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Abstract

The objective of Task T2.4 is to provide formal foundations for co-
modelling with the Functional Mockup Interface (FMI). In Year 2, we
have created the first behavioural semantics for the FMI standard. We
use the state-rich process algebra, Circus, to present our modelling ap-
proach, and indicate how models can be automatically generated from
a description of the individual simulations and their dependencies. We
illustrate the work using three algorithms for orchestration. A state-
less version of the models can be verified using model checking via
translation to CSP. With that, we can prove important properties of
these algorithms, like termination and determinism, for example. We
also show that the example provided in the FMI standard is not a
valid algorithm.
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Objectives for Task T2.4

The overall objective for the task is to provide formal foundations for co-
modelling with FMI. The objectives in Year 2 were to define an INTO-CPS
FMI-based semantics for a collection of models connected as a graph of de-
pendencies described in SysML.

1 Introduction

The Functional Mock-up Interface (FMI) [13] is an industry standard for
co-simulation: collaborative simulation of separately developed models. It
has been applied across a variety of domains, including automotive, en-
ergy, aerospace, and real-time systems integration. To ensure the stan-
dard’s growth, there is a formal development process; dozens of tools support
FMI.

An FMI co-simulation [5] is organised around black-box slave FMUs (Func-
tional Mockup Units): effectively, wrappings of models that are intercon-
nected through their inputs and outputs. FMUs are passive entities whose
simulation is triggered and orchestrated by a master algorithm. A simula-
tion is divided into steps that serve as synchronisation and data exchange
points; between these steps, the FMUs are simulated independently. The
master algorithm communicates with the FMUs via a number of functions
that compose the FMI API.

Here, we present the first behavioural formal semantics for FMI-based co-
simulations. We use Circus [22], a state-rich process algebra that combines
Z [27] for data modelling and CSP [24] for behavioural specification. We
characterise formally master algorithms and FMUs that make appropriate
use of the FMI API. These abstract models of a co-simulation can be auto-
matically generated from the number of FMUs, their inputs and outputs and
dependencies.

The general models can be used to verify specific master algorithms and the
adequacy of simulation models for FMUs. We have verified a classic algo-
rithm from the FMI standard for Simulink [20], and a more robust algorithm
that caters for FMU failures [5, p.106]. This revealed that the example in
the standard implicitly assumes that FMUs do not raise fatal errors; it is not
a valid algorithm. Indeed, the standard does point out that error handling
is implemented in a very rudimentary way; however, it is the only example

6



D2.2d - Foundations for FMI (Public)

of a master algorithm in the standard.

Circus models, with abstracted state, can be translated to CSP and ver-
ified using the FDR3 model checker [17]. We prove important properties
discussed in the FMI literature, like termination and determinism using the
FDR3 model checker. Richer models can be verified using a Circus theorem
prover [15]. Given a choice of master algorithm and formal models of the
FMUs, our work can also be used to prove properties of an overall system
described by the separate simulations. Circus can currently cater only for
discrete-time models. On the other hand, a continuous time extension of Cir-
cus that can be used to give semantics to continuous-systems simulations [14]
is under development.

Broman [5] has presented the most influential formalisation of FMI to date:
a state-based model of the three main API functions that set and get FMU
variables and trigger a simulation step with two master algorithms and a
proof of core properties. Our model of a co-simulation also has its interface
defined by the interactions corresponding to the simulation steps and the
exchange of data associated with them. Our behavioural model covers a
large portion of the FMI API, defining valid patterns for its usage and error
treatment.

Sections 2 and 3 describe FMI for co-simulation and Circus. Section 4 de-
scribes the Circus semantics of FMI. The specification and verification of
master algorithms and co-simulations is discussed in Section 5. Section 6
presents our conclusions. Three appendices contain working code for our CSP
models: Appendix A describes the CSP model of an FMI master algorithm;
Appendix B describes the CSP model of a data-flow machine implemented
in the FMI architecture (see p. 24); and Appendix C describes the CSP code
for an FMI mode of a periodic discrete signal generator taken from [6] (see
page 19). All three models are accepted and analysed by FDR 3.4.0.

2 FMI

Modelling and simulating cyber-physical systems (CPSs) [11] involves differ-
ent engineering fields: a global system with components tackled by domain
engineers using specialised tools. Co-simulation [19] involves tool interoper-
ability for modelling and simulating heterogeneous components. Each model
can make use of the tool and notation that is most appropriate for the task
at hand. FMI avoids the need for tool-specific integration, by exchanging
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dynamic models, co-simulating heterogeneous models, and protecting intel-
lectual property. We deal with co-simulation, but we can also reason about
simulations with model exchange [3].

A master algorithm orchestrates a collection of FMUs that may be stand-
alone, containing runnable code, or be coupled, in which case it contains
a wrapper to a simulation tool. Like FMI, our model is agnostic to the
particular realisation of an FMU, and does not cover any communication
infrastructure that may be in place to support distributed co-simulation. We
assume that communication between the master algorithm and the various
FMUs is reliable.

When the co-simulation is started, the models of the FMUs are solved inde-
pendently between two discrete communication points defined by a step. For
that, the master algorithm reads the outputs of the FMUs, sets their inputs,
and then waits for all FMUs to simulate up to the defined communication
point, before advancing the simulation time. Master algorithms differ in
their approach to handling the definition of the step sizes and any simulation
errors.

Although the FMI standard does not specify any particular master algo-
rithms, or the technology for development of FMUs, it specifies an API that
can be used to orchestrate the various simulations. Restrictions on the use of
the API functions specify, indirectly and informally, how a master algorithm
can be defined and how an FMU may respond. Our model captures a sig-
nificant subset of the FMI API, and defines formally validity for algorithms
and FMUs.

3 Circus

The main construct of Circus is a process, used to specify a system and its
components. Processes communicate with each other via channels. Com-
munications are instantaneous and synchronous events. A process can have
a state, defined using a Z schema, and a behaviour, defined using an ac-
tion. The specification of an action can combine Z schemas that specify data
operations over the state and CSP constructs.

To illustrate Circus, Fig. 1 presents the model of a Timer from a valid
master algorithm. Timer takes as parameters the current time ct , the step
size hc, and the end time tN of the simulation. Although it is possible to
set up experiments without an end time, we restrict ourselves to experiments
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channel : setT : TIME ;
updateSS : NZTIME ;
step : TIME × NZTIME ;
end

process Timer =̂ ct , hc, tN : TIME • begin
state State == [currentTime, stepSize : TIME ]
Step =

setT?t : t ≤ tN −→ currentTime := t ; Step
@
updateSS?ss −→ stepSize := ss ; Step
@
step!currentTime!stepSize−→

currentTime := currentTime + stepSize; Step
@
currentTime = tN N end −→ Stop

• currentTime, stepSize := ct , hc; Step
end

Figure 1: Circus specification of a Timer process

that are time bounded. It is not clear what is the practical use of non-
terminating experiments (as opposed, of course, to non-terminating control
systems themselves).

Timer ’s state contains two components: currentTime and stepSize. Its be-
haviour is defined by the action at the end. After initialising currentTime
and stepSize using ct and hc, it calls the local action Step. It takes inputs on
channels setT and updateSS to update the current time and step size. The
channel declarations define the type of the values that can be communicated
through them: TIME is the set of natural numbers, and NZTIME excludes 0.
Step sizes cannot be 0. It uses a channel step to output the current time and
step size. After a communication on step, the current time is advanced to
the next simulation step; at the end of the experiment (currentTime = tN ),
it synchronises on end .

The action Step offers communications on the above channels in external
choice (@). The time t input through setT cannot exceed the end time
tN of the simulation. The offer of synchronisation on end is guarded by
currentTime = tN and only becomes available if this condition holds. After
the event end , the timer deadlocks: behaves like the action Stop.
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Processes can also be defined by combination of other processes. For exam-
ple, the specification of the process TimedInteractions below combines three
processes Timer , endSimulation and Interaction.

TimedInteractions =̂ t0, tN : TIME • (Timer(t0, 1, tN )4 endSimulation)
J{| step, end , setT , updateSS , endsimulation |}K

Interaction


\{| step, end , setT , updateSS |}

TimedInteractions has two parameters: a start and an end time t0 and tN .
It uses Timer defined above with arguments t0, 1, and tN . Timer can be
interrupted (4) by the process endSimulation. It, however, runs in paral-
lel (J K) with the process Interaction. They synchronise on communications
on step, end , setT , updateSS , and endsimulation, but otherwise proceed
independently. The process that results from the parallelism hides (\) com-
munications on step, end , setT , and updateSS , which are used just internally
by Timer and Interaction.

A complete account of Circus can be found in [9]. We explain any extra
notation not explained here as needed.

4 A Model of FMI

The FMI API consists of functions used by the master algorithm to orches-
trate the FMUs. In our model, these functions are defined as channels whose
types correspond to the input and output types of the functions; see Ta-
ble 1.

We use the given type FMI 2COMP to represent an instance of an FMU.
In FMI, these are pointers to an FMU-specific structure that contains the
information needed to simulate it. Here, we use identifiers for such compo-
nents.

Valid variable names and values are represented by the sets VAR and VAL.
We do not model the FMI type system, which includes reals, integers, booleans,
characters, strings, and bytes; however, it is not difficult to cater for this
type system. Extensions to the type system are expected in future versions
of FMI.

The type FMI 2ST contains flags of the FMI type fmi2Status that are re-
turned by the API functions. We include fmi2OK, fmi2Error, and fmi2Fatal,
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fmi2Get FMI 2COMP .VAR.VAL.FMI 2ST
fmi2Set FMI 2COMP .VAR.VAL.FMI 2STF
fmi2DoStep FMI 2COMP .TIME .NZTIME .FMI 2STF
fmi2Instantiate FMI 2COMP .Bool
fmi2SetUpExperiment FMI 2COMP .TIME .Bool .TIME .FMI 2ST
fmi2EnterInitializationMode FMI 2COMP .FMI 2ST
fmi2ExitInitializationMode FMI 2COMP .FMI 2ST
fmi2GetBooleanStatusfmi2Terminated FMI 2COMP .Bool .FMI 2ST
fmi2GetMaxStepSize FMI 2COMP .TIME .FMI 2ST
fmi2Terminate FMI 2COMP .FMI 2ST
fmi2FreeInstance FMI 2COMP .FMI 2ST
fmi2GetFMUState FMI 2COMP .FMUSTATE .FMI 2ST
fmi2SetFMUState FMI 2COMP .FMUSTATE .FMI 2ST

Table 1: Channels that model FMI API functions

which indicate, respectively, that all is well, the FMU encountered an er-
ror, and the computations are irreparable for all FMUs. The extra flag
fmi2Discard is also included in the superset FMI 2STF ; it can only be re-
turned by fmi2Set and fmi2DoStep. fmi2Set indicates that a status cannot
be returned, and in the case of fmi2DoStep that a smaller step size is re-
quired or the requested information cannot be returned. We do not include
fmi2Warning, used for logging, and fmi2Pending, used for asynchronous
simulation steps.

Our model only captures the discrete observations of the simulation steps
and their associated data exchanges. It is compatible with the view of a
co-simulation as a sequence of discrete steps that define points for synchro-
nisation and exchange of data.

FMUSTATE contains values that represent an internal state of an FMU. It
comprises all values (of parameters, inputs, buffers, and so on) needed to
continue a simulation. It can be recorded by a master algorithm to support
rollback.

The signature of the channels impose restrictions on the use of the API. It
is not possible to call fmi2DoStep with a non-positive step size. Given a
particular configuration of FMUs, we can define the types of the fmi2Get

and fmi2Set channels so that setting or getting a variable that is not in the
given FMU is undefined. Without this fine tuning, such attempts lead to
deadlocks in our model: a check for deadlock freedom ensures the absence of
such problems. The API actually includes specialised fmi2Get and fmi2Set

functions for each data type available. As already said, we do not cater for
the FMI type system.
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Cosimulation

MAlgorithm

FMIWrapper

FMUInterface(1) FMUInterface(2) FMUInterface(3)

endsimulation,fmi2∗
fmi2Set , fmi2Get , fmi2DoStep

Figure 2: Structure of a co-simulation model

The function fmi2Instantiate returns a pointer to a component, and null
if the instantiation fails. Since we do not model pointers, we use a boolean
to cater for the possibility of failure. The function fmi2GetMaxStepSize

is not part of the standard; we use it to implement the rollback algorithm
in [5].

The overall structure of our models of a co-simulation is shown in Fig. 2.
The visible channels are fmi2Get, fmi2Set, and fmi2DoStep. So, we can
use our model to verify properties of co-simulations that can be described in
terms of these interactions, and involving variables from any of the FMUs
involved.

The other channels enforce the expected control flow of a master algorithm.
They are used for communication between the process MAlgorithm that mod-
els a master algorithm and each process FMUInterface(i) that models the
FMU identified by i . We call FMIWrapper the collection of FMU inter-
faces: they execute independently in parallel, that is, in interleaving.

The control channel endsimulation is used to shutdown the simulation. Since
an FMU may fail, its termination may not be carried out gracefully (with
fmi2Terminate and fmi2FreeInstance). So, endsimulation is used to in-
dicate the end of the experiment in all cases and shutdown the model pro-
cesses.
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In what follows, we describe our specifications of MAlgorithm (Section 4.1)
and FMUInterface (Section 4.2), which provide a correctness criterion for
these components. In Section 4.3, we describe how to construct models of
specific FMUs. Applications of our models are described in Section 5.

4.1 Master algorithms

A master algorithm is a monolithic program that defines the connections be-
tween the FMUs and the time of the simulation steps, and handles any errors
raised by an FMU. In our model, we consider each of these aspects of a mas-
ter algorithm separately. The overall structure of the proposed MAlgorithm
process is described in Fig. 3. It provides a general characterisation of the
valid history of interactions of a master algorithm. It does not commit to
specific policies to define step sizes and error handling in case an API func-
tion returns fmi2Discard. The treatment of fmi2Error and fmi2Fatal is
restricted by the standard.

MAlgorithm has three main components described next. TimedInteractions
specifies the co-simulation steps and orchestration of the FMUs. FMUStates-
Manager controls access to the internal state of the FMUs. ErrorHandler
monitors the occurrence of an fmi2Error or fmi2Fatal from the API func-
tions.

TimedInteractions has two components. Timer is presented in Section 3.
It uses step and end to drive the Interaction process, which defines the
orchestration of the FMUs. This is the core process that restricts the order
in which the API functions can be used.Timer also exposes channels setT
and updateSS to allow Interaction to define algorithms will rollback or a
variable step size. The timer can be terminated by the signal endsimulation
raised by Interaction.

The structure of Interaction is the sequential composition of Instantiation,
InstantiationMode, InitializationMode, and slaveInitialized , which correspond
to states that define the stages of a co-simulation [13, p.103]. The defini-
tions of these processes depend on the configuration of the FMUs. Given
such a configuration, they can be automatically generated as indicated be-
low. A configuration is characterised by a sequence of FMU identifiers
(FMUs : seqFMI 2COMP), and sequences that define the parameters and
their values (parameters : seq(FMI 2COMP × VAR × VAL)), inputs and
their initial values (inputs : seq(FMI 2COMP × VAR × VAL)), outputs
(outputs : seq(FMI 2COMP ×VAR)), and an input/output port dependency

13
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ErrorHandler

ErrorMonitor FatalErrorMonitor

4 ErrorManager

FMUStatesManager
fmi2GetFMUState

fmi2SetFMUState

Timer 4 endSimulation Interaction
fmi2.∗

TimedInteraction

error

fmi2∗
endsimulation

step, end ,SetT
updateSS

endsimulation

endsimulation

fmi2∗, endsimulation

Figure 3: Structure of a model of a master algorithm

graph [5] pdg . Some of this information is also needed to generate automat-
ically a sketch of the models of the FMUs (see Section 4.3).

The port dependency graph pdg is a relation between outputs and inputs
defined by a pair of type FMI 2COMP × VAR. The graph establishes how
the inputs of each of the FMUs depend on the outputs of the others. It
must be acyclic, and this can be automatically checked using the CSP model
checker. Using the port dependency graph, once we retrieve the outputs, via
the fmi2Get function, we know how to provide the inputs, via the fmi2Set

function.

Instantiation, defined below, instantiates the FMUs. It is an iterated sequen-
tial composition (;) of actions fmi2Instantiate.i?sc −→ Skip, where i comes
from FMUs and Skip is the action that terminates immediately.

; i : FMUs • fmi2Instantiate.i?sc −→ Skip
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Our model is restrictive: it is valid to instantiate the FMUs in any order, and
so we can have the events fmi2Instantiate.i?sc in interleaving. Accommodat-
ing this flexibility is a simple change from an iterated sequence to an iterated
interleaving, but our model captures good practice: handling all FMUs in a
specific order.

InstantiationMode and InitializationMode allow the setting up of parameters
and initial values of inputs before calling the API function that signals the
start of the next phase. We show below InitializationMode. For an element
inp of inputs , we use projection functions FMU , name and val to get its
components.

(; inp : inputs • fmi2Set !(FMU inp)!(name inp)!(val inp)?st −→ Skip);
(; i : FMUs • fmi2ExitInitializationMode!i?st −→ Skip)

We can easily generalise the model to allow an interleaving of the events
involved. The value of such a generalisation, however, is unclear (and it
harms the possibility of automated verification via model checking).

The process slaveInitialized is sketched in Fig. 4; it is driven by the Timer .
Its state contains a component rinps : a function that records, for each FMU
identifier a function from the names of its inputs to values. This function
is defined by taking the value of each output from the FMUs, and updating
rinps to record that value for the inputs associated with the output in the
port dependency graph. If the Timer signals the end, slaveInitialized finishes.
Otherwise, it collects the outputs, distributes the inputs, and carries out a
step.

Similarly to that of InitializationMode, the definition of TakeOutputs uses an
iterated sequence, now over outputs : the sequence of pairs that identify an
FMU and an output name. Once the value v of an output out is obtained, it is
assigned to each input inp in the sequence pdf (out) associated with out in the
port dependency graph pdg . We use ⊕ to denote function overriding.

DistributeInputs uses inp to set the inputs of the FMUs using fmi2Set . Step
proceeds with the calls to fmi2DoStep and if all goes well, recurses back
to the Main action of slaveInitialized . Their definitions are omitted for
brevity.

FMUStatesManager controls the use of the functions fmi2GetFMUState and
fmi2SetFMUState for each of the FMUs. It is an interleaving of instances
of the process FMUStateManager(i) in Fig. 5 for each of the FMUs. Once
an FMU is instantiated, then it is possible to retrieve its state. After that,
both gets and sets are allowed. The actual values of the state are defined in
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process slaveInitialized =̂
state State == [rinps : FMI 2COMP 7→ (VAR 7→ VAL)]
· · ·
TakeOutputs =̂

; out : outputs • fmi2Get .(FMU out).(name out)?v−→
; inp : pdg(out) •
rinps := rinps ⊕ {(FMU inp) 7→

((rinps (FMU inp))⊕ {(name inp) 7→ v})}
Main =̂ end −→ Skip

@
step?t?hc −→ TakeOutputs ; DistributeInputs ; Step

• Main
end

Figure 4: Sketch of slaveInitialized

the FMUs, but recorded in the master algorithm via fmi2GetFMUState for
later use with fmi2SetFMUState as defined in FMUStateManager(i).

For complex internal states, model checking can become infeasible (although
we have managed it for simple examples). To carry out verifications that
are independent of the values of the internal state of the FMUs, we need to
adjust only this component. Some examples, explored in the next section,
are properties of algorithms that do not support retrieval and resetting of the
FMU states, determinism and termination of algorithms, and so on.

The ErrorHandler process contains two components: monitors for fmi2Error
and fmi2Fatal . If any of the API functions returns an error, they signal that
to the ErrorManager via a channel error . Upon an error, the ErrorManager
interrupts the main flow of execution. In the case of an fmi2Fatal error, the
simulation is stopped via endsimulation. In the case of an fmi2Error , a call
to fmi2FreeInstance is allowed, before the simulation is ended.

4.2 FMU interfaces

The model of a valid FMU is simpler. It captures the control flow of an
FMU, specifying, at each stage, the API functions to which it can respond.
Unsurprisingly, it has some of the restrictions of a master algorithm, but it
is much more lax, in that it captures just the expected capabilities of an
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process FMUStatesManager =̂ i : FMI 2COMP • begin

AllowAGet =̂ fmi2GetFMUState.i?s?st −→ AllowsGetsAndSets(s)

AllowsGetsAndSets =̂ s : FMUSTATE •
fmi2GetFMUState.i?t?st −→ AllowsGetsAndSets(t)
@
fmi2SetFMUState.i !s?st −→ AllowsGetsAndSets(s)

• fmi2Instantiate.i?b −→ AllowAGet

end

Figure 5: Model of FMUStateManager

FMU.

At first, the only API function that is available is fmi2Instantiate. The
simple action below specifies this behaviour.

Instantiation =

fmi2Instantiate.i?b −→


b N status := fmi2OK ; Instantiated
@
¬ b N status := fmi2Fatal ;

RUN (FMUAPI (i))


A state component status records the result of the last call to an API function.
In this case, it is updated based on the boolean b returned by fmi2Instantiate.
If the instantiation is successful, the behaviour is described by Instantiated ,
sketched below; otherwise, it is unrestricted: specified by RUN (FMUAPI (i)),
which allows the occurrence of any API functions, in any order.

Instantiated =
status = fmi2Fatal N RUN (FMUAPI (i))
@
status 6∈ {fmi2Error , fmi2Fatal}N

fmi2Get .i?n?v?st −→ status := st ; Instantiated
@
fmi2DoStep.i?t?hc?st −→ status := st ; Instantiated
@
· · ·


@
st 6= fmi2Fatal N fmi2FreeInstance!i?st −→ · · ·

17
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Again, if there is a fatal error, the behaviour is unrestricted. If there is no
error, all functions except fmi2Instantiate are available. Finally, if there
is a non-fatal error, only fmi2FreeInstance is possible.

While a pattern of calls is defined by a master algorithm, so that, for example,
all outputs are obtained before the inputs are distributed, the FMU is passive
and does not impose such a policy on its use. So, the various actions enforce
only the restrictions in the standard [13, p.105].

Although it is possible to specify a more restricted behaviour for FMUs,
such a specification rules out robust FMU implementations that handle calls
to the API functions that do not necessarily follow the strict pattern of a
co-simulation. Next, we describe how to generate FMU models that follow
a more restricted pattern that is adequate for use with valid master algo-
rithms.

InstantiationMode terminates immediately if there has been an error. Oth-
erwise, it permits the values of any variables of the FMU i to be set, and its
state to be retrieved and set until a call is made to fmi2SetUpExperiment.
After that, the action terminates, and the action Instantiated is called.We
assume here that any FMU can have its internal state set and retrieved.

The actions Instantiated , InitializationMode and slaveInitialized are simi-
lar.

The interrupting action Terminated is triggered by fmi2Terminate, but it
is available only if there has been no error. Otherwise, all actions, termi-
nate. If the error was not fatal, fmi2FreeInstance becomes the only available
function.

Terminated =
status 6∈ {fmi2Error , fmi2Fatal}N fmi2Terminate.i?st −→ Remove
@
status = fmi2Error N Remove

The simple action Remove offers fmi2FreeInstance. The signal endsimulation
terminates an FMU at any time.We are not imposing a restriction that after
a non-fatal error the FMU must be terminated. We consider the possibility
that the state of the FMU may have been retrieved and then reset.
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4.3 Specific FMU models

In the previous section, we have presented a general model for an FMU. The
particular model of an FMU depends, of course, on its functionality, and must
conform to (trace refine) our general model. This can be proved via model
checking for stateless models of FMUs that do not offer the facility to retrieve
and set its internal state. In this case, the models do not offer the choices
of communications fmi2GetFMUState.i?st and fmi2SetFMUState.i?st . The
availability of such facilities is defined by capability flags of the FMU.

We can, however, generate a sketch of the model of an FMU using information
about its structure: lists of parameters pi , inputs inpi , and outputs outi . This
information is used to construct a master algorithm (see Section 4.1). Fig. 6
on 62 shows the sketch of a Circus process with the FMU behaviour. Its
state includes components cpi , cinpi , and couti , besides the current and end
simulation time.

Its structure is similar to that of the Interaction process used to model a
master algorithm. In all cases, the interactions flag success (fmi2OK ). If
an FMU makes assumptions about its inputs, the possibility of error can
be modelled. For example, Instantiation indicates success, but to explore
the possibility of failure, we can define it as fmi2Instantiate.i?b −→ Skip.
The action UpdateState is left unspecified. It is this action that specifies
the functionality of the FMU. It can be automatically generated if there is
a more complete model of the FMU. For example, [8] shows the case if a
discrete-time Simulink model is available.

If the FMU supports retrieval and update of its state, we need to add the fol-
lowing choices to InstantiationMode, InitializationMode, and slaveInitialized .

· · ·
@
fmi2GetFMUState.i ! θ State!fmi2OK −→ · · ·
@
fmi2SetFMUState.i?s?st −→ θ State := s ; · · ·

Via fmi2GetFMUState, it outputs the whole state record, that is, θ State,
and via fmi2SetFMUState, we can update it.

If the state, either via setting of parameters and input or via an update,
may become invalid, we can flag fmi2Fatal and deadlock. For example, we
consider the test case shown in Fig. 7 on 63 taken from [6]. It has been
designed to show that components with discrete timed behaviour coordinate
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their representation of time. There are three main components: two periodic
discrete signal generators, both generating the same signal, one with period
one time unit and the other two time units; and a discrete sampler. The test
criterion is that the output of the Sampler should equal the output of the
second periodic discrete signal generator at all superdense times. There is an
implicit constraint that the period p should not be 0; therefore, we specify
its InstantiationMode action as follows.1

InstantiationMode =
fmi2Set .i .a?v !fmi2OK −→ a := v −→ InstantiationMode
@
fmi2Set .i .p?v !fmi2OK −→ p := v −→ InstantiationMode
@
p 6= 0 N fmi2SetUpExperiment .i?t0!true?tN !fmi2OK−→

currentTime, endTime := t0, tN ;
fmi2EnterInitializationMode.i !fmi2OK −→ Skip

@
p = 0 N fmi2SetUpExperiment .i?t0!true?tN !fmi2Fatal −→ Stop

In this case, if the experiment is set up when p is 0, we have a fatal error.

An FMU model generated as just explained trace refines FMUInterface(i).
This means that all possible histories of interactions of the FMU are pos-
sible for FMUInterface(i) and, therefore, valid according to that criterion.
We have proofs of refinement for all FMUs in Fig. 7 and for a data-flow
network.

5 Evaluation: Verification Applications

In this section, we show how we can use our formal semantics for FMI to ver-
ify master algorithms and to study system properties via their co-simulations.
For automation, our semantics can be translated from Circus to CSPM (the
input language for the model checker FDR3), using a strategy similar to
that of [21], so that it can be both model checked in FDR3 and executed
in ProBe (FDR’s process behaviour explorer), for suitably chosen model pa-
rameters.

1The full model is contained in Appendix C. The machine-readable code can be cut
and pasted into a file for input to FDR 3.4.0.
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5.1 Master algorithms

As well as giving a correctness criterion for a master algorithm, the model
presented in Section 4 gives an indication of how to construct models for
particular algorithms. We consider here three examples.

5.1.1 Classic brute-force

The simplest algorithm uses a fixed step size, has no access to the state of
the FMUs, and queries them for termination if fmi2Discard is flagged. To
model this algorithm, we define a process ClassicMAlgorithm with the same
structure shown in Fig. 3, but more specific components.

ClassicMAlgorithm uses a simple timer that does not use setT or updateSS .
For the FMUStatesManager , we use a simple process that just terminates
immediately. Finally, for Interaction, we use the parallel composition of
Interaction itself with a process DiscardMonitor , whose main action is Monitor
defined below, followed by an action Terminated that shuts down the FMUs.

Monitor =̂
fmi2DoStep?i?t?hc?st : st 6= fmi2Discard −→Monitor
@
fmi2DoStep?i?t?hc.fmi2Discard−→ fmi2GetBooleanStatusfmi2Terminated .i .true?st −→ ToDiscard

@
fmi2GetBooleanStatusfmi2Terminated .i .false?st −→Monitor


@
stepAnalysed −→Monitor @ step?t?hc −→Monitor
@
end −→ Skip

Monitor ignores all flags st returned by fmi2DoStep except fmi2Discard . If
this flag is returned, it queries the FMU using

fmi2GetBooleanStatusfmi2Terminated

If the FMU requests termination, Monitor behaves like ToDiscard whose
simple definition we omit. In ToDiscard , when completion of the step is
indicated via either a stepAnalysed or a step?t?hc event, the co-simulation
is terminated. The signal stepAnalysed is not part of the Interaction inter-
face, but is used to indicate that fmi2DoStep has been carried out for all
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FMUs, and we are now in a position to decide how to continue with the
co-simulation.

Since ClassicMAlgorithm has the same structure as MAlgorithm, we can
prove refinement by considering each of the components in isolation. While
proof of refinement by model checking for the whole model is not feasible,
it is feasible for the individual components. In the sequel, we use the same
approach to analyse more complex algorithms. It is also feasible to prove
that ClassicMAlgorithm terminates, but otherwise does not deadlock, and is
deterministic.

The example in the FMI standard is a classic algorithm with a fixed step
and handling of fmi2Discard, but does not include error management. So,
its specification does not include the ErrorHander and the ErrorManager .
Model checking can show that this is not a valid algorithm. A simple coun-
terexample shows that it continues and calls fmi2Instantiate a second time
even after the first call returns an fmi2Fatal flag. This is explicitly ruled
out in the standard.

5.1.2 Simulink

This is a widely used tool for simulation based on control law diagrams [20]. A
popular solver uses a variable-step policy based on change rate of the state.
To model this algorithm, we use a process SimulinkMAlgorithm, which is
similar to ClassicMAlgorithm, but has another monitor VaryStep, specified
in Fig. 8. It is composed in parallel with Interaction to define a process
VariableStepInteraction used in SimulinkMAlgorithm.

VaryStep takes as parameters a threshold for change and the initial value
of the step size initialSS . Taking a simple approach, we define a state that
records the old (oldOuts) and new (newOuts) values of the outputs, besides
the current step size currentSS . After the state is initialised (using the action
Init) to record undefined (ε) old values for the outputs, no new values (empty
function ∅), and the initial step size, the monitor steps by recording the new
output values (Monitor) and then changing the step size (Adjust). Adjust-
ment is based just on a comparison between the old and new values defined
by an (omitted) function delta. If the threshold is reached, a new step size
is defined by another function newstep and informed to the Timer .

We have established that SimulinkMAlgorithm is valid, that is, it refines
MAlgorithm, by proving that the new action VariableStepInteraction refines
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Interaction. We have also proved termination, deadlock freedom, and deter-
minism.

5.1.3 Rollback

In the same way as illustrated by VaryStep in Fig. 8, we can model a so-
phisticated algorithm suggested in [5]. We define a Rollback monitor that
has the same structure as VaryStep. Its Monitor (a) saves the state us-
ing fmi2GetFMUState before each step of co-simulation, and (b) queries the
maximum step size that each FMU is prepared to take. This uses an extra
FMI API function fmi2GetMaxStepSize. In Adjust , if any of the maxi-
mum values returned is lower than that originally proposed, the states of the
FMUs are reset using fmi2SetFMUState, and the time as well as the step
size are adjusted (using setT and updateSS ). We have again proved validity,
termination, and determinism.

In [5], determinism is also based on the FMU states, which are visible via
fmi2Get and fmi2Set. On the other hand, that work considers determinism
with respect to the order of retrieval and update of variables and execution
of the FMUs. In our models, this order is fixed. To establish determinism
in that sense, we need to consider a highly parallel model with all valid ex-
ecution orders respecting the port dependency graph. This is the approach
in [8], where verification uses theorem proving. The approach taken here is
more amenable to model checking and sufficient to verify sequential imple-
mentations of simulations.

As explained in the previous section, the definition of Interaction is deter-
mined by structural information about the FMUs configuration. Using that
information, and a choice of master algorithm (fixed or variable step, treat-
ment of fmi2Discard, and so on), we can obtain a model. For the FMUs,
in the previous section, we have explained how to derive (sketches of) mod-
els.

5.2 Co-simulations

Our semantics is also useful for analysis of the FMU compositions in co-
simulations. For this, we can use the FDR model checker [17] to check for
the structural; properties of deadlock, livelock, and determinism. We have
done this verification, for instance, for the discrete event signal example in
Fig. 7.
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The semantics can also be used to validate the results of co-simulation runs.
For example, Fig 9 describes a short scenario involving two co-simulation
steps. We specify it using CSP-M, rather than Circus, and write the traces
refinement ([T=) assertion we use for verification. The assertion says that
this scenario is a possible trace of the model: it is a correct co-simulation
run. (We may check this by noting that the final two operations set the
same inputs for FMU 4 (Check Equality)—the FMU that checks equality in
the simulation model.) To facilitate model checking, we use numbers for the
names of the variables. With this approach, we validate our model against
an actual co-simulation.

Moreover, we can go further and check behavioural correctness too. The
specification of an FMI composition C is an assertion over traces of events
corresponding to the FMI API, principally doStep, get, and set. A similar
technique is used for specification of processes in CSPm based on traces of
events [18], and in CCS, using temporal logic over actions [4].

An alternative is to use a more abstract composition of FMUs A as a spec-
ification. A can be used as an oracle in testing the simulation: do a step of
C and then compare it with a step of A. A and C can be used even more
directly in our model by carrying out a refinement check in FDR3.

Consider a dataflow process taken from [18, p.124] and depicted in Fig. 10
that computes the weighted sums of consecutive pairs of inputs. So, if the
input is x0, x1, x2, x3, . . ., then the output is

(a ∗ x0 + b ∗ x1), (a ∗ x1 + b ∗ x2), (a ∗ x2 + b ∗ x3), . . .

for weights a and b. The network has two external channels, left and right ,
and three internal channels. X 2 multiplies an input on channel left1 by a and
passes the result to X 3 on mid . X 3 multiplies an input on the left2 channel
by b and adds the result to the corresponding value from the mid channel.
X 1 duplicates its inputs and passes them to the other two processes (since
all values except the first and last are used twice), where the multiplications
can be performed in parallel. A little care needs to be taken to get the order
of communications on the left1 and left2 channels right, otherwise a deadlock
soon ensues.

The little network of processes is suitable for implementation as a com-
position of five FMUs (the three processes in Fig. 10 and a source and a
sink).
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The CSP specification of this network remembers the previous input.

DFProc(a, b) = left?x −→ P(x )
P(x ) = left?y −→ right !(a ∗ x + b ∗ y)−→ P(y)

The key part of the main FMU in this specification is shown in Fig 11; (there
is also a sink and a source).

Once the slave FMU has been initialised, the master algorithm can instruct it
to perform a simulation step (fmi2DoStep). The FMU fetches the state item,
gets the next input, fetches the parameters a and b, performs the necessary
computation, and stores it as the current output. This simple protocol could
reflect more sophisticated behaviour, as required.

We have been able to encode both the specification and implementation of
the data flow network, with small values for maxint , and check behavioural
refinement. The CSP code for this problem is contained in Appendix B;
it uses the master algorithm that can be found in Appendix A. We have
identified the problem alluded to above, in getting the communications on
left1 and left2 in the wrong order; issues to do with determinism concern-
ing hidden state in our model; and termination issues to do with the end
of the experiment and closing down resources. We have also been able to
demonstrate in a small way the consistency of the semantics model.

The transformation from Circus to CSPM corresponding to the FMI API
requires the identification of barrier synchronisations that correspond to the
doStep commands. An appropriate strategy is outlined in [7].

6 Conclusions

We have provided a comprehensive model of the FMI API, characterising
formally valid master algorithms and FMUs. We can use our models to prove
validity of master algorithms and FMU models. For stateless models, model
checking is feasible, and we can use that to establish properties of interest
of algorithms and FMU models. For state-rich models, we need theorem
proving.

Given information about the network of FMUs and a choice of master algo-
rithm, it is possible to construct a model of their co-simulation automatically
for reasoning about the whole system. This is indicated by how our models
are defined in terms of information about parameters, inputs, and so on, for
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each FMU, and about the FMU connections. A detailed account of the gen-
eration process and its mechanisation are, however, left as future work.

We have discussed a few example master algorithms. This includes a sophis-
ticated rollback algorithm presented in [5] using a proposed extension of the
FMI. It uses API functions to get and set the state of an FMU. In [5], this
algorithm uses a doStep function that returns an alternative step size, in
case the input step size is not possible. Here, instead, we use an extra func-
tion that can get the alternative step size. This means that our standard
algorithms respect the existing signature of the fmi2DoStep function. As
part of our future work, we plan to model one additional master algorithm
proposed in [5].

There has been very practical work on new master algorithms, generation
of FMUs and simulations, and hybrid models [2, 23, 12, 10]. Tripakis [26]
shows how components with different underlying models (state machines,
synchronous data flow, and so on) can be encoded as FMUs. Savicks [25]
presents a framework for co-simulation of Event-B and continuous models
based on FMI, using a fixed-step master algorithm and a characterisation of
simulation components as a class specialised by Event-B models or FMUs.
This work has no semantics for the FMI API, but supplements reasoning in
Event-B with simulation of FMUs. within the Event-B platform Rodin It
has been applied to an industrial case study [25]. It provides support for
the simulation of FMUs within the Event-B platform Rodin, but it is does
not wrap Event-B models as FMUs to enable their general FMI-compliant
co-simulation.

Pre-dating FMI, the work in [16] presents models of co-simulations using
timed automata, with validation and verification carried out using UPPAAL,
and support for code generation. It concentrates on the combination of
one continuous and one discrete component using a particular orchestration
approach. The work in [6] discusses the difficulties for treatment of hybrid
models in FMI.

There are several ways in which our models can be enriched: definition of the
type system, consideration of asynchronous FMUs, sophisticated error han-
dling policies that allow resetting of the FMU states, and increased coverage
of the API. FMI includes capability flags that define the services supported
by FMUs, like asynchronous steps, and retrieval and update of state, for ex-
ample. We need a family of models to consider all combinations of values of
the capability flags. We have explained here how a typical combination can
be modelled.
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Our long-term goal is to use our semantics to reason about the overall system
composed of the various simulation models. In particular, we are interested
in hybrid models, involving FMUs defined by languages for discrete and
for continuous modelling. To cater for models involving continuous FMUs,
we plan to use a Circus extension [14]. Using current support for Circus
in Isabelle [15], we may also be able to explore code generation from the
models. We envisage fully automated support for generation and verification
of models and programs.
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A CSP Model of an FMI Master Algorithm
channel idle

IDLE = idle -> IDLE

-------------------

-- model of time --

-------------------

endOfTime = 5

TIME = { 0..endOfTime }

NZTIME = diff(TIME,{0})

eps = -1

---------------------

-- Model of values --

---------------------

topVal = 8

VAL = { -1..topVal }

---------------------------------------

-- Inputs to the translation process --

---------------------------------------

startTime = 0

-- We do not support stopTimeDefined = false, either here or in the COE.

stopTimeDefined = true

stopTime = 5

-- State management

canGetAndSetFMUState(pdsgfmu1) = false

canGetAndSetFMUState(pdsgfmu2) = false

canGetAndSetFMUState(samplerfmu) = false

canGetAndSetFMUState(checkequalityfmu) = false

-- Port indices, used to model variable names, in the context of each FMU.

INDEX = { 1..5 }

-- Return type of FMI API functions

datatype FMI2STATUSFULL = fmi2OK | fmi2Discard | fmi2Error | fmi2Fatal

FMI2STATUS = {fmi2OK, fmi2Error, fmi2Fatal}

ErrorFlags = {fmi2Error,fmi2Fatal}

-----------------------

-- FMI API functions --

-----------------------

channel fmi2Get : FMI2COMPONENT . INDEX . VAL . FMI2STATUSFULL

channel fmi2Set : FMI2COMPONENT . INDEX . VAL . FMI2STATUS

-- The step size in an fmi2DoStep call cannot be 0.

channel fmi2DoStep : FMI2COMPONENT . TIME . NZTIME . FMI2STATUSFULL

channel fmi2Instantiate : FMI2COMPONENT . Bool

-- This function returns a component, and null if the instantiation

-- fails. We do not model pointers, so in our model we use a boolean

-- to cater for the possibility that instantiation may fail.

channel fmi2SetUpExperiment : FMI2COMPONENT . TIME . Bool . TIME . FMI2STATUS

channel fmi2EnterInitializationMode : FMI2COMPONENT . FMI2STATUS

channel fmi2ExitInitializationMode : FMI2COMPONENT . FMI2STATUS

channel fmi2GetBooleanStatusfmi2Terminated : FMI2COMPONENT . Bool . FMI2STATUS

channel fmi2GetMaxStepSize : FMI2COMPONENT . NZTIME . FMI2STATUS

channel fmi2Terminate : FMI2COMPONENT . FMI2STATUS

channel fmi2FreeInstance : FMI2COMPONENT . FMI2STATUS

channel fmi2GetFMUState : FMI2COMPONENT -- . FMUSTATE

. FMI2STATUS

channel fmi2SetFMUState : FMI2COMPONENT -- . FMUSTATE

. FMI2STATUS

FMIAPI = {| fmi2Get,

fmi2Set,

fmi2DoStep,

fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState |}

----------------------------
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-- Timer control channels --

----------------------------

channel end

channel step : TIME . NZTIME

channel setT : TIME

channel updateSS : NZTIME

-------------------------------------

-- Memory manager control channels --

-------------------------------------

channel get : FMI2COMPONENT . INDEX . VAL

channel set : FMI2COMPONENT . INDEX . VAL

channel getctime,getetime : FMI2COMPONENT . TIME

channel setctime,setetime : FMI2COMPONENT . TIME

channel startstep : FMI2COMPONENT

channel stopstep : FMI2COMPONENT

----------------------------------------

-- Controller for FMU status channels --

----------------------------------------

channel setstatus : FMI2COMPONENT . FMI2STATUSFULL

channel getstatus : FMI2COMPONENT . FMI2STATUSFULL

channel stepAnalysed

channel stepToComplete

--------------------------------------------------------------

-- Control channel to shutdown the simulation.

-- We note that, since an FMU may fail, its termination may

-- not be carried out gracefully with fmi2Terminate and

-- fmi2FreeInstance. This channel is used to indicate the

-- end of the experiment in all cases and shutdown the

-- model processes.

------------------------------------------------------------

channel endsimulation

------------------------------------------------------------

-- If any of the API functions returns an error, no further

-- calls to API functions should take place. This is ensured

-- by flagging the error via fatalError or error.

------------------------------------------------------------

channel fatalError

channel error

----------------------

-- Master Algorithm --

----------------------

-- This is a general characterisation of the valid history of interactions

-- traces of a master algorithm. It does not commit to specific policies to

-- define step size and error treatment, for example.

MAlgorithm(t0,tN) =

( ( ( TimedInteractions(t0,tN)

[|{|endsimulation,fmi2Instantiate,fmi2SetFMUState,fmi2GetFMUState|}|]

AllFMUStatesManager)

/\ ErrorManager )

[| union(FMIAPI,{endsimulation,error,fatalError}) |]

ErrorHandler)

\ {error,fatalError}

TimedInteractions(t0,tN) =

( (Timer(t0,1,tN) /\ endSimulation) [| {|step,end,setT,updateSS,endsimulation|} |] Interaction)

\ {|step,end,setT,updateSS,stepToComplete|}

ErrorManager = FatalError [] ErrorManagement

ErrorHandler = ErrorMonitor [| union(FMIAPI,{endsimulation}) |] FatalErrorMonitor

-- stepToComplete should not be in the specification. It is there because

-- Interaction is used to specify other algorithms.

endSimulation = endsimulation -> SKIP

-- The state manager is kept as a separate component, because it is

-- the component that raises difficulties with model checking.

FixedStepNoRollbackMAlgorithm(t0,hc,tN) =

( ( ( FixedStepTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate,fmi2SetFMUState,fmi2GetFMUState|}|]

ExampleStateManager)

/\ ErrorManager )

[| union(FMIAPI,{endsimulation,error,fatalError}) |]

ErrorHandler)

\ {error,fatalError}
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FixedStepTimedInteractions(t0,hc,tN) =

( (FixedStepTimerNoRollBack(t0,hc,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

FixedStepInteraction(hc) )

\ {|step,end,setT,updateSS,stepAnalysed,stepToComplete|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= FixedStepNoRollbackMAlgorithm(0,2,endOfTime)

-- assert FixedStepNoRollbackMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

-- assert FixedStepNoRollbackMAlgorithm(0,2,endOfTime) :[deterministic]

StandardFixedStepNoRollbackMAlgorithm(t0,hc,tN) =

FixedStepTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate,fmi2SetFMUState,fmi2GetFMUState|}|]

ExampleStateManager

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= StandardFixedStepNoRollbackMAlgorithm(0,2,endOfTime)

-- assert StandardFixedStepNoRollbackMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

-- assert StandardFixedStepNoRollbackMAlgorithm(0,2,endOfTime) :[deterministic]

VariableStepNoRollbackMAlgorithm(t0,tN) =

( ( ( VariableStepNoRollbackTimedInteractions(t0,tN)

[|{|endsimulation,fmi2Instantiate,fmi2SetFMUState,fmi2GetFMUState|}|]

ExampleStateManager)

/\ ErrorManager )

[| union(FMIAPI,{endsimulation,error,fatalError}) |]

ErrorHandler)

\ {error,fatalError}

VariableStepNoRollbackTimedInteractions(t0,tN) =

( (VariableStepTimerNoRollBack(t0,2,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

VariableStepNoRollbackInteraction )

\ {|step,end,setT,updateSS,stepAnalysed,stepToComplete|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= VariableStepWithRollbackMAlgorithm(0,2,endOfTime)

-- assert VariableStepNoRollbackMAlgorithm(0,endOfTime); IDLE :[deadlock free]

-- assert VariableStepNoRollbackMAlgorithm(0,endOfTime) :[deterministic]

VariableStepWithRollbackMAlgorithm(t0,hc,tN) =

( ( ( VariableStepWithRollbackTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate,fmi2SetFMUState,fmi2GetFMUState|}|]

AllFMUStatesManager)

/\ ErrorManager )

[| union(FMIAPI,{endsimulation,error,fatalError}) |]

ErrorHandler)

\ {error,fatalError}

VariableStepWithRollbackTimedInteractions(t0,hc,tN) =

( (VariableStepTimerWithRollBack(t0,t0,2,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

VariableStepWithRollbackInteraction(hc) )

\ {|step,end,setT,updateSS,stepAnalysed,stepToComplete|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= VariableStepWithRollbackMAlgorithm(0,2,endOfTime)

-- assert VariableStepWithRollbackMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

-- assert VariableStepWithRollbackMAlgorithm(0,2,endOfTime) :[deterministic]

-------------------

-- General timer --

-------------------

-- It allows roolbacks (setT), variable step size (updateSS),

-- as well as indicating the steps (step) and the end

-- (end) of the simulation

Timer(ct,hc,tN) =

let

T(t,ss) =

setT?t: { vt | vt <- TIME, vt <= tN} -> T(t,ss)
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[]

updateSS?nhc: NZTIME -> T(t,nhc)

[]

step!t!ss -> T(min(t+ss,tN),ss)

[]

t == tN & end -> STOP

within

T(ct,hc)

--------------------------

-- Simple example timer --

--------------------------

FixedStepTimerNoRollBack(t0,hc,tN) =

let FSTNRB(t) =

if t <= tN then

step.t.hc -> FSTNRB(t+hc)

else

end -> STOP

within

FSTNRB(t0)

-- We use the general components to give trace specifications to models

-- of a particular algorithm.

-- assert Timer(0,2,endOfTime) [T= FixedStepTimerNoRollBack(0,2,endOfTime)

--------------------

-- Simulink timer --

--------------------

VariableStepTimerNoRollBack(t0,hc,tN) =

let

VSTNRB(t,ss) =

if t <= tN then

step.t.ss -> VSTNRB(t+ss,ss)

[]

updateSS?nhc: NZTIME -> VSTNRB(t,nhc)

else

end -> STOP

within

VSTNRB(t0,hc)

-- assert Timer(0,2,endOfTime) [T= VariableStepTimerNoRollBack(0,2,endOfTime)

------------------

-- Broman timer --

------------------

VariableStepTimerWithRollBack(t0,pt,hc,tN) =

let VSTWRB(t,p,ss) =

if t <= tN then

step.t.ss -> VSTWRB(t+ss,t,ss)

[]

updateSS?nhc: NZTIME -> VSTWRB(t,p,nhc)

[]

setT.p -> VSTWRB(p,p,ss)

else

end -> STOP

within

VSTWRB(t0,pt,hc)

-- assert Timer(0,2,endOfTime) [T= VariableStepTimerWithRollBack(0,0,2,endOfTime)

--------------------------------------------------------

-- General interaction pattern for a master algorithm --

--------------------------------------------------------

-- This pattern can be autoamtically generated for a

-- given set of FMUs, as indicated by the use of the

-- inputs to such a procedure that we instantiate above

-- for a particular example.

LifeCycle =

let

Instantiation =

; i: FMI2COMPONENTseq @ fmi2Instantiate.i?sc -> SKIP

InstantiationMode(params) =

if params == <> then

( ( ; i : FMI2COMPONENTseq @

fmi2SetUpExperiment!i!startTime!stopTimeDefined!stopTime?st ->

setstatus.i!st -> SKIP ) ;

( ; i : FMI2COMPONENTseq @

fmi2EnterInitializationMode.i?st ->

setstatus.i!st -> SKIP ) )

else

let (i,x,v) = head(params) within
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fmi2Set!i!x!v?st -> setstatus.i!st -> InstantiationMode(tail(params))

InitializationMode(inits) =

if inits == <> then

( ; i : FMI2COMPONENTseq @

fmi2ExitInitializationMode!i?st -> setstatus.i!st -> SKIP )

else

let (i,x,v) = head(inits) within

fmi2Set!i!x!v?st -> setstatus.i!st -> InitializationMode(tail(inits))

slaveInitialized =

end -> Terminated

[]

step?t?hc -> TakeOutputs(outputs,<>,t,hc)

TakeOutputs(outs,vals,t,hc) =

let

TO(os,vs) =

if os == <> then

DistributeInputs(portdeps,vs,t,hc)

else

let (i,n) = head(os) within

fmi2Get.i.n?v?st -> TO(tail(os),vs^<v>)

within

TO(outs,vals)

DistributeInputs(pds,vals,t,hc) =

let

DI(ps) =

if ps == <> then

Step(t,hc)

else

let (pos,(i,n)) = head(ps) within

fmi2Set.i.n!index(vals,pos)?st -> setstatus.i!st ->

DI(tail(ps))

within

DI(pds)

Step(t,hc) = let

-- -- The guard is just to FDR’2 benefit.

-- -- The process cannot reach this stage with hc == 0.

-- -- See below for a proof

-- hc != 0 & (

-- stepToComplete ->

-- ( ; i: FMI2COMPONENTseq @

-- ( ( fmi2DoStep.i.t.hc?st -> setstatus.i!st -> SKIP;

--

-- )

-- )

-- ) ;

-- -- The above can be proved by commenting in the following lines.

-- -- []

-- -- hc == 0 & printme.10 -> STOP

Iterations(i) = hc != 0 & (

if i == 0 then

stepToComplete -> fmi2DoStep.1.t.hc?st -> setstatus.1!st -> Iterations(1)

else if i < numfmus then

(fmi2GetBooleanStatusfmi2Terminated.i?b?st -> Iterations(i)

[]

fmi2GetMaxStepSize.i?t?st -> Iterations(i)

[]

fmi2DoStep.(i+1).t.hc?st -> setstatus.(i+1)!st -> Iterations(i+1))

else (fmi2GetBooleanStatusfmi2Terminated.i?b?st -> Iterations(i)

[]

fmi2GetMaxStepSize.i?t?st -> Iterations(i)

[]

stepAnalysed -> SKIP)

)

within

Iterations(0);

-- JIM: This is too specific.

-- (getstatus.1?st1 -> getstatus.2?st2 -> getstatus.3?st3 -> getstatus.4?st4 ->

-- if st1 == fmi2OK and st2 == fmi2OK and st3 == fmi2OK and st4 == fmi2OK then

-- NextStep

(getstatus.1?st1 -> getstatus.2?st2 -> getstatus.3?st3 ->

if st1 == fmi2OK and st2 == fmi2OK and st3 == fmi2OK then

NextStep

else -- If there is a fatal error, it is blocked by the StatusMonitor.

-- In the presence of fmi2Discard or fmi2Error, we may continue.

-- In fact, in the current version of this model, an error leads to a

-- cancellation of the co-simulation. This is managed by the StatusMonitor.

-- NextStep []
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Terminated)

-- assert RUN(diff(Events,{|printme|})) [T= FixedStepNoRollbackMAlgorithm(0,2,endOfTime); IDLE

-- This is used to ensure that fmi2GetBooleanStatusfmi2Terminated and

-- fmi2GetMaxStepSize can only happen afer an fmi2DoStep.

-- StepManagement =

-- let

-- BeforeStep = fmi2DoStep?i?t?hc?st -> InStep(i)

-- -- There may be other API functions that can take place here.

-- InStep(i) = fmi2GetBooleanStatusfmi2Terminated.i?b?st -> InStep(i)

-- []

-- fmi2GetMaxStepSize.i?t?st -> InStep(i)

-- []

-- ([] e: {|step,updateSS,setT,end|} @ e -> BeforeStep) -- step?t?hc:{ss | ss <- TIME, ss!= 0} -> BeforeStep

-- []

-- fmi2DoStep?i?t?hc?st -> InStep(i)

-- within

-- step?t?hc:{ss | ss <- TIME, ss!= 0} -> BeforeStep

NextStep = updateSS?d -> NextStep

[]

setT?t -> NextStep

[]

slaveInitialized

Terminated =

( ; i: FMI2COMPONENTseq @

fmi2Terminate.i?st -> setstatus.i!st ->

fmi2FreeInstance.i?st -> setstatus.i!st -> SKIP );

endsimulation -> SKIP

within

Instantiation ; InstantiationMode(parameterValues); InitializationMode(initialValues); slaveInitialized

-- This is needed just because LifeCycle uses the status to decide whether to proceed to the next step or not.

StatusStore(i,s) =

setstatus.i?st -> StatusStore(i,st) -- (if less(st,s) then StatusStore(st) else StatusStore(st))

[]

getstatus.i!s -> StatusStore(i,s)

FatalErrorMonitor = let

-- The parameter here is duplicating the information that is in the StatusStore.

Monitor(st) =

fmi2Get?i?n?v?st -> StopFatal(st)

[]

fmi2Set?i?n?v?st -> StopFatal(st)

[]

fmi2GetFMUState?i?st -> StopFatal(st) -- Monitor -- ?s?st -> StopFatal(st)

[]

fmi2SetFMUState?i?st -> StopFatal(st) -- Monitor -- ?s?st -> StopFatal(st)

[]

fmi2SetUpExperiment?i?t?b?hc?st -> StopFatal(st)

[]

fmi2EnterInitializationMode?i?st -> StopFatal(st)

[]

fmi2ExitInitializationMode?i?st -> StopFatal(st)

[]

fmi2GetBooleanStatusfmi2Terminated?i?b?st -> StopFatal(st)

[]

fmi2DoStep?i?t?hc?st -> StopFatal(st)

[]

fmi2Terminate?i?st -> StopFatal(st)

[]

fmi2GetMaxStepSize?i?t?st -> StopFatal(st)

[]

fmi2Instantiate?i?b -> (if b == true then StopFatal(fmi2OK) else StopFatal(fmi2Fatal))

[]

fmi2FreeInstance?i?st -> StopFatal(st)

StopFatal(st) = st == fmi2Fatal & fatalError -> STOP [] st != fmi2Fatal & Monitor(st)

within

Monitor(fmi2OK) /\ endsimulation -> SKIP

FatalError = fatalError -> endsimulation -> SKIP

-- We are not treating the occurrence of fmi2Error as recoverable. So, there is no possibility

-- of resetting the FMU and continuing.

ErrorMonitor = let

-- The parameter here is duplicating the information that is in the StatusStore.
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Monitor(st) =

fmi2Get?i?n?v?st -> StopError(st)

[]

fmi2Set?i?n?v?st -> StopError(st)

[]

fmi2GetFMUState?i?st -> StopError(st) -- Monitor -- ?s?st -> StopError(st)

[]

fmi2SetFMUState?i?st -> StopError(st) -- Monitor -- ?s?st -> StopError(st)

[]

fmi2SetUpExperiment?i?t?b?hc?st -> StopError(st)

[]

fmi2EnterInitializationMode?i?st -> StopError(st)

[]

fmi2ExitInitializationMode?i?st -> StopError(st)

[]

fmi2GetBooleanStatusfmi2Terminated?i?b?st -> StopError(st)

[]

fmi2DoStep?i?t?hc?st -> StopError(st)

[]

fmi2Terminate?i?st -> StopError(st)

[]

fmi2GetMaxStepSize?i?t?st -> StopError(st)

[]

fmi2Instantiate?i?b -> (if b == true then StopError(fmi2OK) else StopError(fmi2Fatal))

[]

fmi2FreeInstance?i?st -> StopError(st)

StopError(st) = st == fmi2Error & error -> Monitor(st) [] st != fmi2Error & Monitor(st)

within

Monitor(fmi2OK) /\ endsimulation -> SKIP

ErrorManagement = let

Shutdown(i) = fmi2Instantiate.i?b -> ShutdownCreated(i); endsimulation -> SKIP

[]

error -> endsimulation -> SKIP

ShutdownCreated(i) = error -> fmi2FreeInstance.i?st -> SKIP

[]

fmi2FreeInstance.i?st -> SKIP

within

(|| i: FMI2COMPONENT @ [{error,endsimulation}] Shutdown(i))

Interaction =

(LifeCycle

[|{|setstatus,getstatus,endsimulation|}|]

((||| i: FMI2COMPONENT @ StatusStore(i,fmi2OK)) /\ endSimulation)

) \ {|setstatus,getstatus,error,fatalError|}

-------------------------------------------------

-- Interaction patterns for a master algorithm --

-------------------------------------------------

-----------------------------

-- Example in the standard --

-----------------------------

PossibleTerminationOnDiscard =

Interaction

[| {| fmi2DoStep, fmi2GetBooleanStatusfmi2Terminated, stepAnalysed, endsimulation |} |]

DiscardTreatment

StandardPossibleTerminationOnDiscard =

(LifeCycle [|{|setstatus,getstatus,endsimulation|}|] ((||| i: FMI2COMPONENT @ StatusStore(i,fmi2OK)) /\ endSimulation))

\ {|setstatus,getstatus|}

[| {| fmi2DoStep, fmi2GetBooleanStatusfmi2Terminated, stepAnalysed, endsimulation |} |]

DiscardTreatment

-- The interest in stepAnalysed ensures that the FMU step cannot terminate

-- before its fmi2GetBooleanStatusfmi2Terminated is requested.

DiscardTreatment =

let

ErrorTreatment =

fmi2DoStep?i?t?hc?st ->

(if st == fmi2Discard then

fmi2GetBooleanStatusfmi2Terminated.i?b?st0m ->

( if b == true

then ErrorTreatment -- Although the algorithm checks this, it ignores that status until the next step.

else ErrorTreatment )

else

ErrorTreatment)

[]

stepAnalysed -> ErrorTreatment
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within

ErrorTreatment /\ endsimulation -> SKIP

FixedStep = endsimulation -> SKIP

FixedStepInteraction(hc) =

PossibleTerminationOnDiscard

[ union(union(diff(FMIAPI,{|fmi2GetMaxStepSize|}),{endsimulation,end,stepAnalysed,stepToComplete}),{step.t.hc | t <- TIME})

||

{ endsimulation } ]

-- This is here just to mimic the general shape of the definition of an interaction

-- (and to allow us to cut down the behaviour of PossibleTerminationOnDiscard).

FixedStep

-- assert Interaction [T= FixedStepInteraction(2)

StandardFixedStepInteraction(hc) =

StandardPossibleTerminationOnDiscard

[ union(union(diff(FMIAPI,{|fmi2GetMaxStepSize|}),{endsimulation,end,stepAnalysed,stepToComplete}),{step.t.hc | t <- TIME})

||

{ endsimulation } ]

-- This is here just to mimic the general shape of the definition of an interaction

-- (and to allow us to cut down the behaviour of PossibleTerminationOnDiscard).

FixedStep

-- assert Interaction [T= StandardFixedStepInteraction(2)

------------------------

-- Simulink algorithm --

------------------------

-- The synchronisation between Interaction and VaryStep on updateSS

-- ensures that the update can only take place at the right point

-- of the loop.

VariableStepNoRollbackInteraction =

PossibleTerminationOnDiscard

[ union(diff(FMIAPI,{|fmi2GetMaxStepSize|}),{|endsimulation,end,stepAnalysed,stepToComplete,step,updateSS|})

||

{| fmi2Get,updateSS,endsimulation |} ]

VaryStep

channel delta: {(-10)..10}

-- This can be modelled much more generally and elegantly in Circus.

-- The initial step size is defined in the instantiation of the right timer.

VaryStep =

let

threshold = 5

Monitor(y1,y2,y3) =

(fmi2Get.1.1?ny1?st -> delta!(y1 - ny1) -> SKIP)

|||

(fmi2Get.2.1?ny2?st -> delta!(y2 - ny2) -> SKIP)

|||

(fmi2Get.3.3?ny3?st -> delta!(y3 - ny3) -> SKIP)

Decide = delta?d1 -> delta?d2 -> delta?d3 ->

if (d1 != eps and (d1 >= threshold or d1 <= -threshold)) and

(d2 != eps and (d2 >= threshold or d2 <= -threshold)) and

(d1 != eps and (d3 >= threshold or d3 <= -threshold))

then updateSS!1 -> SKIP

else SKIP

Step = (Monitor(eps,eps,eps) [| {| delta |} |] Decide) \ {| delta |}; Step

within

Step /\ endsimulation -> SKIP

-- assert Interaction [T= VariableStepNoRollbackInteraction

----------------------

-- Broman algorithm --

----------------------

VariableStepWithRollbackInteraction(hcmax) =

Interaction

[ union(diff(FMIAPI,{|fmi2GetFMUState,fmi2SetFMUState|}),{|endsimulation,end,step,stepAnalysed,stepToComplete,setT,updateSS|})

||

{| fmi2DoStep,fmi2GetBooleanStatusfmi2Terminated,fmi2GetMaxStepSize,

fmi2GetFMUState,fmi2SetFMUState,

step,stepAnalysed,stepToComplete,setT,updateSS,endsimulation |} ]

Rollback(hcmax)

channel hcmin: TIME
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Rollback(hcmax) =

let

-- In Circus, this can be much more elegant.

Monitor =

-- Synchronisation on step, as well as stepToComplete, ensures that a new step cannot start

-- before the management required here is completed.

step?t?hc -> stepToComplete ->

(; i: FMI2COMPONENTseq @ fmi2GetFMUState.i?st -> SKIP); -- ?s?st -> SKIP) ;

(; i: FMI2COMPONENTseq @ fmi2DoStep?i?t.hcmax?st -> fmi2GetMaxStepSize.i?hc?st -> hcmin!hc -> SKIP)

Decide(hcmax) =

hcmin?h1 -> hcmin?h2 -> hcmin?h3 -> hcmin?h4 ->

let

newhc = min4(h1,h2,h3,h4)

within

if 0 < newhc and newhc < hcmax

then (; i: FMI2COMPONENTseq @ fmi2SetFMUState.i?st -> SKIP); -- ?s?st -> SKIP);

stepAnalysed -> setT?t -> updateSS!newhc -> SKIP

else stepAnalysed -> SKIP

Step = (Monitor [| {| hcmin |} |] Decide(hcmax)) \ {| hcmin |}; Step

within

Step /\ endsimulation -> SKIP

-- The need to hide fmi2GetFMUState,fmi2SetFMUState arises from the artificial

-- separation of the management of state, to allow model checking.

-- assert Interaction [T= (VariableStepWithRollbackInteraction(2)) \ {| fmi2GetFMUState,fmi2SetFMUState |}

--------------------------------------------------

-- General state manager for a master algorithm --

--------------------------------------------------

-- Once an FMU is instantiated, then it is possible to retrieve the

-- state. After that, both gets and sets are allowed. Error management

-- is handled by Interaction.

FMUStateManager(i) =

let

AllowAGet =

fmi2GetFMUState.i?st -- ?s?st

-> AllowsGetsAndSets -- (s)

AllowsGetsAndSets = -- (s) =

fmi2GetFMUState.i?st -- ?t?st

-> AllowsGetsAndSets -- (t)

[]

fmi2SetFMUState.i?st -- !s?st

-> AllowsGetsAndSets -- (s)

within

fmi2Instantiate.i?b -> AllowAGet

AllFMUStatesManager = ( ||| i : FMI2COMPONENT @ FMUStateManager(i) ) /\ endSimulation

-------------------------------------------------

-- Simple state manager for a master algorithm --

-------------------------------------------------

-- This is a manager that should be adequate when

-- canGetAndSetFMUState(i) is false for all i.

ExampleStateManager = ( ||| i : FMI2COMPONENT @ fmi2Instantiate.i?b -> STOP ) /\ endsimulation -> SKIP

-- We cannot model check the stateful version of the algorithms, but with the state

-- actually commented out, it passes.

-- assert AllFMUStatesManager [T= ExampleStateManager

-------------------------------------------------

-- State manager for Broman’s master algorithm --

-------------------------------------------------

BromanAllFMUStatesManager = AllFMUStatesManager

-- The refinement below is established by monotonicity.

-- assert FMIWrapper(0,endOfTime) [T= ExampleFMIWrapper(0,endOfTime)

---------------------------------

-- General behaviour of an FMU --

---------------------------------

FMUInterface(i) =

let

Instantiation =

fmi2Instantiate.i?b -> (b != false & SKIP [] b == false & setstatus.i!fmi2Fatal -> SKIP)

InstantiationMode = getstatus.i?st -> (

member(st,ErrorFlags) & SKIP

[]

not member(st,ErrorFlags) & (

fmi2SetUpExperiment!i?starttime?stoptimedefined?stoptime?st -> SKIP
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[]

fmi2Set!i?x?v?st -> setstatus.i!st -> InstantiationMode

[]

fmi2GetFMUState.i?st -> setstatus.i!st -> InstantiationMode

[]

fmi2SetFMUState.i?st -> setstatus.i!st -> InstantiationMode))

Instantiated = getstatus.i?st -> (

member(st,ErrorFlags) & SKIP

[]

not member(st,ErrorFlags) & (

fmi2EnterInitializationMode.i?st -> not member(st,ErrorFlags) & SKIP

[]

fmi2Set!i?x?v?st -> setstatus.i!st -> Instantiated

[]

fmi2GetFMUState.i?st -> setstatus.i!st -> Instantiated

[]

fmi2SetFMUState.i?st -> setstatus.i!st -> Instantiated))

InitializationMode = getstatus.i?st -> (

member(st,ErrorFlags) & SKIP

[]

not member(st,ErrorFlags) & (

fmi2ExitInitializationMode.i?st -> setstatus.i!st -> SKIP

[]

fmi2Set.i?x?v?st -> setstatus.i!st -> InitializationMode

[]

fmi2GetFMUState.i?st -> setstatus.i!st -> InitializationMode

[]

fmi2SetFMUState.i?st -> setstatus.i!st -> InitializationMode))

-- While a pattern should be defined by a master algorithm,

-- where all output are obtained before the inputs are

-- distributed, the FMU is passive and does not impose

-- such a policy on its use.

slaveInitialized = getstatus.i?st -> (

member(st,ErrorFlags) & SKIP

[]

not member(st,ErrorFlags) & (

fmi2Get.i?n?v?st -> setstatus.i!st -> slaveInitialized

[]

fmi2Set.i?n?v?st -> setstatus.i!st -> slaveInitialized

[]

fmi2DoStep.i?t?hc?st -> setstatus.i!st -> slaveInitialized

[]

fmi2GetMaxStepSize.i?hc?st -> setstatus.i!st -> slaveInitialized

[]

fmi2GetBooleanStatusfmi2Terminated.i?b?st -> setstatus.i!st -> slaveInitialized

[]

fmi2GetFMUState.i?st -> setstatus.i!st -> slaveInitialized

[]

fmi2SetFMUState.i?st -> setstatus.i!st -> slaveInitialized))

Terminated =

getstatus.i?st : diff(FMI2STATUS,{fmi2Error,fmi2Fatal}) -> (

fmi2Terminate.i?st -> Remove

[]

fmi2GetFMUState.i?st -> setstatus.i!st -> Terminated

[]

fmi2SetFMUState.i?st -> setstatus.i!st -> Terminated)

[]

getstatus.i.fmi2Error -> Remove

Remove = getstatus.i?st -> (

st == fmi2Fatal & STOP

[]

st != fmi2Fatal & fmi2FreeInstance.i?st -> STOP

[]

st != fmi2Fatal & fmi2GetFMUState.i?st -> setstatus.i!st -> Remove

[]

st != fmi2Fatal & fmi2SetFMUState.i?st -> setstatus.i!st -> Remove)

Status(st) = setstatus.i?nst -> Status(nst)

[]

getstatus.i.st -> Status(st)

within

(((Instantiation;

InstantiationMode ;

Instantiated;

InitializationMode ;

slaveInitialized)

/\

( Terminated /\ endSimulation )) [| {|getstatus,setstatus,endsimulation |} |] (Status(fmi2OK) /\ endSimulation )) \ {|getstatus,setstatus|}
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------------------

-- Cosimulation --

------------------

Cosimulation(t0,tN) =

( MAlgorithm(t0,tN)

[| union(FMIAPI,{endsimulation}) |]

FMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

-- Refinement is established by monotonicity

FixedStepNoRollbackCosimulation(t0,hc,tN) =

( FixedStepNoRollbackMAlgorithm(t0,hc,tN)

[| union(FMIAPI,{endsimulation}) |]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

-- assert FixedStepNoRollbackCosimulation(0,2,endOfTime) :[deterministic]

-- assert FixedStepNoRollbackCosimulation(0,2,endOfTime) ; IDLE :[deadlock free]

-- assert FixedStepNoRollbackCosimulation(0,2,endOfTime) :[livelock free]

VariableStepNoRollbackCosimulation(t0,tN) =

(VariableStepNoRollbackMAlgorithm(t0,tN)

[|union(FMIAPI,{endsimulation})|]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

-- assert VariableStepNoRollbackCosimulation(0,endOfTime) :[deterministic]

-- assert VariableStepNoRollbackCosimulation(0,endOfTime) ; IDLE :[deadlock free]

-- assert VariableStepNoRollbackCosimulation(0,endOfTime) :[livelock free]

VariableStepWithRollbackCosimulation(t0,hc,tN) =

(VariableStepWithRollbackMAlgorithm(t0,hc,tN)

[|union(FMIAPI,{endsimulation})|]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

-- assert VariableStepWithRollbackCosimulation(0,2,endOfTime) :[deterministic]

-- assert VariableStepWithRollbackCosimulation(0,2,endOfTime) ; IDLE :[deadlock free]

-- assert VariableStepWithRollbackCosimulation(0,2,endOfTime) :[livelock free]
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--------------

-- Scenario --

--------------

SynchronousEventsSpec =

AllInInternalChoice({fmi2Set.1.1.1.fmi2OK,fmi2Set.1.2.1.fmi2OK,fmi2Set.2.1.1.fmi2OK,fmi2Set.2.2.2.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

AllInInternalChoice({fmi2Get.1.1.1.fmi2OK,fmi2Get.2.1.1.fmi2OK,fmi2Get.3.3.1.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

(fmi2DoStep.1.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.2.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.3.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.4.0.2.fmi2OK -> SKIP) ;

AllInInternalChoice({fmi2Get.1.1.1.fmi2OK,fmi2Get.2.1.1.fmi2OK,fmi2Get.3.3.1.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

(fmi2DoStep.1.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.2.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.3.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.4.2.2.fmi2OK -> SKIP)

-- assert SynchronousEventsSpec [FD= FixedStepNoRollbackCosimulation(0,2,2)

-- assert SynchronousEventsSpec [FD= VariableStepNoRollbackCosimulation(0,2)

-- assert SynchronousEventsSpec [FD= VariableStepWithRollbackCosimulation(0,2,2)

-- Auxiliary functions

index(<v>^vals,pos) = if pos == 1 then v else index(vals,pos-1)

min(a,b) = if a >= b then b else a

min4(a,b,c,d) = min(min(a,b),min(c,d))

-- Auxiliary definitions to specify scenarios

AllInInternalChoice(s) =

if (empty(s))

then SKIP

else |~| e: s @ e -> AllInInternalChoice(diff(s,{e}))

AllInInternalofExternalChoices(ss) =

if (empty(ss))

then SKIP

else |~| cs: ss @ ([] e: cs @ e -> AllInInternalChoice(diff(cs,{e})))

channel printme: {(-10)..10}

channel a1, b1, c1, dx

P = (a1 -> b1 -> endsimulation -> SKIP) /\ fatalError -> endsimulation -> SKIP

Q = (c1 -> fatalError -> dx -> Q) /\ endsimulation -> SKIP

Work = P [|{endsimulation,dx,fatalError} |] Q
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B CSP Model of a Data-Flow Machine
include "fmi-master.csp"

--------------------

-- Dataflow in FMI --

-- Specification --

--------------------

-- Number of FMUS

numfmus = 3

-- FMU identifiers

sourcefmu = 1

dfspecfmu = 2

sinkfmu = 3

-- Set of identifiers

FMI2COMPONENT = {sourcefmu,dfspecfmu,sinkfmu}

FMI2COMPONENTseq = <sourcefmu,dfspecfmu,sinkfmu>

-- Port dependency graph

-- Outputs

outputs = <(sourcefmu,1),(dfspecfmu,2)>

outputsset = {(sourcefmu,1),(dfspecfmu,2)}

portdeps = <(1,(dfspecfmu,1)),(2,(sinkfmu,1))>

a = 1

b = 1

topInput = 2

INPUTVAL = { 0..topInput }

topParam = 2

PARAMVAL = { 0..topParam }

INPUTVALP = union(INPUTVAL,{eps})

PARAMVALP = union(PARAMVAL,{eps})

channel setoutput : FMI2COMPONENT . INDEX . VAL

channel getnext,getparam,getinput,getoutput : FMI2COMPONENT . INDEX . VAL

channel setparam,setinput : FMI2COMPONENT . INDEX . VAL

-- Parameters and their values

-- Need to check against types

parameterValues = <(sourcefmu,1,2),(dfspecfmu,1,a),(sinkfmu,2,b)>

initialValues = <(sourcefmu,1,0),(dfspecfmu,1,0),(sinkfmu,1,0)>

----------------

-- FMIWrapper --

-----------------

FMIWrapper(t0,tN) =

FMUInterface(sourcefmu)

[|{endsimulation}|]

( FMUInterface(dfspecfmu)

[|{endsimulation}|]

FMUInterface(sinkfmu)

)

ExampleFMIWrapper(t0,tN) =

SOURCEFMU(sourcefmu)

[|{endsimulation}|]

( DFSPECFMU(dfspecfmu)

[|{endsimulation}|]

SINKFMU(sinkfmu)

)

--------------------

-- Generator --

--------------------

SOURCEFMUProc(i) =

let

Instantiation =

fmi2Instantiate.i!true -> SKIP

InstantiationMode =

fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i!t0 -> setetime.i!tN ->

fmi2EnterInitializationMode.i!fmi2OK -> SKIP

InitializationMode =

fmi2ExitInitializationMode.i!fmi2OK -> SKIP

slaveInitialized(hc) =

getoutput.i.1?out ->

( fmi2Get.i.1!out!fmi2OK -> slaveInitialized(hc)

[]

fmi2DoStep.i?t?ss!fmi2OK -> (UpdateState2; slaveInitialized(ss))
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)

UpdateState2 =

getnext.i.1?v -> setoutput.i.1!v -> SKIP

[]

emptysourcebuffer -> ErrorProc

ErrorProc =

fmi2Get.i.1!0!fmi2Error -> ErrorProc

[]

fmi2DoStep.i?t?ss!fmi2Error -> ErrorProc

within

Instantiation;

InstantiationMode;

InitializationMode;

slaveInitialized(0)

-- State

channel emptysourcebuffer

SOURCEFMUState(i) =

let

SMUS(ct,et,xs,out) =

if xs == <> then

emptysourcebuffer -> SMUS(ct,et,xs,out)

else

( setctime.i?t -> SMUS(t,et,xs,out)

[]

setetime.i?t -> SMUS(ct,t,xs,out)

[]

setoutput.i.1?z -> SMUS(ct,et,xs,z)

[]

getctime.i!ct -> SMUS(ct,et,xs,out)

[]

getetime.i!et -> SMUS(ct,et,xs,out)

[]

getnext.i.1!head(xs) -> SMUS(ct,et,tail(xs),out)

[]

getoutput.i.1!out -> SMUS(ct,et,xs,out)

[]

fmi2SetFMUState.i.fmi2OK -> SMUS(ct,et,xs,out)

[]

fmi2GetFMUState.i.fmi2OK -> SMUS(ct,et,xs,out)

)

within

SMUS(0,0,<1,0>,eps) -- must all be no more than topInput values

-- Process

SOURCEFMU(i) =

( SOURCEFMUProc(i)

[|{|setctime.i, setetime.i, setoutput.i, set.i,

getctime.i, getetime.i, getoutput.i, get.i, getnext.i,

emptysourcebuffer,

fmi2Instantiate|}|]

fmi2Instantiate.i?b -> SOURCEFMUState(i)

) \ {|get.i,set.i,getctime,getetime,setctime,setetime|}

/\

( (fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP) /\ (endsimulation -> SKIP) )

assert SOURCEFMUProc(1) :[deadlock free]

assert SOURCEFMUProc(1) :[livelock free]

assert SOURCEFMUProc(1) :[deterministic]

assert SOURCEFMUState(1) :[deadlock free]

assert SOURCEFMUState(1) :[livelock free]

assert SOURCEFMUState(1) :[deterministic]

assert SOURCEFMU(1) ; IDLE :[deadlock free]

assert SOURCEFMU(1) :[livelock free]

assert SOURCEFMU(1) :[deterministic]

-------------

-- Sink --

-------------

-- Main action

SINKFMUPROC(i) =

let
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Instantiation =

fmi2Instantiate.i!true -> SKIP

InstantiationMode =

fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i!t0 -> setetime.i!tN ->

fmi2EnterInitializationMode.i!fmi2OK -> SKIP

InitializationMode =

fmi2ExitInitializationMode.i!fmi2OK -> SKIP

slaveInitialized(hc) =

getoutput.i.1?out ->

( fmi2Set.i.1!out!fmi2OK -> slaveInitialized(hc)

[]

fmi2DoStep.i?t?ss!fmi2OK -> ( UpdateState2; slaveInitialized(ss) ) )

UpdateState2 =

getinput.i?v -> set.i!v -> SKIP

within

Instantiation;

InstantiationMode;

InitializationMode;

slaveInitialized(0)

-- State

SINKFMUState(i) =

let

SKFMUS(ct,et,in,x) =

setctime.i?t -> SKFMUS(t,et,in,x)

[]

setetime.i?t -> SKFMUS(ct,t,in,x)

[]

set.i.1?y -> SKFMUS(ct,et,in,y)

[]

setinput.i.1?z -> SKFMUS(ct,et,z,x)

[]

getctime.i!ct -> SKFMUS(ct,et,in,x)

[]

getetime.i!et -> SKFMUS(ct,et,in,x)

[]

get.i.1!x -> SKFMUS(ct,et,in,x)

[]

getinput.i.1!in -> SKFMUS(ct,et,in,x)

[]

fmi2SetFMUState.i.fmi2OK -> SKFMUS(ct,et,in,x)

[]

fmi2GetFMUState.i.fmi2OK -> SKFMUS(ct,et,in,x)

within

SKFMUS(0,0,eps,eps)

-- Process

SINKFMU(i) =

( SOURCEFMUProc(i)

[|{|setctime.i, setetime.i, set.i, setinput.i,

getctime.i, getetime.i, get.i, getinput.i,

fmi2Instantiate|}|]

fmi2Instantiate.i?b -> SINKFMUState(i)

) \ {|get.i,set.i,getctime.i,getetime.i,setctime.i,setetime.i,setinput.i,getinput.i|}

/\

( (fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP) /\ (endsimulation -> SKIP) )

assert SINKFMUPROC(3) :[deadlock free]

assert SINKFMUPROC(3) :[livelock free]

assert SINKFMUPROC(3) :[deterministic]

assert SINKFMUState(3) :[deadlock free]

assert SINKFMUState(3) :[livelock free]

assert SINKFMUState(3) :[deterministic]

assert SINKFMU(3) ; IDLE :[deadlock free]

assert SINKFMU(3) :[livelock free]

assert SINKFMU(3) :[deterministic]

--------------------

-- DFSpec --

--------------------

-- Main action

channel answer : VAL

channel geta : PARAMVAL

channel getx : INPUTVALP

channel getb : PARAMVAL

channel gety : INPUTVAL

channel kill

DFSPECFMUProc(i) =

let
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Instantiation =

fmi2Instantiate.i!true -> SKIP

InstantiationMode(p,q) =

fmi2Set.i.1?v:PARAMVAL?fmi2OK -> setparam.i.1!v -> InstantiationMode(v,q)

[]

fmi2Set.i.2?v:PARAMVAL?fmi2OK -> setparam.i.2!v -> InstantiationMode(p,v)

[]

if p != eps and q != eps then

fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i!t0 ->

setetime.i!tN ->

fmi2EnterInitializationMode.i!fmi2OK ->

SKIP

else

fmi2SetUpExperiment.i?t0!true?tN!fmi2Error ->

fmi2FreeInstance.i!fmi2Error ->

ErrorProc

InitializationMode =

fmi2Set.i.1?v:INPUTVAL!fmi2OK -> setinput.i.1!v -> InitializationMode

[]

fmi2ExitInitializationMode.i!fmi2OK -> SKIP

slaveInitialized(hc) =

getoutput.i.1?out ->

( fmi2Get.i.1!out!fmi2OK -> slaveInitialized(hc)

[]

fmi2Set.i.1?v:INPUTVAL!fmi2OK -> setinput.i.1!v -> slaveInitialized(hc)

[]

fmi2DoStep.i?t?ss!fmi2OK -> (UpdateState; slaveInitialized(ss))

)

UpdateState =

let

Fetch =

getinput.i.1?x:INPUTVALP ->

get.i.1?y:INPUTVALP ->

if y == eps then

set.i.1!x -> kill -> SKIP

else

getparam.i.1?a:PARAMVAL ->

getparam.i.2?b:PARAMVAL ->

geta!a ->

getx!x ->

getb!b ->

gety!y ->

answer?z:VAL ->

setoutput.i.1!z ->

SKIP

Calculator =

geta?a:PARAMVAL ->

getx?x:INPUTVAL ->

getb?b:PARAMVAL ->

gety?y:INPUTVAL ->

answer!((a*x) + (b*y)) ->

SKIP

[]

kill -> SKIP

within

Fetch [|{|geta,getx,getb,gety,answer,kill|}|] Calculator

ErrorProc =

fmi2SetFMUState.i.fmi2Error -> ErrorProc

[]

fmi2GetFMUState.i.fmi2Error -> ErrorProc

[]

fmi2Set.i.1?v:INPUTVAL!fmi2Error -> ErrorProc

[]

fmi2ExitInitializationMode.i!fmi2Error -> ErrorProc

[]

fmi2Get.i.1!1!fmi2Error -> ErrorProc

[]

fmi2Set.i.1?v:INPUTVAL!fmi2Error -> ErrorProc

[]

fmi2DoStep.i?t?ss!fmi2Error -> ErrorProc

within

Instantiation;

InstantiationMode(eps,eps);

InitializationMode;

slaveInitialized(0)

-- State

DFSPECFMUState(i) =

let

DFSFMUS(ct,et,p,q,in,x,out) =

setctime.i?t:TIME -> DFSFMUS(t,et,p,q,in,x,out)
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[]

setetime.i?t:TIME -> DFSFMUS(ct,t,p,q,in,x,out)

[]

setparam.i.1?r:PARAMVAL -> DFSFMUS(ct,et,r,q,in,x,out)

[]

setparam.i.2?s:PARAMVAL -> DFSFMUS(ct,et,p,s,in,x,out)

[]

setinput.i.1?z:INPUTVALP -> DFSFMUS(ct,et,p,q,z,x,out)

[]

set.i.1?y:INPUTVALP -> DFSFMUS(ct,et,p,q,in,y,out)

[]

setoutput.i.1?z:VAL -> DFSFMUS(ct,et,p,q,in,x,z)

[]

getctime.i!ct -> DFSFMUS(ct,et,p,q,in,x,out)

[]

getetime.i!et -> DFSFMUS(ct,et,p,q,in,x,out)

[]

getparam.i.1!p -> DFSFMUS(ct,et,p,q,in,x,out)

[]

getparam.i.2!q -> DFSFMUS(ct,et,p,q,in,x,out)

[]

getinput.i.1!in -> DFSFMUS(ct,et,p,q,in,x,out)

[]

get.i.1!x -> DFSFMUS(ct,et,p,q,in,x,out)

[]

getoutput.i.1!out -> DFSFMUS(ct,et,p,q,in,x,out)

[]

fmi2SetFMUState.i.fmi2OK -> DFSFMUS(ct,et,p,q,in,x,out)

[]

fmi2GetFMUState.i.fmi2OK -> DFSFMUS(ct,et,p,q,in,x,out)

within

DFSFMUS(0,0,eps,eps,eps,eps,eps)

-- Process

DFSPECFMU(i) =

( DFSPECFMUProc(i)

[|{|setctime.i, setetime.i, setparam.i, setinput.i, set.i, setoutput.i,

getctime.i, getetime.i, getparam.i, getinput.i, get.i, getoutput.i,

kill,

fmi2Instantiate|}|]

fmi2Instantiate.i?b -> DFSPECFMUState(i)

) \ {|setctime.i, setetime.i, setparam.i, setinput.i, set.i, setoutput.i,

getctime.i, getetime.i, getparam.i, getinput.i, get.i, getoutput.i,

geta, getx, getb, gety, answer, kill|}

/\

( (fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP) /\ (endsimulation -> SKIP) )

DFSTEST =

DFSPECFMUProc(2)

[|{|setctime.2, setetime.2, setparam.2, setinput.2, set.2, setoutput.2,

getctime.2, getetime.2, getparam.2, getinput.2, get.2, getoutput.2,

fmi2Instantiate|}|]

fmi2Instantiate.2?b -> DFSPECFMUState(2)

assert DFSPECFMUProc(2) :[livelock free]

assert DFSPECFMUProc(2) :[deterministic]

assert DFSPECFMUState(2) :[deadlock free]

assert DFSPECFMUState(2) :[livelock free]

assert DFSPECFMUState(2) :[deterministic]

assert DFSTEST :[deadlock free]

assert DFSTEST :[livelock free]

assert DFSTEST :[deterministic]

assert DFSPECFMU(2) ; IDLE :[deadlock free]

assert DFSPECFMU(2) :[livelock free]

assert DFSPECFMU(2) :[deterministic]

assert FMUInterface(dfspecfmu) [T= DFSPECFMU(dfspecfmu)

assert Cosimulation(0,2) ; IDLE :[deadlock free]

46



D2.2d - Foundations for FMI (Public)

C CSP Model of a PDSG Sampler
channel idle

IDLE = idle -> IDLE

-------------------

-- model of time --

-------------------

endOfTime = 5

TIME = { 0..endOfTime }

NZTIME = diff(TIME,{0})

eps = -1

---------------------

-- Model of values --

---------------------

topVal = 2

VAL = { -1..topVal }

---------------------------------------

-- Inputs to the translation process --

---------------------------------------

startTime = 0

-- We do not support stopTimeDefined = false, either here or in the COE.

stopTimeDefined = true

stopTime = 5

-- Number of FMUS

numfmus = 4

-- FMU identifiers

pdsgfmu1 = 1

pdsgfmu2 = 2

samplerfmu = 3

checkequalityfmu = 4

-- Set of identifiers

FMI2COMPONENT = {pdsgfmu1,pdsgfmu2,samplerfmu,checkequalityfmu}

FMUs = <pdsgfmu1,pdsgfmu2,samplerfmu,checkequalityfmu>

-- Port dependency graph

-- Outputs

outputs = <(pdsgfmu1,1),(pdsgfmu2,1),(samplerfmu,3)>

outputsset = {(pdsgfmu1,1),(pdsgfmu2,1),(samplerfmu,3)}

pdg = <(1,(samplerfmu,1)),(2,(samplerfmu,2)),(2,(checkequalityfmu,2)),(3,(checkequalityfmu,1))>

-- Parameters and their values

parameterValues = <(pdsgfmu1,1,1),(pdsgfmu1,2,1),(pdsgfmu2,1,1),(pdsgfmu2,2,2)>

-- Inputs and their initial values

inputs(pdsgfmu1) = <>

inputs(pdsgfmu2) = <>

inputs(samplerfmu) = <1,2>

inputs(checkequalityfmu) = <1,2>

initialValues = <(samplerfmu,1,1),(samplerfmu,2,1),(checkequalityfmu,1,1),(checkequalityfmu,2,1)>

-- Exposed variables

expvars(pdsgfmu1) = <>

expvars(pdsgfmu2) = <>

expvars(samplerfmu) = <>

expvars(checkequalityfmu) = <>

-- Type that represents the state of any of the FMUs. It can be generated.

datatype FMUSTATE = three.VAL.VAL.VAL | two.VAL.VAL

-- Port indices, used to model variable names, in the context of each FMU.

INDEX = { 1..5 }

-- Return type of FMI API functions

datatype FMI2STATUSFULL = fmi2OK | fmi2Discard | fmi2Error | fmi2Fatal

FMI2STATUS = {fmi2OK, fmi2Error, fmi2Fatal}

ErrorFlags = {fmi2Error,fmi2Fatal}

-----------------------

-- FMI API functions --

-----------------------

channel fmi2Get : FMI2COMPONENT . INDEX . VAL . FMI2STATUSFULL

channel fmi2Set : FMI2COMPONENT . INDEX . VAL . FMI2STATUS

-- The step size in an fmi2DoStep call cannot be 0.

channel fmi2DoStep : FMI2COMPONENT . TIME . NZTIME . FMI2STATUSFULL

channel fmi2Instantiate : FMI2COMPONENT . Bool
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-- This function returns a component, and null if the instantiation

-- fails. We do not model pointers, so in our model we use a boolean

-- to cater for the possibility that instantiation may fail.

channel fmi2SetUpExperiment : FMI2COMPONENT . TIME . Bool . TIME . FMI2STATUS

channel fmi2EnterInitializationMode : FMI2COMPONENT . FMI2STATUS

channel fmi2ExitInitializationMode : FMI2COMPONENT . FMI2STATUS

channel fmi2GetBooleanStatusfmi2Terminated : FMI2COMPONENT . Bool . FMI2STATUS

channel fmi2GetMaxStepSize : FMI2COMPONENT . NZTIME . FMI2STATUS

channel fmi2Terminate : FMI2COMPONENT . FMI2STATUS

channel fmi2FreeInstance : FMI2COMPONENT . FMI2STATUS

channel fmi2GetFMUState : FMI2COMPONENT -- . FMUSTATE

. FMI2STATUS

channel fmi2SetFMUState : FMI2COMPONENT -- . FMUSTATE

. FMI2STATUS

FMIAPI = {| fmi2Get,

fmi2Set,

fmi2DoStep,

fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState |}

FMUAPI(i) = {| fmi2Get.i,

fmi2Set.i,

fmi2DoStep.i,

fmi2Instantiate.i,

fmi2SetUpExperiment.i,

fmi2EnterInitializationMode.i,

fmi2ExitInitializationMode.i,

fmi2GetBooleanStatusfmi2Terminated.i,

fmi2GetMaxStepSize.i,

fmi2Terminate.i,

fmi2FreeInstance.i,

fmi2GetFMUState.i,

fmi2SetFMUState.i |}

----------------------------

-- Timer control channels --

----------------------------

channel end

channel step : TIME . NZTIME

channel setT : TIME

channel updateSS : NZTIME

------------------------------------

-- State manager control channels --

------------------------------------

channel get : FMI2COMPONENT . INDEX . VAL

channel set : FMI2COMPONENT . INDEX . VAL

channel getctime,getetime : FMI2COMPONENT . TIME

channel setctime,setetime : FMI2COMPONENT . TIME

----------------------------------------

-- Controller for FMU status channels --

----------------------------------------

channel stepAnalysed

channel stepToComplete

--------------------------------------------------------------

-- Control channel to shutdown the simulation.

-- We note that, since an FMU may fail, its termination may

-- not be carried out gracefully with fmi2Terminate and

-- fmi2FreeInstance. This channel is used to indicate the

-- end of the experiment in all cases and shutdown the

-- model processes.

------------------------------------------------------------

channel endsimulation

------------------------------------------------------------

-- If any of the API functions returns an error, further

-- calls to API functions is restricted. This is ensured

-- by flagging the error via the channel error.

------------------------------------------------------------

channel error: ErrorFlags

----------------------

-- Master Algorithm --
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----------------------

-- This is a general characterisation of the valid history of interactions

-- traces of a master algorithm. It does not commit to specific policies to

-- define step size and error treatment, for example.

MAlgorithm(t0,tN) =

( ( ( TimedInteractions(t0,tN)

[|{|endsimulation,fmi2Instantiate|}|]

FMUStatesManager)

/\ ErrorManager )

[| union(FMIAPI,{|endsimulation,error|}) |]

ErrorHandler)

\ {|error|}

TimedInteractions(t0,tN) =

( (Timer(t0,2,tN) /\ endSimulation) [| {|step,end,setT,updateSS,endsimulation|} |] Interaction \ {stepAnalysed,stepToComplete})

\ {|step,end,setT,updateSS|}

-- stepAnalysed and stepToComplete should not be in the specification. It is there because

-- Interaction is used to specify other algorithms.

endSimulation = endsimulation -> SKIP

------------------------------------------

-- Classic Brute-force Master Algorithm --

------------------------------------------

-- Because fmi2Instantiate is used by FixedStepTimedInteractions, it needs to be

-- allowed by NoStateManager.

ClassicMAlgorithm(t0,hc,tN) =

( ( ( FixedStepTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate|}|]

NoStateManager)

/\ ErrorManager )

[| union(FMIAPI,{|endsimulation,error|}) |]

ErrorHandler)

\ {|error|}

FixedStepTimedInteractions(t0,hc,tN) =

( (FixedStepTimerNoRollBack(t0,hc,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

FixedStepInteraction(hc,tN) )

\ {|step,end,setT,updateSS|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= ClassicMAlgorithm(0,2,endOfTime)

-- Proof of termination

assert ClassicMAlgorithm(0,2,endOfTime) \ Events [F= SKIP

assert SKIP [F= ClassicMAlgorithm(0,2,endOfTime) \Events

-- Proof of deadlock freedom, except for termination

assert ClassicMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

-- Proof of determinism, in the CSP sense.

assert ClassicMAlgorithm(0,2,endOfTime) :[deterministic]

-------------------------------

-- Standard Master Algorithm --

-------------------------------

StandardClassicMAlgorithm(t0,hc,tN) =

FixedStepTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate|}|]

NoStateManager

-- assert MAlgorithm(0,endOfTime) [T= StandardClassicMAlgorithm(0,2,endOfTime) RiP

assert StandardClassicMAlgorithm(0,2,endOfTime) \ Events [F= SKIP

assert SKIP [F= StandardClassicMAlgorithm(0,2,endOfTime) \Events

assert StandardClassicMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

assert StandardClassicMAlgorithm(0,2,endOfTime) :[deterministic]

-------------------------------

-- Simulink Master Algorithm --

-------------------------------

SimulinkMAlgorithm(t0,tN) =

( ( ( VariableStepNoRollbackTimedInteractions(t0,tN)

[|{|endsimulation,fmi2Instantiate|}|]

NoStateManager)
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/\ ErrorManager )

[| union(FMIAPI,{|endsimulation,error|}) |]

ErrorHandler)

\ {|error|}

-- We use 2 as a starting step size.

VariableStepNoRollbackTimedInteractions(t0,tN) =

( (VariableStepTimerNoRollBack(t0,2,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

VariableStepInteraction(2,tN) )

\ {|step,end,setT,updateSS|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= SimulinkMAlgorithm(0,2,endOfTime)

assert SimulinkMAlgorithm(0,endOfTime) \ Events [F= SKIP

assert SKIP [F= SimulinkMAlgorithm(0,endOfTime) \Events

assert SimulinkMAlgorithm(0,endOfTime); IDLE :[deadlock free]

assert SimulinkMAlgorithm(0,endOfTime) :[deterministic]

-----------------------------

-- Broman Master Algorithm --

-----------------------------

VariableStepWithRollbackMAlgorithm(t0,hc,tN) =

( ( ( VariableStepWithRollbackTimedInteractions(t0,hc,tN)

[|{|endsimulation,fmi2Instantiate,fmi2GetFMUState,fmi2SetFMUState|}|]

FMUStatesManager)

/\ ErrorManager )

[| union(FMIAPI,{|endsimulation,error|}) |]

ErrorHandler)

\ {|error|}

VariableStepWithRollbackTimedInteractions(t0,hc,tN) =

( (VariableStepTimerWithRollBack(t0,t0,2,tN) /\ endSimulation)

[| {|step,end,setT,updateSS,endsimulation|} |]

VariableStepWithRollbackInteraction(hc) )

\ {|step,end,setT,updateSS|}

-- The refinement below follows by monotonicity of

-- the refinements proved in the sequel.

-- assert MAlgorithm(0,endOfTime) [T= VariableStepWithRollbackMAlgorithm(0,2,endOfTime)

assert VariableStepWithRollbackMAlgorithm(0,2,endOfTime) \ Events [F= SKIP

assert SKIP [F= VariableStepWithRollbackMAlgorithm(0,2,endOfTime) \Events

assert VariableStepWithRollbackMAlgorithm(0,2,endOfTime); IDLE :[deadlock free]

assert VariableStepWithRollbackMAlgorithm(0,2,endOfTime) :[deterministic]

-------------------

-- General timer --

-------------------

-- It allows roolbacks (setT), variable step size (updateSS),

-- as well as indicating the steps (step) and the end

-- (end) of the simulation

Timer(ct,hc,tN) =

let

T(t,ss) =

setT?t: { vt | vt <- TIME, vt <= tN} -> T(t,ss)

[]

updateSS?nhc: NZTIME -> T(t,nhc)

[]

step!t!ss -> T(min(t+ss,tN),ss)

[]

t == tN & end -> STOP

within

T(ct,hc)

--------------------------

-- Simple example timer --

--------------------------

FixedStepTimerNoRollBack(t0,hc,tN) =

let FSTNRB(t) =

if t <= tN then

step.t.hc -> FSTNRB(t+hc)

else

end -> STOP

within

FSTNRB(t0)
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-- We use the general components to give trace specifications to models

-- of a particular algorithm.

assert Timer(0,2,endOfTime) [T= FixedStepTimerNoRollBack(0,2,endOfTime)

--------------------

-- Simulink timer --

--------------------

VariableStepTimerNoRollBack(t0,hc,tN) =

let

VSTNRB(t,ss) =

if t <= tN then

step.t.ss -> VSTNRB(t+ss,ss)

[]

updateSS?nhc: NZTIME -> VSTNRB(t,nhc)

else

end -> STOP

within

VSTNRB(t0,hc)

-- assert Timer(0,2,endOfTime) [T= VariableStepTimerNoRollBack(0,2,endOfTime)

------------------

-- Broman timer --

------------------

VariableStepTimerWithRollBack(t0,pt,hc,tN) =

let VSTWRB(t,p,ss) =

if t <= tN then

step.t.ss -> VSTWRB(t+ss,t,ss)

[]

updateSS?nhc: NZTIME -> VSTWRB(t,p,nhc)

[]

setT.p -> VSTWRB(p,p,ss)

else

end -> STOP

within

VSTWRB(t0,pt,hc)

-- assert Timer(0,2,endOfTime) [T= VariableStepTimerWithRollBack(0,0,2,endOfTime)

--------------------------------------------------------

-- General interaction pattern for a master algorithm --

--------------------------------------------------------

-- This pattern can be autoamtically generated for a

-- given set of FMUs, as indicated by the use of the

-- inputs to such a procedure that we instantiate above

-- for a particular example.

Interaction =

let

Instantiation =

; i: FMUs @ fmi2Instantiate.i?sc -> SKIP

InstantiationMode(params) =

if params == <> then

( ( ; i : FMUs @

fmi2SetUpExperiment!i!startTime!stopTimeDefined!stopTime?st -> SKIP ) ;

( ; i : FMUs @

fmi2EnterInitializationMode.i?st -> SKIP ) )

else

let (i,x,v) = head(params) within

fmi2Set!i!x!v?st -> InstantiationMode(tail(params))

InitializationMode(inits) =

if inits == <> then

( ; i : FMUs @

fmi2ExitInitializationMode!i?st -> SKIP )

else

let (i,x,v) = head(inits) within

fmi2Set!i!x!v?st -> InitializationMode(tail(inits))

slaveInitialized =

end -> Terminated

[]

-- In Circus, we get a sequence.

step?t?hc -> (TakeOutputs(outputs,<>,t,hc); Step(t,hc))

TakeOutputs(outs,vals,t,hc) =

let

TO(os,vs) =

if os == <> then

DistributeInputs(pdg,vs,t,hc)

else
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let (i,n) = head(os) within

fmi2Get.i.n?v?st -> TO(tail(os),vs^<v>)

within

TO(outs,vals)

DistributeInputs(pds,vals,t,hc) =

let

DI(ps) =

if ps == <> then

SKIP

else

let (pos,(i,n)) = head(ps) within

fmi2Set.i.n!index(vals,pos)?st ->

DI(tail(ps))

within

DI(pds)

Step(t,hc) = let

Iterations(i) = hc != 0 & (

if i == 0 then

stepToComplete -> fmi2DoStep.1.t.hc?st -> Iterations(1)

else if i < numfmus then

(fmi2GetBooleanStatusfmi2Terminated.i?b?st -> Iterations(i)

[]

fmi2GetMaxStepSize.i?t?st -> Iterations(i)

[]

fmi2DoStep.(i+1).t.hc?st -> Iterations(i+1))

else (fmi2GetBooleanStatusfmi2Terminated.i?b?st -> Iterations(i)

[]

fmi2GetMaxStepSize.i?t?st -> Iterations(i)

[]

stepAnalysed -> SKIP)

)

within

Iterations(0);

NextStep

NextStep = updateSS?d -> NextStep

[]

setT?t -> NextStep

[]

slaveInitialized

[]

Terminated

Terminated =

( ; i: FMUs @ fmi2Terminate.i?st -> fmi2FreeInstance.i?st -> SKIP );

endsimulation -> SKIP

within

Instantiation ;

InstantiationMode(parameterValues);

InitializationMode(initialValues);

slaveInitialized

-------------------------------------------------

-- Interaction patterns for a master algorithm --

-------------------------------------------------

-----------------------------

-- Example in the standard --

-----------------------------

PossibleTerminationOnDiscard(tN) =

(Interaction

[| {| fmi2DoStep, fmi2GetBooleanStatusfmi2Terminated, end, step, stepAnalysed, fmi2Terminate, fmi2FreeInstance, endsimulation |} |]

DiscardMonitor) \ {stepAnalysed,stepToComplete}

-- The interest in stepAnalysed ensures that the FMU step cannot terminate

-- before its fmi2GetBooleanStatusfmi2Terminated is requested.

DiscardMonitor =

let

-- step is now blocked. When stepAnalysed happens, the co-simulation terminates.

ToDiscard = fmi2DoStep?i?t?hc?st -> ToDiscard

[]

stepAnalysed -> SKIP

[]

end -> SKIP

Monitor = fmi2DoStep?i?t?hc?st ->

(if st == fmi2Discard then

fmi2GetBooleanStatusfmi2Terminated.i?b?st0m ->

( if b == true
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then ToDiscard -- Although the algorithm checks this, it ignores that status until the next step.

else Monitor)

else

Monitor)

[]

stepAnalysed -> Monitor

[]

step?t?hc -> Monitor

[]

end -> SKIP

Terminated = ( ; i: FMUs @ fmi2Terminate.i?st -> fmi2FreeInstance.i?st -> SKIP );

endsimulation -> SKIP

within

Monitor; Terminated

FixedStep = endsimulation -> SKIP

FixedStepInteraction(hc,tN) =

PossibleTerminationOnDiscard(tN)

[ union(union(diff(FMIAPI,{|fmi2GetMaxStepSize|}),{endsimulation,end}),{step.t.hc | t <- TIME})

||

{ endsimulation } ]

-- This is here just to mimic the general shape of the definition of an interaction

-- and to allow us to cut down the behaviour of PossibleTerminationOnDiscard.

FixedStep

-- stepAnalysed and stepToComplete are there just to support the definition of

-- other algorithms. They should not be in the interface.

assert Interaction \ {stepAnalysed,stepToComplete} [T= FixedStepInteraction(2,endOfTime)

------------------------

-- Simulink algorithm --

------------------------

-- The synchronisation between Interaction and VaryStep on updateSS

-- ensures that the update can only take place at the right point

-- of the loop.

VariableStepInteraction(hc,tN) =

PossibleTerminationOnDiscard(tN)

[ union(diff(FMIAPI,{|fmi2GetMaxStepSize|}),{|endsimulation,end,stepAnalysed,stepToComplete,step,updateSS|})

||

{| fmi2Get,updateSS,endsimulation |} ]

VaryStep(hc)

channel delta: {(-3)..3}

-- This can be modelled much more generally and elegantly in Circus.

-- The initial step size is defined in the instantiation of the right timer.

VaryStep(hc) =

let

threshold = 5

Monitor(y1,y2,y3) =

fmi2Get.1.1?ny1?st -> delta!(y1 - ny1) ->

fmi2Get.2.1?ny2?st -> delta!(y2 - ny2) ->

fmi2Get.3.3?ny3?st -> delta!(y3 - ny3) ->

Monitor(ny1,ny2,ny3)

Adjust(hc) = delta?d1 -> delta?d2 -> delta?d3 ->

if (d1 != eps and (d1 >= threshold or d1 <= -threshold)) and

(d2 != eps and (d2 >= threshold or d2 <= -threshold)) and

(d1 != eps and (d3 >= threshold or d3 <= -threshold))

then updateSS!min(hc+1,endOfTime) -> Adjust(hc+1)

else Adjust(hc)

Step = (Monitor(eps,eps,eps) [| {| delta |} |] Adjust(hc)) \ {| delta |}

within

Step /\ endsimulation -> SKIP

assert Interaction \ {stepAnalysed,stepToComplete} [T= VariableStepInteraction(2,endOfTime)

----------------------

-- Broman algorithm --

----------------------

-- Interaction is nondeterministic, in that, at the end of each step, it allows the

-- step to be terminated or the next step to proceed. To make it deterministic, we

-- need the algorithm to make a decision. Here, we just allow termination at the end.

-- Interaction also allows the use of fmi2GetBooleanStatusfmi2Terminated, which is not

-- needed in this algorithm. To block it, we put it in the interface of Rollback.

VariableStepWithRollbackInteraction(hcmax) =

((Interaction [| {| end, fmi2Terminate, endsimulation |} |] (end -> RUN({| fmi2Terminate |}) /\ endSimulation) )
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[ union(diff(FMIAPI,{|fmi2GetFMUState,fmi2SetFMUState|}),{|endsimulation,end,step,stepAnalysed,stepToComplete,setT,updateSS|})

||

{| fmi2DoStep,fmi2GetBooleanStatusfmi2Terminated,fmi2GetMaxStepSize,

fmi2GetFMUState,fmi2SetFMUState,

step,stepAnalysed,stepToComplete,setT,updateSS,endsimulation |} ]

Rollback(hcmax)) \ {stepAnalysed,stepToComplete}

channel hcmin: TIME

Rollback(hcmax) =

let

-- In Circus, this can be much more elegant.

Monitor =

-- Synchronisation on step, as well as stepToComplete, ensures that a new step cannot start

-- before the management required here is completed.

step?t?hc -> stepToComplete ->

(; i: FMUs @ fmi2GetFMUState.i?st -> SKIP); -- ?s?st -> SKIP) ;

(; i: FMUs @ fmi2DoStep?i?t.hc?st -> fmi2GetMaxStepSize.i?hc?st -> hcmin!hc -> SKIP)

Decide =

step?t?hc -> (hcmin?h1 -> hcmin?h2 -> hcmin?h3 -> hcmin?h4 ->

let

newhc = min4(h1,h2,h3,h4)

within

if 0 < newhc and newhc < hc

then (; i: FMUs @ fmi2SetFMUState.i?st -> SKIP); -- ?s?st -> SKIP);

stepAnalysed -> setT?t -> updateSS!newhc -> SKIP

else stepAnalysed -> SKIP)

Step = ((Monitor [| {| step,hcmin |} |] Decide) \ {| hcmin |}); Step

within

Step /\ endsimulation -> SKIP

assert (TimedInteractions(0,endOfTime) [|{|endsimulation,fmi2Instantiate|}|] FMUStatesManager)

[T=

(VariableStepWithRollbackTimedInteractions(0,2,endOfTime)

[|{|endsimulation,fmi2Instantiate,fmi2GetFMUState,fmi2SetFMUState|}|]

FMUStatesManager )

--------------------------------------------------

-- General state manager for a master algorithm --

--------------------------------------------------

-- Once an FMU is instantiated, then it is possible to retrieve the

-- state. After that, both gets and sets are allowed. Error management

-- is handled by Interaction.

FMUStateManager(i) =

let

AllowAGet =

fmi2GetFMUState.i?st -- ?s?st

-> AllowsGetsAndSets -- (s)

AllowsGetsAndSets = -- (s) =

fmi2GetFMUState.i?st -- ?t?st

-> AllowsGetsAndSets -- (t)

[]

fmi2SetFMUState.i?st -- !s?st

-> AllowsGetsAndSets -- (s)

within

fmi2Instantiate.i?b -> AllowAGet

FMUStatesManager = ( ||| i : FMI2COMPONENT @ FMUStateManager(i) ) /\ endSimulation

-------------------------------------------------

-- Simple state manager for a master algorithm --

-------------------------------------------------

NoStateManager = ( ||| i : FMI2COMPONENT @ fmi2Instantiate.i?b -> STOP) /\ endSimulation

-- We cannot model check the stateful version of the algorithms, but with the state

-- actually commented out, it passes.

assert FMUStatesManager [T= NoStateManager

-------------------------------------------------

-- State manager for Broman’s master algorithm --

-------------------------------------------------

BromanFMUStatesManager = FMUStatesManager

--------------------

-- Error Handling --

--------------------

-- The parameter mst is the monitored status. It can be either fmi2Error or fmi2Fatal.

-- We are not treating the occurrence of fmi2Error as recoverable. So, there is no possibility

-- of resetting the FMU and continuing.
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ErrorMonitor(mst) = let

Monitor(st) =

fmi2Get?i?n?v?st -> StopError(st)

[]

fmi2Set?i?n?v?st -> StopError(st)

[]

fmi2GetFMUState?i?st -> StopError(st) -- ?s?st -> StopError(st)

[]

fmi2SetFMUState?i?st -> StopError(st) -- ?s?st -> StopError(st)

[]

fmi2SetUpExperiment?i?t?b?hc?st -> StopError(st)

[]

fmi2EnterInitializationMode?i?st -> StopError(st)

[]

fmi2ExitInitializationMode?i?st -> StopError(st)

[]

fmi2GetBooleanStatusfmi2Terminated?i?b?st -> StopError(st)

[]

fmi2DoStep?i?t?hc?st -> StopError(st)

[]

fmi2Terminate?i?st -> StopError(st)

[]

fmi2GetMaxStepSize?i?t?st -> StopError(st)

[]

fmi2Instantiate?i?b -> (if b == true then StopError(fmi2OK) else StopError(fmi2Fatal))

[]

fmi2FreeInstance?i?st -> StopError(st)

StopError(st) = st == mst & error.mst -> Monitor(st) [] st != mst & Monitor(st)

within

Monitor(fmi2OK) /\ endsimulation -> SKIP

ErrorHandler = ErrorMonitor(fmi2Error) [| union(FMIAPI,{endsimulation}) |] ErrorMonitor(fmi2Fatal)

ErrorManager = FatalError [] ErrorManagement

FatalError = error.fmi2Fatal -> endsimulation -> SKIP

ErrorManagement = let

Shutdown(i) = fmi2Instantiate.i?b -> ShutdownCreated(i); endsimulation -> SKIP

[]

error.fmi2Error -> endsimulation -> SKIP

ShutdownCreated(i) = error.fmi2Error -> fmi2FreeInstance.i?st -> SKIP

[]

fmi2FreeInstance.i?st -> SKIP

within

(|| i: FMI2COMPONENT @ [{|error,endsimulation|}] Shutdown(i))

----------------

-- FMIWrapper --

-----------------

FMIWrapper(t0,tN) =

FMUInterface(pdsgfmu1)

[|{endsimulation}|]

( FMUInterface(pdsgfmu2)

[|{endsimulation}|]

( FMUInterface(samplerfmu)

[|{endsimulation}|]

FMUInterface(checkequalityfmu) ) )

ExampleFMIWrapper(t0,tN) =

PDSGFMU(pdsgfmu1)

[|{endsimulation}|]

( PDSGFMU(pdsgfmu2)

[|{endsimulation}|]

( SamplerFMU(samplerfmu)

[|{endsimulation}|]

CheckEqualityFMU(checkequalityfmu) ) )

-- The refinement below is established by monotonicity.

-- assert FMIWrapper(0,endOfTime) [T= ExampleFMIWrapper(0,endOfTime)

---------------------------------

-- General behaviour of an FMU --

---------------------------------

FMUInterface(i) =

let

Instantiation =
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fmi2Instantiate.i?b -> (b == true & Instantiated(fmi2OK) [] b == false & RUN(FMUAPI(i)))

Instantiated(st) =

st == fmi2Fatal & RUN(FMUAPI(i))

[]

not member(st,ErrorFlags) & (

fmi2SetUpExperiment!i?starttime?stoptimedefined?stoptime?st -> Instantiated(st)

[]

fmi2Set!i?x?v?st -> Instantiated(st)

[]

fmi2GetFMUState.i?st -> Instantiated(st) -- ?s?st -> Instantiated(st)

[]

fmi2SetFMUState.i?st -> Instantiated(st) -- ?s?st -> Instantiated(st)

[]

fmi2EnterInitializationMode.i?st -> Instantiated(st)

[]

fmi2ExitInitializationMode.i?st -> Instantiated(st)

[]

fmi2Get.i?n?v?st -> Instantiated(st)

[]

fmi2DoStep.i?t?hc?st -> Instantiated(st)

[]

fmi2GetMaxStepSize.i?hc?st -> Instantiated(st)

[]

fmi2GetBooleanStatusfmi2Terminated.i?b?st -> Instantiated(st)

[]

fmi2Terminate.i?st -> Instantiated(st))

[]

st != fmi2Fatal & fmi2FreeInstance.i?st -> if st == fmi2Fatal

then RUN(FMUAPI(i))

else Instantiation

within

Instantiation /\ endSimulation

----------------------------------------

-- Periodic Discrete Signal Generator --

----------------------------------------

Instantiation(i) = fmi2Instantiate.i!true -> SKIP

PDSGFMUProc(i) =

let

InstantiationMode = get.i.2?p -> (

fmi2Set.i.1?a!fmi2OK -> set.i.1!a -> InstantiationMode

[]

fmi2Set.i.2?p!fmi2OK -> set.i.2!p -> InstantiationMode

[]

p != 0 & fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i.t0 -> setetime.i.tN ->

fmi2EnterInitializationMode.i!fmi2OK -> SKIP

[]

p == 0 & fmi2SetUpExperiment.i?t0!true?tN!fmi2Fatal -> STOP

[]

fmi2SetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

[]

fmi2GetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

)

-- It has no inputs, so nothing can be set.

InitializationMode =

fmi2ExitInitializationMode.i!fmi2OK ->

-- This is a part that cannot be automatically generated.

getctime.i?t0 -> getetime.i?tN ->

t0 <= tN & get.i.2?p -> p != 0 & (

if t0%p==0 then

get.i.1?a -> set.i.3.a -> SKIP

else

set.i.3.eps -> SKIP)

-- It has no inputs, so nothing can be set.

[]

fmi2SetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

[]

fmi2GetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

slaveInitialized(hc) =

get.i.3?y ->

(fmi2Get.i.1!y!fmi2OK -> slaveInitialized(hc)

[]

-- This is a part that cannot be automatically generated.

fmi2DoStep.i?t?ss!fmi2OK ->

(get.i.2?p ->

p != 0 & if t%p==0 then

get.i.1?a -> set.i.3.a -> slaveInitialized(ss)

else
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set.i.3.eps -> slaveInitialized(ss))

[]

fmi2GetMaxStepSize.i!hc!fmi2OK -> slaveInitialized(hc)

[]

fmi2SetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

[]

fmi2GetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

)

within

InstantiationMode;

InitializationMode;

(slaveInitialized(1) /\ fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP)

-- This can be defined in a more generic way in Circus

-- using the input to the model generation that describes

-- inputs, outputs, and exposed variables.

-- State

PDSGFMUState(i,t,st,three.a.p.y) =

get.i.1!a -> PDSGFMUState(i,t,st,three.a.p.y)

[]

get.i.2!p -> PDSGFMUState(i,t,st,three.a.p.y)

[]

get.i.3!y -> PDSGFMUState(i,t,st,three.a.p.y)

[]

getctime.i!t -> PDSGFMUState(i,t,st,three.a.p.y)

[]

getetime.i!st -> PDSGFMUState(i,t,st,three.a.p.y)

[]

set.i.1?na -> PDSGFMUState(i,t,st,three.na.p.y)

[]

set.i.2?np -> PDSGFMUState(i,t,st,three.a.np.y)

[]

set.i.3?ny -> PDSGFMUState(i,t,st,three.a.p.ny)

[]

setctime.i?ct -> PDSGFMUState(i,ct,st,three.a.p.y)

[]

setetime.i?et -> PDSGFMUState(i,t,et,three.a.p.y)

[]

fmi2SetFMUState.i.fmi2OK -> PDSGFMUState(i,t,st,three.a.p.y) -- .three?na?np?ny!fmi2OK -> PDSGFMUState(i,t,st,three.na.np.ny) --

[]

fmi2GetFMUState.i.fmi2OK -> PDSGFMUState(i,t,st,three.a.p.y) -- .three!a!p!y!fmi2OK -> PDSGFMUState(i,t,st,three.a.p.y) --

-- Complete process

PDSGFMU(i) =

Instantiation(i);

( PDSGFMUProc(i)

[|{|get.i,set.i,getctime,getetime,setctime,setetime,fmi2SetFMUState,fmi2GetFMUState|}|]

PDSGFMUState(i,0,0,three.eps.eps.eps)

) \ {|get.i,set.i,getctime,getetime,setctime,setetime|}

/\ endSimulation

assert FMUInterface(pdsgfmu1) [T= PDSGFMU(pdsgfmu1)

-------------

-- Sampler --

-------------

-- Main action

SamplerFMUProc(i) =

let

-- It has no parameters, so nothing can be set.

InstantiationMode =

fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i.t0 -> setetime.i.tN ->

fmi2EnterInitializationMode.i!fmi2OK -> SKIP

[]

fmi2SetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

[]

fmi2GetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

InitializationMode =

fmi2Set.i.1?x!fmi2OK -> set.i.1!x -> InitializationMode

[]

fmi2Set.i.2?s!fmi2OK -> set.i.2!s -> InitializationMode

[]

fmi2ExitInitializationMode.i!fmi2OK ->

-- This is a part that cannot be automatically generated.

getctime.i?t0 -> getetime.i?tN ->

t0<=tN &

get.i.2?s ->

( if s != eps then

get.i.1?x -> set.i.2!x -> set.i.3!x -> SKIP

else

set.i.2!eps -> set.i.3!eps -> SKIP )
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[]

fmi2SetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

[]

fmi2GetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

slaveInitialized(hc) =

get.i.3?y ->

(fmi2Set.i.1?xv!fmi2OK -> set.i.1!xv -> slaveInitialized(hc)

[]

fmi2Set.i.2?sv!fmi2OK -> set.i.2!sv -> slaveInitialized(hc)

[]

-- This is a part that cannot be automatically generated.

fmi2DoStep.i?t?ss!fmi2OK -> get.i.2?s ->

( if s != eps then

get.i.1?x -> set.i.2!x -> set.i.3!x -> slaveInitialized(ss)

else

set.i.2!eps -> set.i.3!eps -> slaveInitialized(ss))

[]

fmi2Get.i.3!y!fmi2OK -> slaveInitialized(hc)

[]

fmi2GetMaxStepSize.i!hc!fmi2OK -> slaveInitialized(hc)

[]

fmi2SetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

[]

fmi2GetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

)

within

InstantiationMode ;

InitializationMode ;

( slaveInitialized(1) /\ fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP)

SamplerFMUState(i,t,st,three.x.s.y) =

let

SFMUS(t,st,three.x.s.y) =

get.i.1!x -> SFMUS(t,st,three.x.s.y)

[]

get.i.2!s -> SFMUS(t,st,three.x.s.y)

[]

get.i.3!y -> SFMUS(t,st,three.x.s.y)

[]

getctime.i!t -> SFMUS(t,st,three.x.s.y)

[]

getetime.i!st -> SFMUS(t,st,three.x.s.y)

[]

set.i.1?nx -> SFMUS(t,st,three.nx.s.y)

[]

set.i.2?ns -> SFMUS(t,st,three.x.ns.y)

[]

set.i.3?ny -> SFMUS(t,st,three.x.s.ny)

[]

setctime.i?ct -> SFMUS(ct,st,three.x.s.y)

[]

setetime.i?et -> SFMUS(t,et,three.x.s.y)

[]

fmi2SetFMUState.i.fmi2OK -> SFMUS(t,st,three.x.s.y) -- .three?nx?ns?ny!fmi2OK -> SFMUS(t,st,three.nx.ns.ny) --

[]

fmi2GetFMUState.i.fmi2OK -> SFMUS(t,st,three.x.s.y) -- .three!x!s!y!fmi2OK -> SFMUS(t,st,three.x.s.y) --

within

SFMUS(t,st,three.x.s.y)

-- Main process

SamplerFMU(i) =

Instantiation(i);

( SamplerFMUProc(i)

[|{|get.i,set.i,getctime,getetime,setctime,setetime,fmi2SetFMUState,fmi2GetFMUState|}|]

SamplerFMUState(i,0,0,three.eps.eps.eps)

) \ {|get.i,set.i,getctime,getetime,setctime,setetime|}

/\ endSimulation

assert FMUInterface(samplerfmu) [T= SamplerFMU(samplerfmu)

--------------------

-- Check Equality --

--------------------

-- Main action

CheckEqualityFMUProc(i) =

let

-- It has no parameters, so nothing can be set.

InstantiationMode =

fmi2SetUpExperiment.i?t0!true?tN!fmi2OK ->

setctime.i.t0 -> setetime.i.tN ->

fmi2EnterInitializationMode.i!fmi2OK -> SKIP
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[]

fmi2SetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

[]

fmi2GetFMUState.i!fmi2OK -> InstantiationMode -- ?s!fmi2OK -> InstantiationMode

InitializationMode =

fmi2Set.i.1?x1!fmi2OK -> set.i.1!x1 -> InitializationMode

[]

fmi2Set.i.2?x2!fmi2OK -> set.i.2!x2 -> InitializationMode

[]

fmi2ExitInitializationMode.i!fmi2OK ->

-- This is a part that cannot be automatically generated.

(getctime.i?t0 -> getetime.i?tN -> t0 <= tN & SKIP)

[]

fmi2SetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

[]

fmi2GetFMUState.i!fmi2OK -> InitializationMode -- ?s!fmi2OK -> InitializationMode

-- It has no outputs, so nothing can be gotten.

slaveInitialized(hc) =

fmi2Set.i.1?x1v!fmi2OK -> set.i.1!x1v -> slaveInitialized(hc)

[]

fmi2Set.i.2?x2v!fmi2OK -> set.i.2!x2v -> slaveInitialized(hc)

[]

-- This is a part that cannot be automatically generated.

fmi2DoStep.i?t?ss!fmi2OK -> slaveInitialized(ss)

[]

fmi2GetMaxStepSize.i!hc!fmi2OK -> slaveInitialized(hc)

[]

fmi2SetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

[]

fmi2GetFMUState.i!fmi2OK -> slaveInitialized(hc) -- ?s!fmi2OK -> slaveInitialized(hc)

within

InstantiationMode ;

InitializationMode ;

(slaveInitialized(1) /\ fmi2Terminate.i!fmi2OK -> fmi2FreeInstance.i!fmi2OK -> STOP)

CheckEqualityFMUState(i,t,st,two.x1.x2) =

let

CEFMUS(t,st,two.x1.x2) =

get.i.1!x1 -> CEFMUS(t,st,two.x1.x2)

[]

get.i.2!x2 -> CEFMUS(t,st,two.x1.x2)

[]

getctime.i!t -> CEFMUS(t,st,two.x1.x2)

[]

getetime.i!st -> CEFMUS(t,st,two.x1.x2)

[]

set.i.1?nx1 -> CEFMUS(t,st,two.nx1.x2)

[]

set.i.2?nx2 -> CEFMUS(t,st,two.x1.nx2)

[]

setctime.i?ct -> CEFMUS(ct,st,two.x1.x2)

[]

setetime.i?et -> CEFMUS(t,et,two.x1.x2)

[]

fmi2SetFMUState.i.fmi2OK -> CEFMUS(t,st,two.x1.x2) -- .two?nx1?nx2!fmi2OK -> CEFMUS(t,st,two.nx1.nx2) --

[]

fmi2GetFMUState.i.fmi2OK -> CEFMUS(t,st,two.x1.x2) -- .two!x1!x2!fmi2OK -> CEFMUS(t,st,two.x1.x2) --

within

CEFMUS(t,st,two.x1.x2)

-- Process

CheckEqualityFMU(i) =

Instantiation(i);

( CheckEqualityFMUProc(i)

[|{|get.i,set.i,getctime,getetime,setctime,setetime,fmi2SetFMUState,fmi2GetFMUState|}|]

CheckEqualityFMUState(i,0,0,two.eps.eps)

) \ {|get.i,set.i,getctime,getetime,setctime,setetime|}

/\ endSimulation

assert FMUInterface(checkequalityfmu) [T= CheckEqualityFMU(checkequalityfmu)

-------------------

-- Cosimulations --

-------------------

Cosimulation(t0,tN) =

( MAlgorithm(t0,tN)

[| union(FMIAPI,{endsimulation}) |]

FMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,
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fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

-- Refinement is established by monotonicity

-------------

-- Classic --

-------------

ClassicCosimulation(t0,hc,tN) =

( ClassicMAlgorithm(t0,hc,tN)

[| union(FMIAPI,{endsimulation}) |]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

assert ClassicCosimulation(0,2,endOfTime) :[deterministic]

assert ClassicCosimulation(0,2,endOfTime) ; IDLE :[deadlock free]

assert ClassicCosimulation(0,2,endOfTime) :[livelock free]

--------------

-- Simulink --

--------------

SimulinkCosimulation(t0,tN) =

(SimulinkMAlgorithm(t0,tN)

[|union(FMIAPI,{endsimulation})|]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

assert SimulinkCosimulation(0,endOfTime) :[deterministic]

assert SimulinkCosimulation(0,endOfTime) ; IDLE :[deadlock free]

assert SimulinkCosimulation(0,endOfTime) :[livelock free]

------------

-- Broman --

------------

VariableStepWithRollbackCosimulation(t0,hc,tN) =

(VariableStepWithRollbackMAlgorithm(t0,hc,tN)

[|union(FMIAPI,{endsimulation})|]

ExampleFMIWrapper(t0,tN) ) \ {|fmi2Instantiate,

fmi2SetUpExperiment,

fmi2EnterInitializationMode,

fmi2ExitInitializationMode,

fmi2GetBooleanStatusfmi2Terminated,

fmi2GetMaxStepSize,

fmi2Terminate,

fmi2FreeInstance,

fmi2GetFMUState,

fmi2SetFMUState,

endsimulation|}

assert VariableStepWithRollbackCosimulation(0,2,endOfTime) :[deterministic]

assert VariableStepWithRollbackCosimulation(0,2,endOfTime) ; IDLE :[deadlock free]

assert VariableStepWithRollbackCosimulation(0,2,endOfTime) :[livelock free]
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--------------

-- Scenario --

--------------

SynchronousEventsSpec =

AllInInternalChoice({fmi2Set.1.1.1.fmi2OK,fmi2Set.1.2.1.fmi2OK,fmi2Set.2.1.1.fmi2OK,fmi2Set.2.2.2.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

AllInInternalChoice({fmi2Get.1.1.1.fmi2OK,fmi2Get.2.1.1.fmi2OK,fmi2Get.3.3.1.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

(fmi2DoStep.1.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.2.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.3.0.2.fmi2OK -> SKIP) ;

(fmi2DoStep.4.0.2.fmi2OK -> SKIP) ;

AllInInternalChoice({fmi2Get.1.1.1.fmi2OK,fmi2Get.2.1.1.fmi2OK,fmi2Get.3.3.1.fmi2OK}) ;

AllInInternalChoice({fmi2Set.3.1.1.fmi2OK,fmi2Set.3.2.1.fmi2OK,fmi2Set.4.1.1.fmi2OK,fmi2Set.4.2.1.fmi2OK}) ;

(fmi2DoStep.1.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.2.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.3.2.2.fmi2OK -> SKIP) ;

(fmi2DoStep.4.2.2.fmi2OK -> SKIP)

-- assert SynchronousEventsSpec [FD= ClassicCosimulation(0,2,2) -- RiP

-- assert SynchronousEventsSpec [FD= SimulinkCosimulation(0,2)

-- assert SynchronousEventsSpec [FD= VariableStepWithRollbackCosimulation(0,2,2)

----------------------------

-- Deterministic Scenario --

----------------------------

DSynchronousEventsSpec =

-- Setting parameters

fmi2Set.1.1.1.fmi2OK -> fmi2Set.1.2.1.fmi2OK -> fmi2Set.2.1.1.fmi2OK -> fmi2Set.2.2.2.fmi2OK ->

-- Setting initial values of inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK ->

-- Steps

-- First step

-- Take outputs

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

-- Distribute inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

-- Step

fmi2DoStep.1.0.2.fmi2OK -> fmi2DoStep.2.0.2.fmi2OK -> fmi2DoStep.3.0.2.fmi2OK -> fmi2DoStep.4.0.2.fmi2OK ->

-- Second step

-- Take outputs

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

-- Distribute inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

-- Step

fmi2DoStep.1.2.2.fmi2OK -> fmi2DoStep.2.2.2.fmi2OK -> fmi2DoStep.3.2.2.fmi2OK -> fmi2DoStep.4.2.2.fmi2OK ->

SKIP

assert ClassicCosimulation(0,2,2) [T= DSynchronousEventsSpec

assert SimulinkCosimulation(0,2) [T= DSynchronousEventsSpec

assert VariableStepWithRollbackCosimulation(0,2,2) [T= DSynchronousEventsSpec

-- Auxiliary functions

index(<v>^vals,pos) = if pos == 1 then v else index(vals,pos-1)

max(a,b) = if a >= b then a else b

min(a,b) = if a >= b then b else a

min4(a,b,c,d) = min(min(a,b),min(c,d))

-- Auxiliary definitions to specify scenarios

AllInInternalChoice(s) =

if (empty(s))

then SKIP

else |~| e: s @ e -> AllInInternalChoice(diff(s,{e}))

AllInInternalofExternalChoices(ss) =

if (empty(ss))

then SKIP

else |~| cs: ss @ ([] e: cs @ e -> AllInInternalChoice(diff(cs,{e})))

channel printme: {(-10)..10}
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process FMUSketch =̂ i : FMI 2COMP • begin

state State = [currentTime, endTime : TIME ; cpi , cinpi , cevi , couti ]

Instantiation = fmi2Instantiate.i !true −→ Skip

InstantiationMode =
fmi2Set .i .pi?v !fmi2OK −→ cpi := v ; InstantiationMode
@
fmi2SetUpExperiment .i?t0!true?tN !fmi2OK−→

currentTime, endTime := t0, tN ;
fmi2EnterInitializationMode.i !fmi2OK −→ Skip

InitializationMode =
fmi2Set .i .inpi?v !fmi2OK −→ cinpi := v ; InitializationMode
@
fmi2ExitInitializationMode.i !fmi2OK −→ UpdateState

slaveInitialized =
fmi2Get .i .outi !couti !fmi2OK −→ slaveInitialized
@
fmi2Set .i .inpi?v .fmi2OK −→ cinpi := v ; slaveInitialized
@
fmi2DoStep.i?t?ss !fmi2OK −→ (UpdateState; slaveInitialized)

• Instantiation; InstantiationMode; InitializationMode;
(slaveInitialized4
fmi2Terminate.i !fmi2OK −→ fmi2FreeInstance.i !fmi2OK −→ Stop)

end

Figure 6: Sketch of a model for a specific FMU

62



D2.2d - Foundations for FMI (Public)

Notice that we do not attempt to define this for CT inputs. Indeed, if presented with a CT input, this
component will produce a rather odd output signal, one whose initial value is always absent, and subsequent
values are present. If the input is a piecewise continuous DE signal, then the input is always absent at
microstep zero, and the output will also be piecewise continuous. If the input is free of chattering Zeno
conditions, then the output will be free of chattering Zeno conditions. In this case, the final value of the
input is also ", so the final value of the output will be ".

Notice further that we do not generalize this component to have a parameter m to delay by m microsteps.
See the discussion in Section 4.4 below for the reason for this.

4 Composition Test Cases

A hybrid cosimulation FMI standard that enables definition of the above components provides a rich frame-
work for composition of discrete and continuous simulation tools. Any such standard should be able to
unambiguously define FMUs that realize such components and should ensure that host simulators are capa-
ble of executing these FMUs. Such capabilities can be verified using unit tests that check each of the above
components individually by providing a range of inputs and verifying that the outputs match the ideal (up
to some precision, where appropriate). But such unit tests are not quite su�cient. We also need to ensure
that interactions between multiple components behave correctly.

In this section, we discuss some test cases that combine a few of the above components, and give accep-
tance criteria that define correct behavior. These test cases are, in e↵ect, constraints on master algorithms.
Host simulators that conform with the standard must implement master algorithms that satisfy these ac-
ceptance criteria.

4.1 Synchronous Events

This test case checks that multiple components with discrete timed behavior coordinate their representations
of time. Consider the composition shown in Figure 4. This has three components:

1. A Periodic Discrete Signal Generator with period p=1/3 and a=1.

2. A Periodic Discrete Signal Generator with period p=2/3 and a=1.

3. A Sampler with DE input x

The test criterion is that the output of the Sampler should equal the output of second Periodic Discrete
Signal Generator at all superdense times. More generally, we would like the periods to be p = q and 2q,
where q is a representable time, given as 1/3 in our test case.

Discussion. FMUs may internally use representations of time that are di↵erent from that of the host
simulator. This test criterion is intended to ensure that no matter how the FMU and host simulator
internally represent time, the Sampler and Periodic Discrete Signal Generator semantics are respected. This
test case also checks for a well-defined notion of simultaneity. In particular, the periods chosen are not

Figure 4: Test case for sampling of discrete event signals.

19

Figure 7: Test case for sampling of discrete event signals [6]

processVaryStep =̂ threshold : VAL; initialSS : NZTIME • begin

state
State = [oldOuts , newOuts : (FMI 2COMP × VAR) 7→ VAL; currentSS : NZTIME ]

Init
State ′

dom oldOuts ′ = ran outputs ∧ ran oldOuts = ε ∧ newOuts ′ = ∅
currentSS ′ = initialSS

Monitor =̂; out : outputs •
fmi2Get .(FMU out).(name out)?nv?st −→ newOuts := newOuts ⊕ {out 7→ nv}

Adjust =̂ if delta(oldOuts , newOuts) ≥ threshold−→
currentSS := newstep(delta(oldOuts , newOuts), currentSS );
updateSS !currentSS −→ Skip

8 delta(oldOuts , newOuts) > threshold −→ Skip
fi

Step = Monitor ; Adjust ; Step

• Init ; (Step 4 endSimulation)

end

Figure 8: Model of VaryStep
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DSynchronousEventsSpec =

-- Set parameters

fmi2Set.1.1.1.fmi2OK -> fmi2Set.1.2.1.fmi2OK ->

fmi2Set.2.1.1.fmi2OK -> fmi2Set.2.2.2.fmi2OK ->

-- Set initial values of inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.1.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK ->

-- Steps

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.0.2.fmi2OK -> fmi2DoStep.2.0.2.fmi2OK ->

fmi2DoStep.3.0.2.fmi2OK -> fmi2DoStep.4.0.2.fmi2OK ->

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.2.2.fmi2OK -> fmi2DoStep.2.2.2.fmi2OK ->

fmi2DoStep.3.2.2.fmi2OK -> fmi2DoStep.4.2.2.fmi2OK -> SKIP

assert Cosimulation(0,2) [T= SynchronousEventsSpec

Figure 9: Scenarios for Fig 7: sampling of discrete event signals
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Figure 10: A data-flow example
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D2.2d - Foundations for FMI (Public)

DFSPECFMUProc(i) =

let

slaveInitialized(hc) =

...

[]

fmi2DoStep.i?t?ss!fmi2OK -> (UpdateState; slaveInitialized(ss))

UpdateState =

get.i.1?x:INPUTVALP ->

getinput.i.1?y:INPUTVALP ->

getparam.i.1?a:PARAMVAL -> getparam.i.2?b:PARAMVAL ->

setoutput.i.1!(a*x+b*y) -> SKIP

within

Instantiation; InstantiationMode(eps,eps);

InitializationMode; slaveInitialized(0)

Figure 11: Data flow specification
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