoS-ACRE process). In the Requirements Definition View in Figure 17, the following
five requirements are defined:

1. The robot shall have a minimal cross track error

2. The cross track error shall never exceed X mm

39

D3.2a - Method Guidelines 2 (Public)

3. The robot shall maximise its average speed

4. The robot shall have a minimum average speed of X ms−1

5. The robot sensor positions may be altered to achieve global goals

Figure 17: Subset of the Requirements Definition View for requirements of the Line
Following Robot

8.1.3 Objectives from Requirements

Based upon the requirements above, we define two objectives: the calculation of deviation
from a desired path, and the speed of the robot.

Deviation The deviation from a desired path, referred to as the cross track error, is
the distance the robot moves from the line of the map, as shown in Figure 18.

Desired path
Actual Path

Cross Track Error

Figure 18: Cross track error at various points for a robot trying to follow a desired line

To compute cross track error we need some model of the desired path to be followed and
the actual path taken by the robot. Each point on the actual path is compared with the
model of the desired path to find its distance from the closest point, this becomes the
cross track error. If the desired path is modelled as a series of points, then it may be
necessary to find shortest distance to the line between the two closest points.

40

D3.2a - Method Guidelines 2 (Public)

Speed The speed may be measured in several ways depending on what data is logged
by the COE and what we really mean by speed, indicated in Figure 19.

Desired path
Recorded points

Instantaneous speed
Point to point speed

Timing point Timing point speed

Figure 19: Cross track error at various points for a robot trying to follow a desired line

Inside the CT model there is a bond graph flow variable that represents the forwards
motion of the robot. This variable is not currently logged by the COE but it could be
and this would result in snapshots of the robot speed being taken when simulation models
synchronise. In this example, we take the view that speed is referring to the time taken
to complete a lap.

8.1.4 SysML Representation of Parameters, Objectives and Ranking

We next consider the use of the upcoming DSE profile to define the DSE parameters,
objectives and desired ranking function. In the following SysML diagrams, we explicitly
refer to model elements as defined in the architectural model of the line follower study,
presented in Deliverable D3.5 [PGP+16].

Parameters In the requirements defined above, we see that the position of the line
follower sensors may be varied. In real requirements, we may elicit the possible variables
allowed. Figure 20 is a DSE Parameter Definition Diagram and defines four parame-
ters required: S1_X, S1_Y, S2_X and S2_Y, each a set of real numbers. The DSE
experiment in this example is called DSE_Example.

Figure 21 identifies the architectural model elements themselves (the lf_position_x and
lf_position_y parameters of sensor1 and sensor2) and the possible values each may
have (for example the lf_position_x parameter of sensor1 may be either 0.01 or 0.03).
The diagram (or collection of diagrams if there is a large number of design parameters)
should record all parameters for the experiment.

Objectives The objectives follow from the requirements as mentioned above. Fig-
ure 22 shows the DSE Objectives Definition Diagram with four objectives: meanSpeed,
lapTime, maxCrossTrackError and meanCrossTrackError. Each have a collection of in-
puts – defined either as constants (e.g. parameter p1 of meanSpeed), or to be obtained
for the multi-model.

The objective definitions are realised in Figure 23. The meanSpeed requires the step-size
of the simulation (this is obtained from the co-simulation results, rather than defined
here) and the robot_x and robot_y position of the robot body. The lapTime objective
requires the time at each simulation step (again, obtained directly from the co-simulation

41

D3.2a - Method Guidelines 2 (Public)

Figure 20: DSE-SysML Parameter Definition Diagram of Line Following Robot example

Figure 21: DSE-SysML Parameter Connection Diagram of Line Following Robot example

42

D3.2a - Method Guidelines 2 (Public)

Figure 22: DSE-SysML Objective Definition Diagram of Line Following Robot example

output), the robot_x and robot_y position of the robot body and the name of the
map. Both the maxCrossTrackError and meanCrossTrackError objectives require only
the robot_x and robot_y position of the robot body.

Ranking Finally, the DSE Ranking Diagram in Figure 24 defines the ranking to
be used in the experiment. This diagram states that the experiment uses the Pareto
method, and is a 2-value Pareto referring to the lapTime and meanCrossTrackError ob-
jectives.

8.1.5 DSE script

These diagrams may then be translated to the json config format required by the DSE
tool (see the INTO-CPS User Manual, Deliverable D4.2a [BLL+16] for more details).
At present this is a manual process, however tool support in Modelio is in preparation
and shall be available early in Year 3 of the project. This tool support will provide the
automated generation of a skeleton configuration, specifying the parameters, objectives
and ranking to use. This leaves the choice of DSE algorithm and simulation timing
settings for an engineer to specify in the INTO-CPS application. Figure 25 shows the
corresponding DSE configuration file for the line follower experiments. Note that where
we refer to model elements of the architecture (such as model parameters), we now use
the same conventions used in the co-simulation orchestration engine configuration.

43

D3.2a - Method Guidelines 2 (Public)

Figure 23: DSE-SysML Connection Objective Diagram of Line Following Robot example

Figure 24: Example DSE-SysML Ranking Diagram of Line Following Robot example

44

D3.2a - Method Guidelines 2 (Public)

Figure 25: A complete DSE configuration json file for the line follower robot example

8.1.6 DSE results

DSE is performed in the DSE tool (again, see the INTO-CPS User Manual, Deliverable
D4.2a [BLL+16] for more detail) by processing the DSE configuration using scripts that
contain the required algorithms. The main scripts contain the search algorithm that
determines which parameters to use in each simulation, the simplest of these is the ex-
haustive algorithm that methodically runs through all combinations of parameters and
runs a simulation of each. The log files produced by each simulation are then processed
by other scripts to obtain the objective values defined in the previous section. Finally,
the objective values are used by a ranking script to place all the simulation results into
a partial order according to the defined ranking. The ranking information is used to
produce tabular and graphical results that may be used to support decisions regarding
design choices and directions.

45

D3.2a - Method Guidelines 2 (Public)

Figure 26 shows an example of the DSE results from the line follower robot where the lap
time and mean cross track error were the objectives to optimise. These results contain
two representations of the data, a graph plotting the objective values for each design,
with the Pareto front of optimal trade-offs between the key objectives highlighted, here
in blue. The second part of the results presents the data is tables, indexed by the ranking
position of each result. The permits the user to determine the precise values for both the
measured objectives and also the design parameters used to obtain that result.

Figure 26: DSE results

46

D3.2a - Method Guidelines 2 (Public)

8.2 An Approach to Effective DSE

Given a “designed” design space using the method detailed above, we use the INTO-
CPS Tool Chain to simulate each design alternative. The initial approach we took was
to implement an algorithm to exhaustively search the design space, and evaluate and
rank each design. Whilst this approach is acceptable on small-scale studies, this quickly
becomes infeasible as the design space grows. For example, varying n parameters with
m alternative values produces a design space of mn alternatives. In the remainder of
this paper, we present an alternative approach to exploring the design space in order
to provide guidance for CPS engineers on how to design the exploration of designs for
different classes of problems.

8.2.1 A Genetic Algorithm for DSE

Inspired by processes found in nature, genetic algorithms “breed” new generations of
optimal CPS designs from the previous generation’s best candidates. This mimics the
concept of survival of the fittest in Darwinian evolution. Figure 27 represents the struc-
ture of a genetic algorithm used for DSE. Several activities are reused from exhaustive
DSE: simulation; evaluation of objectives; rank simulated designs; and generate results.
The remaining activities are specific to the genetic approach and are detailed in this
section.

Figure 27: High-level process for DSE Genetic Algorithm

Generating initial population: Two methods for generating an initial population of
designs are supported: randomly, or uniformly across the design space. Generating
an initial design set which is distributed uniformly could allow parts of the design
space to be explored that would otherwise not be explored with a random initial
set. This could give us greater confidence that the optimal designs found by the
genetic algorithm are consistent with the optimal designs of the total design space.

Selecting parents: Two options for parent selection are supported: random and dis-
tributed. Random selection means that two parents are chosen randomly from the
non-dominated set (NDS). There is also a chance for parents to be selected which
are not in the NDS, potentially allowing different parts of the design space to be
explored due to a greater variety of children being produced.

An intelligent approach involves calculating the distribution of each design?s ob-
jectives from other designs in the NDS. One of the parents chosen is the design
with the greatest distribution, enabling us to explore another part of the design
space which may contain other optimal designs. Picking a parent that has the least

47

D3.2a - Method Guidelines 2 (Public)

distribution suggests that this parent is close to other optimal designs, meaning
that perhaps it is likelier to produce optimal designs.

Figure 28(a) shows the fitness roulette by which how much a design solution in
Figure 28(b) satisfies the requirements. It can be seen that there exists a relation-
ship where the greater the fitness value a design has, the more likely it is to be
selected as a parent. The probability P of design d being selected as a parent can
be calculated by:

(a) Example fitness roulette (b) Fitness of designs

Figure 28: Genetic Algorithm fitness selection

Breeding children: After the parents are selected, the algorithm creates two new chil-
dren using a process of crossover. Figure 29 shows this process. Mutation could
also occur, where a randomly chosen parameter’s value is replaced by another value
defined in the initial DSE configuration, producing new designs to explore other
parts of the design space.

Figure 29: Depiction of genetic crossover

Checking current progress: Progression is determined by the change in the NDS on
each iteration. It is possible to tune the number of iterations without progress
before termination.

8.2.2 Measuring Effectiveness

To provide guidance on selection and tuning of a specific algorithm to a DSE situation
it is necessary that there is a means for experimenting with the algorithm parameters
and also means for evaluating the resulting performance. To this end an experiment was
devised that supports exploration of these parameters using a range of design spaces as
the subject. The experiment is based upon generating a ground truth for a set of design
spaces such that the composition of each Pareto front is known and we may assess the
cost and accuracy of the genetic algorithm’s attempt to reach it. A limiting factor for
these design spaces is that they must be exhaustively searched and so there are current

48

D3.2a - Method Guidelines 2 (Public)

four of these all based upon the line follow robot: an 81-point and a 625-point design
space where the sensor positions are varied and a 216-point and 891-point design spaces
where the controller parameters are varied. There are three measures applied to each
result that target the tension between trading off the cost of running a DSE against the
accuracy of the result

Cost: The simplest of the measures is the cost of the performing the search and here
it is measured by the number of simulations performed to reach a result. For the
purposes of comparison across the different design spaces, this cost is represented
as a proportion of the total number of designs

cost = |Simulations Run|
|Design Space|

Accuracy: The ground truth exhaustive experiments provide us with the Pareto Front
for that design space and each DSE experiment returns a non-dominated set of best
designs found. Here the accuracy measure considers how many of the designs in
the genetic non-dominated set are actually the best designs possible. It is measured
by finding the proportion of points in the genetic NDS that are also found in the
ground truth Pareto front.

accuracy = |GeneticNDS∩ExhaustiveNDS|
|GeneticNDS|

Generational Distance: The accuracy measure tells us something about the points
in the genetically found NDS that are also found in the exhaustive NDS (Van
Veldhuizen & Lamont, 2000). The generational distance gives us a figure indicating
the total distance between the genetic NDS and the exhaustive NDS. It is calculated
by computing the sum of the distance between each point in the genetic NDS and
its closest point in the exhaustive NDS and dividing this by the total number of
points.

generational distance =

√
(
∑n

i=1
d2i)

n

8.2.3 Genetic DSE Experiments and Results

The DSE experiments involved varying three parameters of the genetic algorithm and
repeating each set of parameters with each design space five times. The parameters of
the genetic algorithm varied were:

Initial population size: The initial population size took one of three values. All design
spaces were tested using an initial population of 10 designs, they were also tested
with initial populations equal to 10% of the design space and 25% of the design
space. These are represented on the left hand graphs by the 10, 10% and 25% lines.

Progress check conditions: The number of rounds the genetic algorithm would con-
tinue if there was no progress observed was tested with three values, 1, 5 and 10.
These are represented on the right hand graphs with the 1, 5 and 10 lines.

Algorithm options: There are two variants of the genetic algorithm, phase 1 with
random initial population and random parent selection, and phase 3 which give an
initial population distributed over the design space and where parent selection is
weighted to favour diverse parents. The phase one experiments are on the left hand

49

D3.2a - Method Guidelines 2 (Public)

side of the graphs, with points labelled ‘<design space size>-p1’ while the phase
three experiments are on the right labelled ‘<design space size>-p3’.

The results of the simulations are shown in graph form below. Each point graphed
is the averaged result of the five run of each set of parameters. Figure 30, shows the
graphs of cost of running the DSEs. Encouragingly there is a slight trend of the cost of
DSE reducing as a proportion of the design space as the design space size increases. As
expected the cost was greater with larger initial populations but the cost did not vary
when changing the progress check condition as much as expected.

Figure 31 shows the graphs of DSE accuracy. There is again a slight downward trend as
design space size increases, meaning that there is a slight increase in the number of points
in the genetic NDS that are not truly optimal. As expected the larger initial population
generally resulted in more accurate NDS, this was also true of using the largest value for
the progress check condition.

Figure 32 presents the generational distance results. Here we find that the results are
generally low, with the exception of the 891-point design space which is significantly worse,
the reason for this is still to be determined. The largest initial design space resulted in
the lowest (best) values as did using a progress check condition value of 5.

50

D3.2a - Method Guidelines 2 (Public)

Figure 30: Cost of DSE, number of simulations run as proportion of the total design
space

Figure 31: Accuracy of DSE, proportion of genetic NDS found in exhaustive NDS

Figure 32: Gap between Genetic NDS and Exhaustive NDS

51

D3.2a - Method Guidelines 2 (Public)

9 Forward Look

In the last year of the project, a final version of the document will be produced (Deliver-
able D3.3a) covering the entire engineering process covered by the INTO-CPS tool chain.
We will provide new or extended guidance in the following areas:

Workflows Adoption of INTO-CPS into existing practice, including initial modelling
using CT-first and other approaches; end-to-end workflows for the tool chain; and
“getting started” material for all techniques enabled by INTO-CPS.

Requirements Engineering Links from requirements to modelling, and to analysis
results. For example, guidelines for specifying requirements that influence objectives
defined in DSE. This is alluded to in Section 8.1. We shall also consider how this
relates to co-simulation and the existing work in test automation, as reported in
Deliverable D5.1b [MPB15].

SysML Use of SysML for architectural modelling of CPSs in combination with the
INTO-CPS DSE and test automation SysML profiles.

Design Space Exploration DSE in the cloud, for example, how does the number of
parallel simulations affect the cost, accuracy and time to complete a DSE; and
architectural DSE (how to describe architectural changes/change points, how to
present results, how should search algorithms work with architectural DSE).

Traceability and Provenance How to make use of the traceability and provenance
features of the tool chain using examples from the line-follower pilot study.

52

D3.2a - Method Guidelines 2 (Public)

References

[ACM+16] Nuno Amalio, Ana Cavalcanti, Alvaro Miyazawa, Richard Payne, and Jim
Woodcock. Foundations of the SysML for CPS modelling. Technical report,
INTO-CPS Deliverable, D2.2a, December 2016.

[APCB15] Nuno Amalio, Richard Payne, Ana Cavalcanti, and Etienne Brosse. Founda-
tions of the SysML profile for CPS modelling. Technical report, INTO-CPS
Deliverable, D2.1a, December 2015.

[BFG+12] Jan F. Broenink, John Fitzgerald, Carl Gamble, Claire Ingram, Angelika
Mader, Jelena Marincic, Yunyun Ni, Ken Pierce, and Xiaochen Zhang.
Methodological guidelines 3. Technical report, The DESTECS Project
(INFSO-ICT-248134), October 2012.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian
Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag,
1994. ISBN 3-540-19813-X.

[BLL+16] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Casper Thule, An-
ders Franz Terkelsen, Carl Gamble, Adrian Pop, Etienne Brosse, Jörg Brauer,
Florian Lapschies, Marcel Groothuis, Christian Kleijn, and Luis Diogo
Couto. INTO-CPS Tool Chain User Manual. Technical report, INTO-CPS
Deliverable, D4.2a, December 2016.

[Blo14] Torsten Blochwitz. Functional Mock-up Interface for Model Exchange and
Co-Simulation. https://www.fmi-standard.org/downloads, July 2014.

[BQ16] Etienne Brosse and Imran Quadri. SysML and FMI in INTO-CPS. Technical
report, INTO-CPS Deliverable, D4.2c, December 2016.

[BW98] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A Systematic
Introduction. Springer, 1998.

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded Model Checking Using Satisfiability Solving. Formal Methods in
System Design, 19(1):7–34, 2001.

[CE81] E. M. Clarke and A. E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In IBM Logics of Programs
Workshop, volume LNCS 131. Springer Verlag, 1981.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
1999.

[CKOS04] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Completeness and Complexity of Bounded Model Checking. In 5th Inter-
national Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI 2004), volume 2937 of Lecture Notes in Computer Science,
pages 85–96. Springer, 2004.

53

https://www.fmi-standard.org/downloads

D3.2a - Method Guidelines 2 (Public)

[CKOS05] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Computational challenges in bounded model checking. STTT, 7(2):174–183,
2005.

[CMC+13] Joey Coleman, Anders Kaels Malmos, Luis Couto, Peter Gorm Larsen,
Richard Payne, Simon Foster, Uwe Schulze, and Adalberto Cajueiro. Third
release of the COMPASS tool — symphony ide user manual. Technical re-
port, COMPASS Deliverable, D31.3a, December 2013.

[CV03] E.M. Clarke and H. Veith. Counterexamples revisited: Principles, algo-
rithms, applications. In Verification: Theory and Practice, Essays Dedicated
to Zohar Manna on the Occasion of His 64th Birthday, volume 2772 of Lec-
ture Notes in Computer Science, pages 208–224. Springer, 2003.

[DAB+15] Lipika Deka, Zoe Andrews, Jeremy Bryans, Michael Henshaw, and John
Fitzgerald. D1.1 definitional framework. Technical report, The TAMS4CPS
Project, April 2015.

[FE98] Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented
Language for System Modelling and Simulation. In ECCOP ’98: Proceedings
of the 12th European Conference on Object-Oriented Programming, pages 67–
90. Springer-Verlag, 1998.

[FGPP15a] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Method
Guidelines 1. Technical report, INTO-CPS Deliverable, D3.1a, December
2015.

[FGPP15b] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Methods
Progress Report 1. Technical report, INTO-CPS Deliverable, D3.1b, Decem-
ber 2015.

[FGPP16] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Methods
Progress Report 2. Technical report, INTO-CPS Deliverable, D3.2b, Decem-
ber 2016.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools
and Techniques in Software Development. Cambridge University Press, The
Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FLPV13] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel Verhoef. A
Formal Approach to Collaborative Modelling and Co-simulation for Embed-
ded Systems. Mathematical Structures in Computer Science, 23(4):726–750,
2013.

[FLV13] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Col-
laborative Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2013.

[FLV14] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Col-
laborative Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2014.

54

D3.2a - Method Guidelines 2 (Public)

[GF94] Orlena C.Z. Gotel and Anthony C.W. Finkelstein. An analysis of the re-
quirements traceability problem. In Proceedings of the First International
Conference on Requirements Engineering, pages 94–101, April 1994.

[HIL+14] J. Holt, C. Ingram, A. Larkham, R. Lloyd Stevens, S. Riddle, and A. Ro-
manovsky. Convergence report 3. Technical report, COMPASS Deliverable,
D11.3, September 2014.

[HJ98] Tony Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, April 1998.

[Hoa85] Tony Hoare. Communication Sequential Processes. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey 07632, 1985.

[HPP+15] Jon Holt, Simon Perry, Richard Payne, Jeremy Bryans, Stefan Hallerstede,
and Finn Overgaard Hansen. A model-based approach for requirements en-
gineering for systems of systems. IEEE Systems Journal, 9(1):252–262, 2015.

[INC15] INCOSE. Systems Engineering Handbook. A Guide for System Life Cycle
Processes and Activities, Version 4.0. Technical Report INCOSE-TP-2003-
002-04, International Council on Systems Engineering (INCOSE), January
2015.

[Jif94] He Jifeng. A classical mind. chapter From CSP to Hybrid Systems, pages
171–189. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK,
1994.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[LMP+09] Grace A. Lewis, Edwin Morris, Patrick Place, Soumya Simanta, and Den-
nis B. Smith. Requirements Engineering for Systems of Systems. In Systems
Conference, 2009 3rd Annual IEEE, pages 247–252. IEEE, March 2009.

[MG13] Luc Moreau and Paul Groth. PROV-Overview. Technical report, World
Wide Web Consortium, 2013.

[Mor90] Carroll Morgan. Programming from Specifications. Prentice-Hall, London,
UK, 1990.

[MPB15] Oliver Möller, Adrian Pop, and Jörg Brauer. Distributed Testing and Simu-
lation Network. Technical report, INTO-CPS Deliverable, D5.1b, December
2015.

[NLF+13] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Wood-
cock, and Jan Peleska. Model-based engineering of systems of systems. Sub-
mitted to ACM Computing Surveys, June 2013.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics With Applications –
A Formal Introduction. John Wiley & Sons Ltd, 1992.

[PE12] Birgit Penzenstadler and Jonas Eckhardt. A Requirements Engineering con-
tent model for Cyber-Physical Systems. In RESS, pages 20–29, 2012.

55

D3.2a - Method Guidelines 2 (Public)

[PF10] Richard J. Payne and John S. Fitzgerald. Evaluation of Architectural Frame-
works Supporting Contract-based Specification. Technical Report CS-TR-
1233, School of Computing Science, Newcastle University, December 2010.

[PGP+16] Richard Payne, Carl Gamble, Ken Pierce, John Fitzgerald, Simon Foster,
Casper Thule, and Rene Nilsson. Examples Compendium 2. Technical report,
INTO-CPS Deliverable, D3.5, December 2016.

[PHP+14] Simon Perry, Jon Holt, Richard Payne, Jeremy Bryans, Claire Ingram, Al-
varo Miyazawa, Luís Diogo Couto, Stefan Hallerstede, Anders Kaels Malmos,
Juliano Iyoda, Marcio Cornelio, and Jan Peleska. Final Report on SoS Archi-
tectural Models. Technical report, COMPASS Deliverable, D22.6, September
2014. Available at http://www.compass-research.eu/.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Aarhus University, 1981.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In 18th Symposium on the
Foundations of Computer Science, pages 46–57. ACM, November 1977.

[SS71] Dana Scott and Christopher Strachey. Towards a mathematical semantics for
computer language. Technical Report PRG-6, Oxford Programming Research
Group Technical Monograph, 1971.

[Sys12] OMG Systems Modeling Language (OMG SysMLTM). Tech-
nical Report Version 1.3, SysML Modelling team, June 2012.
http://www.omg.org/spec/SysML/1.3/.

[Tho13] Haydn Thompson, editor. Cyber-Physical Systems: Uplifting Europe’s Inno-
vation Capacity. European Commission Unit A3 - DG CONNECT, December
2013.

[UPL06] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing. Technical Report 04/2006, Department of Computer
Science, University of Waikato, Hamilton, New Zealand, 2006.

[vA10] Job van Amerongen. Dynamical Systems for Creative Technology. Controllab
Products, Enschede, Netherlands, 2010.

[WG-92] RTCA SC-167/EUROCAE WG-12. Software Considerations in Airborne
Systems and Equipment Certification. Technical Report RTCA/DO-178B,
RTCA Inc, 1140 Connecticut Avenue, N.W., Suite 1020, Washington, D.C.
20036, December 1992.

[WGS+14] Stefan Wiesner, Christian Gorldt, Mathias Soeken, Klaus-Dieter Thoben,
and Rolf Drechsler. Requirements engineering for cyber-physical systems -
challenges in the context of "industrie 4.0". volume 438 of IFIP Advances in
Information and Communication Technology, pages 281–288. Springer, 2014.

56

D3.2a - Method Guidelines 2 (Public)

A Glossary

20-sim The 20-sim tool can represent continuous time models in a number of ways. The
core concept is that of connected blocks.

Abstraction Models may be abstract “in the sense that aspects of the product not
relevant to the analysis in hand are not included” [FL98]. CPS models may rea-
sonably contain multiple levels of abstraction, for representing views of individual
constituent systems and for the view of the CPS level. Adapted from [HIL+14].

Architecture The term architecture has many different definitions, and range in scope
depending upon the scale of the product being ‘architected’. In the INTO-CPS
project, we use the simple definition from [PHP+14]: “an architecture defines the
major elements of a system, identifies the relationships and interactions between the
elements and takes into account process. An architecture involves both a definition
of structure and behaviour. Importantly, architectures are not static but must
evolve over time to reflect the change in a system as it evolves to meet changes to
its requirements.”

Architecture Diagram In the INTO-CPS project, a diagram refers to the symbolic
representation of information contained in a model.

Architectural Framework “A defined set of viewpoints and an ontology” and “is used
to structure an architecture from the point of view of a specific industry, stakeholder
role set, or organisation. [HIL+14]. [HIL+14].

Architecture Structure Diagram (ASD) The INTO-CPS SysML profile ASDs spe-
cialise SysML block definition diagrams to support the specification of a system
architecture described in terms of a system’s components.

Architecture View “work product expressing the architecture of a system from the
perspective of specific system concerns” [PHP+14].

Bond graph Bond graphs offer a domain-independent description of a physical system’s
dynamics, realised as a directed graph. The vertices of these graphs are idealised
descriptions of physical phenomena, with their edges (bonds) describing energy
exchange between vertices.

Co-model “The term co-model is used to denote a model comprising a DE model, a
CT model and a contract” [BFG+12]. A related term multi-model is a model
comprising any combination of constituent DE and CT models.

Code generation Transformation of a model into generated code suitable for compila-
tion into one or more target languages (e.g. C or Java).

Collaborative simulation (co-simulation) The simultaneous, collaborative, execu-
tion of models and allowing information to be shared between them. The models
may be CT-only, DE-only or a combination of both.

Co-simulation Configuration The configuration that the COE needs to initialise a
co-simulation. It contains paths to all FMUs, their inter connection, parameters
and step size configuration. When this is combined with a start and end time, a
co-simulation can be performed.

57

D3.2a - Method Guidelines 2 (Public)

Co-simulation Orchestration Engine (COE) The Co-simulation Orchestration En-
gine combines existing co-simulation solutions (FMUs) and scales them to the CPS
level, allowing CPS co-models to be evaluated through co-simulation. The COE will
also allow real software and physical elements to participate in co-simulation along-
side models, enabling both Hardware-in-the-Loop (HiL) and Software-in-the-Loop
(SiL) simulation.

Component The constituent elements of a system.

Connections Diagram (CD) The INTO-CPS SysML profile CDs specialise SysML
internal block diagrams to convey the internal configuration of the system’s com-
ponents and the way they are connected.

Constituent Model A constituent model comprising a multi-model.

Continuous Time (CT) model A model with state that can be changed and observed
continuously [vA10], and are described using either explicit continuous functions of
time either implicitly as a solution of differential equations.

Context In requirements engineering, a context is the point of view of some system
component or domain, or interested stakeholder.

Cyber Physical System (CPS) Cyber-Physical Systems “refer to ICT systems (sens-
ing, actuating, computing, communication, etc.) embedded in physical objects,
interconnected (including through the Internet) and providing citizens and busi-
nesses with a wide range of innovative applications and services” [Tho13, DAB+15].

Discrete Event (DE) model A model with state that can be changed and observed
only at fixed, discrete, time intervals [vA10].

Denotational Semantics Where an operational semantics defines how a program is
executed, a denotational approach defines a language in terms of denotations, in
the form of abstract mathematical objects, which represent the semantic function
that maps over the inputs and outputs of a program [SS71].

Design Alternatives Where two or more models represent different possible solutions
to the same problem. Each choice involves making a selection from alternatives on
the basis of criteria that are important to the developer, such as cost or performance.
The alternative selected at each point constrains the range of design alternatives
that may be viable next steps forward from the current position.

Design Architecture The design architectural model of the system is effectively a
multi-model. The INTO-CPS SysML profile [APCB15] is designed to enable the
specification of CPS design architectures, which emphasises a decomposition of a
system into subsystems , where each subsystem is modelled separately in isolation
using a special notation and tool designed for the domain of the subsystem.

Design Parameter A design parameter is a property of a model that can be used to
affect the model’s behaviour, but that remains constant during a given simula-
tion [BFG+12].

Design Space “The design space is the set of possible solutions for a given design prob-
lem” [BFG+12].

58

D3.2a - Method Guidelines 2 (Public)

Design-Space Exploration (DSE) “an activity undertaken by one or more engineers
in which they build and evaluate co-models in order to reach a design from a set of
requirements” [BFG+12].

Effort and Flow The energy exchanged in 20-sim is the product of effort and flow,
which map to different concepts in different domains, for example voltage and cur-
rent in the electrical domain.

Environment A system’s environment is everything outside of the system. The be-
haviour exhibited by the environment is beyond the direct control of the devel-
oper [BFG+12].

Evolution This refers to the ability of a system to benefit from a varying number of
alternative system components and relations, as well as its ability to gain from the
adjustments of the individual components’ capabilities over time (Adjusted from
SoS [NLF+13]).

Functional Mockup Interface (FMI) The Functional Mock-up Interface (FMI) is a
tool independent standard to support both model exchange and co-simulation of
dynamic models using a combination of XML-files and compiled C-code [Blo14].

Functional Mockup Unit (FMU) Component that implements FMI is a Functional
Mockup Unit (FMU) [Blo14].

Hardware-in-the-Loop (HiL) Testing In HiL there is (target) hardware involved,
thus the FMU representing the hardware in a co-simulation is mainly a wrapper
that interacts (timed) with this hardware; it is perceivable that realisation heavily
depends on hardware interfaces and timing properties.

Holistic Architecture The aim of a holistic architecture is to identify the main units
of functionality of the system reflecting the terminology and structure of the domain
of application. It describes a conceptual model that highlights the main units of the
system architecture and the way these units are connected with each other, taking
a holistic view of the overall system.

Hybrid-CSP This is a continuous version of CSP defined originally by He Jifeng [Jif94].
It will be used as a basis to inform the design of INTO-CSP.

Hybrid Model A model which contains both DE and CT elements.

Interface “Defines the boundary across which two entities meet and communicate with
each other” [HIL+14]. Interfaces may describe both digital and physical interactions:
digital interfaces contain descriptions of operations and attributes that are provided
and required by components. Physical interfaces describe the flow of physical matter
(for example fluid and electrical power) between components.

INTO-CPS Application The INTO-CPS Application is a front-end to the INTO-CPS
tool chain. The application allows the specification of the co-simulation configura-
tion to be orchestrated by the COE, and the co-simulation execution itself. The
application also provides access to features of the tool chain without an existing
user interface (such as design space exploration and model checking).

INTO-CPS tool chain The INTO-CPS tool chain is a collection of software tools,

59

D3.2a - Method Guidelines 2 (Public)

based centrally around FMI-compatible co-simulation, that supports the collabora-
tive development of CPSs.

INTO-CSP A version of CSP, which will be used to provide a model for the SysML-FMI
profile, FMI, VDM-RT and Modelica semantics. It is a front end for a UTP theory
of reactive concurrent continuous systems customised for the needs of INTO-CPS.

Master Algorithm A Master Algorithm (MA) controls the data exchange between
FMUs and the synchronisation of all simulation solvers [Blo14].

Model A potentially partial and abstract description of a system, limited to those com-
ponents and properties of the system that are pertinent to the current goal [HIL+14].
“A model is a simplified description of a system, just complex enough to describe or
study the phenomena that are relevant for our problem context” [vA10]. A model
“may contain representations of the system, environment and stimuli” [FLV14]

Model Checking (MC) An analysis technique that exhaustively checks whether the
model of the system meets its specification [CGP99], which is typically expressed in
some temporal logic such as Linear Time Logic (LTL) [Pnu77] orComputation
Tree Logic (CTL) [CE81].

Model Description The model description file is an XML file that supplies a descrip-
tion of all properties of a model (for example input/output variables) [Blo14].

Model-in-the-Loop (MiL) Testing in MiL the test object of the test execution is a
(design) model, represented by one or more FMUs. This is similar to the SiL (if e.g.,
the SUT is generated from the design model), but MiL can also imply that running
the SUT-FMU has a representation on model level; e.g., a playback functionality
in the modelling tool could some day be used to visualise a test run.

Modelling “The activity of creating models” [FLV14]. See also co-modelling and
multi-modelling.

Modelica Modelica is an “object-oriented language for modelling of large, complex,
and heterogeneous physical systems” [FE98]. Modelica models are described by
schematics , also called object diagrams , which consist of connected compo-
nents. Components are connected by ports and are defined by sub components or
a textual description in the Modelica language.

Multi-model “A model comprising multiple constituent DE and CT models”.

Non-functional Property Non-functional properties (NFPs) pertain to characteristics
other than functional correctness. For example, reliability, availability, safety and
performance of specific functions or services are NFPs that are quantifiable. Other
NFPs may be more difficult to measure [PF10].

Objective Criteria or constraints that are important to the developer, such as cost or
performance

Port 20-sim blocks may have input and output ports that allow data to be passed be-
tween them. In SysML, blocks own ports — the points of interaction between
blocks.

60

D3.2a - Method Guidelines 2 (Public)

Proof The process of showing how the validity of one statement is derived from others
by applying justified rules of inference [BFL+94].

Provenance “Provenance is information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments about
its quality, reliability or trustworthiness.” [MG13].

Refinement Refinement is a verification and formal development technique pioneered
by [BW98] and [Mor90]. It is based on a behaviour preserving relation that allows
the transformation of an abstract specification into more and more concrete models,
potentially leading to an implementation.

Requirement A requirement is a statement of need and may impose restrictions, define
system capabilities or identify qualities of a system and should indicate some value
or use for the different stockholders of a CPS.

Requirements Engineering (RE) The process of the specification and documentation
of requirements placed upon a CPS.

Semantics Describes the meaning of a (grammatically correct) language [NN92].

Software-in-the-Loop (SiL) Testing In SiL testing the object of the test execution
is an FMU that contains a software implementation of (parts of) the system. It
can be compiled and run on the same machine that the COE runs on and has no
(defined) interaction other than the FMU-interface.

Structural Operational Semantics (SOS) Describes how the individual steps of a
program are executed on an abstract machine [Plo81]. An SOS definition is akin to
an interpreter in that it provides the meaning of the language in terms of relations
between beginning and end states. The relations are defined on a per-construct
basis. Accompanying the relations are a collection of semantic rules which describe
how the end states are achieved.

SysML The systems modelling language (SysML) [Sys12] extends a subset of the Unified
Modelling language (UML) to support modelling of heterogeneous systems.

System “A combination of interacting elements organized to achieve one or more stated
purposes” [INC15].

System boundary The system boundary is the common frontier between the system
and its environment. System boundary definition is application-specific [BFG+12].

System of Systems (SoS) “A System of Systems (SoS) is a collection of constituent
systems that pool their resources and capabilities together to create a new, more
complex system which offers more functionality and performance than simply the
sum of the constituent systems” [HIL+14]. CPSs may exhibit the characteristics of
SoSs.

System Under Test “The system currently being tested for correct behaviour. An alias
for system of interest, from the point of view of the tester. The same concept can
be extended from systems engineering to SoS engineering, changing the focus from
a single system of interest to an SoS under test.
The system of systems currently being tested for correct behaviour” [HIL+14].

61

D3.2a - Method Guidelines 2 (Public)

Test Automation Test Automation (TA) is defined as the machine assisted automation
of system tests. In INTO-CPS we concentrate on various forms of model-based
testing, centering on testing system models against their requirements.

Test Case A finite structure of input and expected output [UPL06].

Test model Specifies the expected behaviour of a system under test. Note that a test
model can be different from a design model. It might only describe a part of a
system under test that is to be tested and it can describe the system on a different
level of abstraction [CMC+13].

Test procedures Detailed instructions for the set-up and execution of a set of test cases,
and instructions for the evaluation of results of executing the test cases [WG-92,
CMC+13].

Test suite A collection of test procedures.

Traceability The association of one model element (e.g. requirements, design artefacts,
activities, software code or hardware) to another. Requirements traceability
“refers to the ability to describe and follow the life of a requirement, in both a
forwards and backwards direction” [GF94].

Unifying Theories of Programming (UTP) The Unifying Theories of Programming
(UTP) [HJ98] is a technique to for describing language semantics in a unified
framework. A theory of a language is composed of an alphabet , a signature and
a collection of healthiness conditions .

Variable A variable is feature of a model that may change during a given simula-
tion [BFG+12].

VDM-RT VDM-RT is based upon the object-oriented paradigm where a model is
comprised of one or more objects . An object is an instance of a class where a
class gives a definition of zero or more instance variables and operations an
object will contain. Instance variables define the identifiers and types of the data
stored within an object, while operations define the behaviours of the object.

Workflow A sequence of activities performed to aid in modelling. A workflow has
a defined purpose, and may cover a subset of the CPS engineering development
lifecycle.

62

D3.2a - Method Guidelines 2 (Public)

B Ether Class Listing

This section gives a listing for the Ether class described in Section 7. An example multi-
model built using this class, called Case Study: Ether, is available from the INTO-CPS
Application and is described in the Examples Compendium, Deliverable D3.5 [PGP+16].

Listing 1: Ether class�
class Ether

types

public Id = seq of char

instance variables

-- thread period
private period: nat := 1E9;

-- access shared variables
incoming: map Id to StringPort;
outboxes: map Id to seq of seq of char;
outgoing: map Id to StringPort;
connects: set of (Id * Id);
inv forall mk_(i,o) in set connects &

(i in set dom incoming and
o in set dom outgoing);

operations

-- constructor for Ether
public Ether: nat1 * map Id to StringPort * map Id to StringPort *

set of (Id * Id) ==> Ether
Ether(p,ins ,outs ,c) == (

period := frequency_to_period(p);
incoming := ins;
outgoing := outs;
connects := c;
outboxes := {id |-> [] | id in set dom outs}

)
pre forall mk_(i,o) in set c &

(i in set dom ins and
o in set dom outs);

-- constructor for Ether (100Hz)
public Ether: map Id to StringPort * map Id to StringPort *

set of (Id * Id) ==> Ether
Ether(ins ,outs ,c) ==

Ether (100,ins ,outs ,c)
pre forall mk_(i,o) in set c &

(i in set dom ins and
o in set dom outs);

operations

-- send counter out and increase counter
private Step: () ==>()
Step() == cycles (2)
(

-- gather inputs in outboxes
for all mk_(i,o) in set connects do (

let x = incoming(i). getValue () in (
outboxes(o) := outboxes(o) ^ [x];

)
);

-- flush outboxes
for all i in set dom outboxes do (

if len outboxes(i) > 1 then (

63

D3.2a - Method Guidelines 2 (Public)

outgoing(i). setValue(
seq_of_seq_of_char2seq_of_char(outboxes(i))

);

-- debug
IO‘printf("ETHER.FMU: Passed %s to %s at %s\n",

[outgoing(i). getValue(), i, time/1e9]);

outboxes(i) := []
)

);
);

private seq_of_seq_of_char2seq_of_char: seq of seq of char ==>
seq of char

seq_of_seq_of_char2seq_of_char(ss) == (
dcl outstr: seq of char := "[";
for all i in set inds ss do

if len ss(i) > 0 then outstr := outstr ^ ss(i) ^ [’,’];
outstr(len outstr) := ’]’;
return outstr

);

-- run as a periodic thread
thread periodic(period , 0 ,0, 0)(Step);

functions

-- convert frequency to period in nanoseconds
private frequency_to_period: real -> nat
frequency_to_period(f) == floor 1E9/f

end Ether
� �

64

	Introduction
	Overview of Sections
	Differences over the Previous Version

	Concepts and Terminology
	Systems
	Models
	Tools
	Analysis
	Existing Tools and Languages
	Formalisms

	Workflows
	Workflow Activities
	Activities Covered in this Document
	Getting Started

	Requirements Engineering
	Requirements Engineering and Cyber Physical Systems
	Applying SoS-ACRE in the INTO-CPS Tool Chain

	SysML and Multi-modelling
	Initial Multi-modelling
	The DE-first Approach
	DE-first within INTO-CPS
	FMU Creation

	Modelling Networks in Multi-models
	Representing VDM Values as Strings
	Using the Ether FMU
	Consequences of Using the Ether
	Modelling True Message Passing and Quality of Service

	Design Space Exploration
	Guidelines for Designing DSE in SysML
	An Approach to Effective DSE

	Forward Look
	Glossary
	Ether Class Listing

