
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Initial Semantics of Modelica

Technical Note Number: D2.2c

Version: 1.1

Date: December 2016

Public Document

http://into-cps.au.dk



D2.2c - Initial Modelica Semantics (Public)

Contributors:

Ana Cavalcanti, UY
Simon Foster, UY
Bernhard Thiele, LIU
Jim Woodcock, UY

Editors:

Simon Foster, UY

Reviewers:

Hassan Ridouane, UTRC
Christian Kleijn, CLP
Ken Pierce, UNEW

Consortium:
Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2



D2.2c - Initial Modelica Semantics (Public)

Document History

Ver Date Author Description
0.1 10-06-2016 Simon Foster Initial document version
0.2 20-10-2016 Simon Foster Nearly final version
1.0 29-10-2016 Simon Foster Final draft for review
1.1 05-12-2016 Simon Foster Final version for submission

3



D2.2c - Initial Modelica Semantics (Public)

Abstract

This deliverable reports on our work towards providing a continuous-time semantics for
the dynamical systems modelling language, Modelica, in the context of Hoare and He’s
Unifying Theories of Programming (UTP) as a basis to reason about FMI simulations.
Modelica is a language for modelling a system’s continuous behaviour using a combination
of differential-algebraic equations and an event-handling system. Inspired by Hybrid
CSP and Duration Calculus, we develop a novel UTP theory of hybrid relations that
is purely relational and provides uniform handling of continuous and discrete variables.
This theory is mechanised in our Isabelle implementation of the UTP, Isabelle/UTP,
with which we verify some algebraic properties. We then show how a subset of Modelica
models can be given semantics using our theory. When combined with the wealth of
existing UTP theories for discrete system modelling, our work enables a sound approach
to heterogeneous semantics for Cyber-Physical Systems by leveraging the theory-linking
facilities of the UTP. We demonstrate this by showing how our hybrid relational calculus
can be integrated with the theory of reactive processes.

4



D2.2c - Initial Modelica Semantics (Public)

Contents
Acronyms 6

1 Introduction 7

2 Related Work: Hybrid Systems 9

3 Unifying Theories of Programming 11

4 Modelica 12

5 Theory of Hybrid Relations 14
5.1 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Healthiness conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Hybrid Relational Calculus 16

7 Mechanisation in Isabelle/UTP 20

8 Semantics of Hybrid DAEs 23

9 Hybrid Reactive Designs 25
9.1 Relations and Timed Reactive Programs . . . . . . . . . . . . . . . . . . 26
9.2 Generalised Reactive Processes . . . . . . . . . . . . . . . . . . . . . . . 28
9.3 Timed Traces and Hybrid Reactive Designs . . . . . . . . . . . . . . . . . 29

10 Conclusion 32

5



D2.2c - Initial Modelica Semantics (Public)

Acronyms

.

DAE differential algebraic equation.

EOO equation-based object-oriented.

FMI Functional Mock-up Interface.
FMU Functional Mock-up Unit.

IC initial condition.
IVP initial value problem.

LHS left-hand side.

MLS Modelica Language Specification.

ODE ordinary differential equation.

RHS right-hand side.

UTP Unifying Theories of Programming.

6



D2.2c - Initial Modelica Semantics (Public)

1 Introduction

INTO-CPS multi-models are composed of models whose foundations lie in a variety of
modelling notations, each of which has its own unique syntax, semantics, and underlying
paradigmatic concepts, such as discrete or continuous time. The purpose of a multi-model
is assign behaviour to a Cyber-Physical System (CPS) by composing the behaviours of
the constituent models. Thus, in order to provide an integrated tool chain for trustworthy
CPS development, there is a necessity for unification of these underlying semantic models
to allow consistent integration of heterogeneous system components. This will then allow
us to substantiate statements made about the multi-model with respect to the underlying
mathematical core. Hoare and He’s Unifying Theories of Programming [30] (UTP) has
been designed as a framework in which the integration of languages, through the common
semantic domain of the alphabetised relation calculus, can be achieved. In this deliverable
we leverage the UTP to provide the foundations for continuous-time modelling in the
INTO-CPS tool chain.

Modelling of continuous dynamical systems in the INTO-CPS tool chain is provided by
the Modelica and 20-sim tools, both of which are based on differential equations. In the
first year we provided a UTP theory of differential equations in the form of the hybrid
relational calculus in Deliverable D2.1c [19], a minimal language to allow the specification
of sequential hybrid systems with discrete behaviour and differential equations [14]. In
this deliverable we provide an updated version of the calculus, with a new healthiness
condition to account for piecewise continuous functions and appropriately updated oper-
ator definitions. We then use this new version of the calculus to give a continuous-time
semantics for Modelica, which is the main objective of the deliverable. Our new calcu-
lus solves the problem we previously highlighted in Section 4.4 of [19] that two variable
assignments at the same instance can induce errant behaviour. We do this by relaxing
the requirement that such discrete behaviour is immediately reflected in the trajectory;
in the new calculus the latter only happens when continuous behaviour occurs, which
we do by dropping the previous version of HCT2 as a healthiness condition. This key
result in particular allows the integration of discrete relational behaviour with continuous
evolution.

As previously highlighted in D2.1b [18] and D2.1c [19], our overall approach to giving
formal semantics is through the description of a lingua franca for INTO-CPS to which
we have given the name CyPhyCircus. We will then define mappings from the core
languages in CyPhyCircus which, as illustrated Figure 1, will also enable access to a
number of static analysis tools and techniques, such as model checking [42, 3, 4] and
theorem proving [15, 16, 53]. CyPhyCircus will build on the existing work of the Circus
language family [50, 41, 51], a suite of formal languages that combines rich state modelling
(like as in the Z specification language [52]) with concurrency (like as in CSP [29]), with
various other programming paradigms such as object orientation [7] and discrete real-time
modelling [49]. Our intention is to create a language that combines rich-state modelling,
concurrent reactive processes, real-time modelling, continuous variables, and differential
equations. The theory of hybrid relations which we describe in this deliverable provides
the foundations for such hybrid dynamical behaviour in CyPhyCircus.

Modelica [36] is a widely used language for description and modelling of hybrid dynamical
systems that compose a continuously evolving physical plant with a discrete controller.

7



D2.2c - Initial Modelica Semantics (Public)

Figure 1: CyPhyCircus as the INTO-CPS lingua franca

Such systems are described using a mixture of differential-algebraic equations (DAEs),
and event guards that trigger discontinuous jumps in system behaviour by execution of
discrete equations and algorithms – so called “hybrid DAEs”. Modelica has a number of
commercial implementations including Dymola1, Wolfram SystemModeler2, MapleSim3

and the open-source implementation, OpenModelica4. However, the Modelica language
has an incomplete formal semantics; though the semantics of DAEs is well known, the
event iteration system currently does not have a formal semantics. Here we give a de-
notational semantics to a fragment of Modelica using a UTP theory of hybrid relations.
Additionally to clarifying the semantics of Modelica, this allows us to consider the combi-
nation of continuous and discrete models through common theoretical factors and theory
linking. Moreover, since we focus on a general theory of hybrid relations, it is possible to
also treat other languages like 20-sim and Simulink in this context.

Our approach to giving a semantics to Modelica is three-fold [14]. Firstly, we create
the UTP theory of hybrid relations, building on the work of He [26, 27], Zhou [56, 55],
Zhan [35], and others. This theory extends the alphabet of UTP predicates with contin-
uous variables c ∈ conα and is defined by novel healthiness conditions that characterise
these variables as piecewise continuous functions.

Secondly, we define the operators of our hybrid relational calculus, which is similar to
the imperative subset of Hybrid CSP [57] (HCSP), but extended with an interval op-
erator [56] that provides a continuous specification statement. In particular we provide
support for semi-explicit DAEs and continous variable preemption. As with Hybrid CSP,
we base the denotational semantics around the Duration Calculus [56], though the se-
mantics is purely relational. Moreover, we provide a uniform account of both discrete

1http://www.3ds.com/products-services/catia/products/dymola
2http://www.wolfram.com/system-modeler/
3http://www.maplesoft.com/products/maplesim/
4https://www.openmodelica.org/

8



D2.2c - Initial Modelica Semantics (Public)

and continuous variables by linking the latter to discrete “copy” variables that give the
valuation at the beginning and end of a continuous evolution. Thus, both discrete and
continuous variables can be manipulated with the same operators; in the latter case
this provides initial value constraints. Our model of hybrid relations has been mech-
anised in our UTP proof assistant, Isabelle/UTP [15], that provides theorem proving
facilities.

Thirdly, we define a preliminary denotational semantics for Modelica through a mapping
into the hybrid relational calculus. This mapping primarily considers the event-handling
mechanism of Modelica, whereby specific conditions on continuous variables can lead to
both discontinuous jumps in variables, and also changes to the equations active in the
DAE system. More advanced concepts like blocks are not directly considered and are left
as future work for the final year.

In Section 2 we outline related work for our theory of hybrid relations. In Section 3 we
give a brief overview of the UTP, and in Section 4 we give a brief overview of the Modelica
language (for more details, please see D2.1c [19]). In Section 5 we review our UTP theory
of hybrid relations, and in Section 6 we use this theory to define the hybrid relational cal-
culus, which is finally mechanised in Isabelle/UTP in Section 7. Afterwards, in Section 8
we use the hybrid relational calculus to give an initial semantics for hybrid differential-
algebraic equations, the core semantic domain of Modelica. Finally, in Section 9 we show
how our hybrid relational calculus can be integrated with reactive processes to create
hybrid reactive designs, which are the core semantic model for CyPhyCircus. Section 10
concludes this deliverable, outlining the next steps for our work.

2 Related Work: Hybrid Systems

This section provides a brief overview of related works on formal semantics for hybrid
systems. It thus provides the theoretical context for the UTP theory we will develop
in Section 5 to give a semantics to Modelica and hybrid computation in general. The
majority of the work on hybrid systems takes inspiration from Hybrid Automata [28], an
extension of finite state automata that allows the specification of continuous behaviour.
A hybrid automaton consists of a finite set of states labelled by ODEs, a state invariant,
and initial conditions. The states (or “modes”) are connected by transitions that are
labelled with jump conditions and (optionally) events. Whilst in a state, the continuous
variables evolve according to the system of ODEs and the given invariant; this is known
as a flow as the variable values continuously flow from one value to another. When
one of the jump conditions of an outgoing edge is satisfied, the event, if present, can
instantaneously execute, potentially resulting in a discontinuity, and the targeted hybrid
state is activated. Thus a hybrid automata is characterised by behaviour that includes
both continuous flows also discrete jumps. Hybrid automata are given a denotational
semantics in terms of piecewise continuous functions [28] R → Rn, also called trajectories,
that are continuous except for in a finite number of places.

Verification of hybrid systems was made possible through the seminal work of Platzer [44].
This work develops a logic called Differential Dynamic Logic (dL) that allows us to spec-
ify invariants over both discrete and continuous variables. Hybrid systems are modelled
using a language of hybrid programs, that combines the usual operators of an imperative

9



D2.2c - Initial Modelica Semantics (Public)

language with continuous behaviour specified by differential equations. Hybrid programs
are equipped with a relational semantics, and a proof calculus for dL allows reason-
ing about hybrid programs. An implementation of dL called KeYmaera [44] allows the
automated verification of systems modelled as hybrid programs. Our notion of hybrid
relation is inspired by Platzer’s hybrid programs, though we focus on a UTP denotational
semantics as opposed to an operational semantics. Our own setting of the Duration Cal-
culus [56] provides us with the necessary machinery to similarly justify a dynamic logic.
Moreover, we observe that, with a UTP model, we are in a strong position to extend the
work to deal with concurrent hybrid programs, a notion that dL does not consider.

Concurrency is considered in Hybrid CSP [26, 57] (HCSP), an extension of Hoare’s
process calculus CSP [29] that adds support for continuous variables as described by
differential equations and modelled by standard trajectories, in a similar manner to hy-
brid automata. HCSP [26] extends CSP with continuous variables whose behaviour is
described by differential equations of the form F(ṡ, s) = 0. Interaction between dis-
crete and continuous behaviour takes the form of preemption conditions on continu-
ous variables, timeouts, and interruption of a continuous evolution through CSP events.
HCSP has a denotational semantics that is presented in a predicative style similar to the
UTP [30].

Further work on HCSP [57] enriches the language to allow explicit interaction between
discrete and continuous variables. This is achieved through a novel denotational semantics
in terms of the Extended Duration Calculus [58], which treats variables as piecewise
continuous functions. This allows a more precise semantics for operators like preemption
that are defined in terms of suitable variable limits. A Hoare logic for this calculus is
presented in [35], through the adoption of Platzer’s differential invariants, along with an
operational semantics. Our work is heavily influenced by HCSP , though we focus on
formalising the sequential aspects of hybrid systems, and so formalise a subset of the
operators with refined definitions. Our operators formalise continuous ‘after’ variables
– which give the valuation of the variable at the end of an evolution – by explicitly
considering left-limits, which is important for Modelica event iteration.

A theorem prover for HCSP called, HHL Prover [59], has also been developed and applied
to verification of Simulink diagrams through a mapping into HCSP [54]. More recently
the fundamentals of hybrid system modelling have been studied in a purely UTP relational
setting [27]. This work has produced a language called the Hybrid Relational Modelling
Language [27] (HRML), which draws on HCSP , but uses signals rather than CSP’s events
as the main communication abstraction. Our notation is agnostic in this respect, and
could be extended either to support the event or signal paradigm.

Duration Calculus [56] (DC) provides specification of invariants over the continuous time
domain, in order to facilitate the verification of real-time systems. For example, we can
write �x2 > 7�, which specifies all possible intervals of over which x2 > 7 is invariant.
The chop operator P ◦Q specifies that an interval may be broken into two subsequent
intervals, over which P and then Q hold, respectively. DC has been extended to provide a
semantics for hybrid real-time systems modelling [58], which is then used to give semantics
to HCSP [57]. DC can also be used to give an account to typical operators of modal
and temporal logics. Thus, grounding our semantics in DC enables us to form continuous
specifications about hybrid systems. In contrast to DC, we provide a purely relational
UTP semantics, and also explictly distinguish continuous and discrete variables, instead

10



D2.2c - Initial Modelica Semantics (Public)

x := v � x � = v ∧ y � = y

P ; Q � ∃ x0 • P[x0/x �] ∧ Q[x0/x ]

P � b �Q � (b ∧ P) ∨ (¬b ∧ Q)

P∗ � νX • P ; X

Table 2: UTP programs-as-predicates

of modelling the latter as step functions. This distinction allows us to retain standard
relational definitions of the majority of discrete UTP operators.

Relational predicative semantics for real-time programs has also previously been studied
by Hayes and others [22, 23, 25], mainly in the context of the real-time refinement calcu-
lus [24]. The real-time refinement calculus is an extension of refinement calculus [37] which
in addition to enabling specification of pre-/postcondition style specifications, also allows
the specification of real-time constraints like deadlines. The model given for real-time
refinement calculus is a form of timed trace, which are partial functions from R≥0 �→ Σ,
where Σ is a type denoting the system’s state. Such a timed trace assigns to a subset
of the time instants in R≥0 updates to the state that occur at that instant. In this way,
timed traces can be used to give a semantics to continuous and hybrid systems. We will
adapt this model for a refinement of our hybrid relational theory in Section 9.

3 Unifying Theories of Programming

In this section we briefly introduce the UTP semantic framework which we use to de-
scribe of theory of hybrid relations, and thereafter to give a denotational semantics to
Modelica. More background on the UTP can be found in our sister deliverable [17] and
the UTP tutorial [6]. Unifying Theories of Programming [30, 6] (UTP) is a framework
for the specification of formal semantics. It is based on the idea that any temporal model
can be expressed as an alphabetised predicate that describes how variables change over
time. This idea of “programs-as-predicates” means that the duality of programs and
specifications all but disappears, as programs are just a subclass of specifications made
up of logical formulae. This powerful idea provides a strong basis for unification of het-
erogeneous languages and semantic models, since many different shapes of models can be
given a uniform view. The UTP further allows that different semantic presentations, such
as denotational, algebraic, axiomatic, and operational, can be formally linked through
mutual embeddings. This ensures that consistency is maintained between semantic mod-
els and that tools that implement them can be combined for multi-pronged analysis and
verification of models [15].

Concretely, an alphabetised relation is a pair (αP ,P) where αP is the alphabet and P
is a predicate all of whose free variables belong to αP . The alphabet can in turn be
subdivided α(P) = inα(P) ∪ outα(P), with input variables x , y ∈ inα(P) and output
variables x �, y � ∈ outα(P). The calculus provides the operators typical of first order logic.
UTP predicates are ordered by a refinement partial order P � Q that also defines a

11



D2.2c - Initial Modelica Semantics (Public)

complete lattice. Imperative programs can be described using relational operators, such
as sequential composition P ; Q, if-then-else conditional P � b �Q, assignment x :=A v
(for expression v and alphabet A), skip IIA, and iteration P∗ , all of which are given
predicative interpretations as illustrated in Table 2.

More sophisticated language constructs can be expressed by enriching the theory of al-
phabetised relations to create UTP theories. A UTP theory consists of (i) a set of
observational variables, (ii) a signature, and (iii) a set of healthiness conditions. The
observational variables record behavioural semantic information about a particular pro-
gram. For example, we may have an observational variable for recording the current
time called clock : R. The signature uses these operational variables to encode the main
operators of the target language.

The domain of a UTP theory can be constrained through healthiness conditions, which act
as invariants over the observational variables. For example, it is intuitively the case that
time only moves forward, and so a relational observation like C � clock = 3 ∧ clock � = 1
ought not to be possible. We can eliminate this kind of behaviour description with
an invariant clock ≤ clock �. In the UTP such conditions are expressed as idempotent
functions, for example HT (P) = P ∧ clock ≤ clock �, so that healthiness of a predicate P
can be expressed as a fixed point equation: P = HT (P). If we apply HT to C , the result
is miraculous predicate false and thus C is excluded from the theory signature.

UTP theories can be used to describe a domain useful for modelling particular problems
– for instance, we can add further conditions to HT to provide a theory of real-time pro-
grams. UTP theories can also be composed to produce modelling domains that combine
different language aspects. Put more simply, UTP theories provide the building blocks for
a heterogeneous language’s denotational semantics [13]. Such a denotational semantics
provides the “gold standard” for the meaning of language constructs and can then be
used to derive other presentations, such as operational and, very often, algebraic.

4 Modelica

In this section we give background to the Modelica language, which we will give a se-
mantics to. Modelica is an equation-based object-oriented language for describing the
dynamic behaviour of CPS, standardised by the Modelica Language Specification (MLS)
[36]. The MLS is described using English; therefore, its semantics is to some extent
subject to interpretation. Quoting from the MLS [36, Section 1.2]: “The semantics of
the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure. A class must have addi-
tional properties in order that its flat Modelica structure can be further transformed into
a set of differential, algebraic and discrete equations (= flat hybrid DAE). Such classes
are called simulation models.”

Figure 2 illustrates the basic idea. The squiggle arrow denotes a degree of fuzziness —
a simulation result is an approximation to the inaccessible (in general) exact solution of
the equation system. The specification does not prescribe a particular solution approach.
A classical model for a hybrid system is the bouncing ball. A possible Modelica imple-
mentation for a ball with mass 1 kg and an impact coefficient of 0.8 that falls from an

12



D2.2c - Initial Modelica Semantics (Public)

Modelica Model

Flat Modelica
(Hybrid DAE)

Simulation Result

Modelica
Specification

Mathematical denotation
for hybrid DAE system

Figure 2: From model to
simulation

1 model BouncingBall
2 Real h; Real v;
3 initial equation
4 h = 1.0;
5 equation
6 v = der(h);
7 der(v) = -9.81;
8 when h<0 then
9 reinit(v, -0.8*pre(v));

10 end when;
11 end BouncingBall;

Figure 3: Bouncing ball in Modelica.

initial height of h = 1m is given in Figure 3. When the ball hits the ground, it changes
its velocity v discontinuously and bounces back. der(h) and der(v) (lines 6 and 7)
denote the time derivatives ḣ and v̇ of variables h and v, respectively. The acceleration
to the ground is determined by earth’s gravitational acceleration g = 9.81m/s2. The dis-
continuous change of variable v (when the ball bounces) is modelled using a conditionally
activated reinitialization equation (lines 8-10). The ball hits the ground when condition
h < 0 becomes true. The reinit() operator is used for reinitializing v with the nega-
tive value of v (multiplied by the impact coefficient), just before condition h < 0 becomes
true (where pre(v) returns the left-limit of variable v at the event instant).

Several formal specification approaches have been used to give semantics to subsets of the
Modelica language. Most of the approaches describe the instantiation and flattening of
Modelica models (i.e. the static semantics, corresponding to the first stage in Figure 2)
[33, 1, 46] while others are restricted to discrete-time language subsets [48].

Flat Modelica can be conceptually mapped to a set of differential, algebraic and discrete
equations of the following form [36, Appendix C]:

1. Continuous-time behaviour. The system behaviour between events is described by
a system of differential and algebraic equations (DAEs):

f
�
x(t), ẋ(t), y(t), t,m(te),mpre(te), p, c(te)

�
= 0 (1a)

g
�
x(t), y(t), t,m(te),mpre(te), p, c(te)

�
= 0 (1b)

where t denotes time; p is a vector of parameters and constants; x(t) is a vector of
dynamic variables of type Real and ẋ(t) is the vector of its derivatives; y(t) is a
vector of algebraic variables of type Real; m(te) is a vector of discrete-time variables
of type discrete Real, Boolean, Integer, or String which changes only
at event instants te; mpre(te) are the values of m immediately before the current
event at event instant te; and c(te) is a vector containing all Boolean condition
expressions, e.g., if-expressions.

2. Discrete-time behaviour. The behaviour at an event at time te is described by

13



D2.2c - Initial Modelica Semantics (Public)

following discrete equations:

m(te) := fm
�
x(te), ẋ(te), y(te),mpre(te), p, c(te)

�
(2)

c(te) := fe
�
mB(te),mB

pre(te), pB, rel(v(te))
�

(3)

An event fires if any of the conditions c(te) change from false to true. The
vector-valued function fm specifies new values for the discrete variables m(te).
The vector c(te) is defined by the vector-valued function fe, which contains all
Boolean condition expressions evaluated at the most recent event te; rel(v(te)) =
rel([x(t); ẋ(t); y(t); t; m(te); mpre(te); p]) is a Boolean-typed vector-valued func-
tion containing variables vi , e.g., v1 > v2, v3 ≥ 0; mB(te) is a vector of discrete-time
variables of type Boolean, mB(te) ⊆ m(te), and mB

pre(te) are the values of mB

immediately before the current event at event instant te; pB are parameters and
constants of type Boolean, pB ⊆ p.

Simulation means that an initial value problem (IVP) is solved. The equations define a
DAE which may have discontinuities and a variable structure, and may be controlled by
a discrete-event system.

5 Theory of Hybrid Relations

We now proceed to describe our theory of hybrid relations to enable the definition of
a relational calculus for modelling sequential hybrid processes, which will be used in
Section 8 to give a denotational semantics to Modelica. Our model unifies the treatment of
discrete and continuous variables so that the same operators may be used for manipulating
both. In Modelica, DAEs are used to describe continuously evolving dynamic behaviour
of a system. Thus, in the UTP, we first introduce a theory of continuous-time processes
that embeds trajectories – real-valued functions representing continuous evolution – into
alphabetised predicates and shows how continuous variables evolve over a given interval.
These intervals are used to divide up the evolution of a system into piecewise continuous
segments.

Our theory is based on vanilla UTP alphabetised relations, and so is insensitive to termi-
nation and stability of continuous processes. Following the UTP philosophy, we consider
hybrid behaviour in isolation, and then later augment it with additional structure to al-
low the finer expression of such properties. Our theory could, for instance, be embedded
into timed reactive designs [25, 49].

5.1 Alphabet

Our model of continuous time introduces observational variables ti, ti � : R≥0 that define
the start and end time of the current computation interval, as in DC [58]. We also
introduce the expression � to denote the duration of the current interval, where � �
ti � − ti.

As already said, the alphabetised relational calculus divides the alphabet into input
variables inα(P), and output variables, outα(P). Inspired by [27], we add a further

14



D2.2c - Initial Modelica Semantics (Public)

subdivision x , y, z ∈ conα(P), the set of continuous variables, that is orthogonal to the
discrete program variables, that is conα(P) ∩ (inα(P) ∪ outα(P)) = ∅. The elements
of conα(P) are the variables to be used in differential equations and other continuous
constructs.

We assume that all variables consist of a name, type, and optional decoration. For
example, the name in the variables x , x �, and x is the same – x – but the decorations differ.
We introduce the distinguished continuous variable t that denotes the current instant in
an algebraic or differential equation. An alphabetised predicate P whose alphabet can be
so partitioned, i.e. α(P) = inα(P)∪ outα(P)∪ conα(P), is called a hybrid relation.

Continuous variables come in two varieties that allow us to talk about a particular instant
or about the whole time continuum:

• instant variables – these are continuous variables of type R that refer to the value
at a particular instant;

• trajectory variables – these are time-dependent variables of type R≥0 → R and give
the values over a whole trajectory.

Trajectory variables are total rather than partial functions. This has the advantage
that composition operators need not consider explicit combination of trajectories through
overriding. Instead, composition further constrains the trajectory functions, potentially
over disjoint time domains (as is the case for sequential composition). Valuations of the
trajectory exist outside [ti, ti�), but they have no relevance.

We require that each trajectory variable x : R≥0 → R is accompanied by discrete before
and after “copy” variables with the same name – x , x � : R – that record the values at
the start and limit of the current interval. This, crucially, allows us to use the standard
operators of relational calculus for manipulating continuous variables via discrete copies.
This allows us to consider the set of purely discrete variables that are not discrete copies
of a continuous variable:

disα(P) = {x ∈ inα(P) | x /∈ conα(P)} ∪ {x � ∈ outα(P) | x /∈ conα(P)}

We introduce the following @ operator borrowed from [11] that lifts a predicate in instant
variables to one in trajectory variables.

Definition 5.1 (Continuous variable lifting)

P @ τ � {x �→ x(τ) | x ∈ conα(P) \ {t}} † P

The dagger (†) operator is a nominal substitution operator. It applies the given partial
function, which maps variables to expressions, as a substitution to the given predicate, so
that P[v/x ] = {x �→ v} †P . We construct a substitution that maps every flat continuous
variable (other than the distinguished time variable t ∈ [ti..ti�)) to a corresponding vari-
able lifted over the time domain. The effect of this is to state that the predicate holds for
values of continuous variables at a particular instant τ , a variable that is potentially free
in P . Each flat continuous variable x : T is thus transformed to have a time-dependent
function x : R → T type. This operator is used to lift time predicates over intervals.

15



D2.2c - Initial Modelica Semantics (Public)

5.2 Healthiness conditions

We introduce two healthiness conditions for hybrid relations:

Definition 5.2 (Healthiness conditions)

HCT1(P) � P ∧ ti ≤ ti�

HCT2(P) � P ∧


ti < ti� ⇒

�

x∈conα(P)




∃ I : Roseq • ran(I ) ⊆ {ti . . . ti�}
∧ {ti, ti�} ⊆ ran(I )∧
∧ (∀ n < #I − 1 •

x cont-on [In, In+1))







where
Roseq � {x : seqR | ∀ n < #x − 1 • xn < xn+1}
f cont-on [m, n) � ∀ t ∈ [m, n) • lim

x→t
f (x) = f (t)

HCT1 states that time may only ever go forward, as should be the case, and thus the time
interval is well-defined. HCT2 states that every continuous variable x should be piecewise
continuous, that is, that for non-empty intervals there exists a finite number of points
(range of I ) between ti and ti� where discontinuities occur. We define the set of totally
ordered sequences Roseq that captures this set of discontinuities, and the continuity of f
is defined in the usual way by requiring that at each point in [ti, ti�), the limit correctly
predicts where the function goes.

The healthiness conditions differ from those presented in D2.1c [19], in that we have added
piecewise continuity, and have dropped the requirement that each continuous variable v is
always tracked in its before and after variables (v and v �). Specifically, it need not always
be the case that v = v(ti) and v � = v(ti �) because this disallows the behaviour where v �

can vary with respect to the final valuation of v. This would mean, for example, that we
could not make instantaneous assignments to variables without producing contradictory,
and thus miraculous, predicates. Instead, this invariant is now imposed only within
continuous evolution operators, as will be seen in Section 6.

HCT1 and HCT2 are idempotent, monotone, and commutative as they are both con-
junctive. We then have that HCT = HCT2 ◦ HCT1 also satisfies all these properties.
Furthermore it defines a complete lattice.

Theorem 5.1 HCT predicates form a complete lattice under
�

and
�

, with �H =
HCT(true) and ⊥H = false.

Proof 5.1 By conjunctivity of HCT. Properties of conjunctive healthiness conditions are
proved in [21].

6 Hybrid Relational Calculus

In this section we use the theory of hybrid relations defined in Section 5 to define the
hybrid relational calculus. The signature of our theory is given in Figure 4. It consists of
the standard operators of the alphabetised relational calculus together with operators to
specify intervals ��P��, differential algebraic equations �Fn | b �, and preemption P [ b ]Q.
Using this calculus, we can describe the bouncing ball example from Figure 3:

16



D2.2c - Initial Modelica Semantics (Public)

P,Q ::= P ; Q | P � b �Q | x := e | P∗ | Pω | ��P�� | �Fn | b � | P [ b ]Q

Figure 4: Signature of hybrid relational calculus

Example 6.1 Bouncing ball in hybrid relational calculus

h, v := 1, 0 ;
��

ḣ = v; v̇ = −9.81
�
[ h < 0 ] v := −v · 0.8)

�ω

This hybrid program has two continuous variables for height h and velocity v. Initially
we set these two variables to 1 and 0, and then initiate the system of ODEs. The system
evolves until h < 0, at which point a discrete command is executed that assigns −v · 0.8
to v, that is, the velocity is reversed with a dampening factor. The system infinitely
iterates, allowing the system dynamics to continue evolving, but with new initial values.
Such a system only requires an ODE with no algebraic equations; to illustrate DAEs we
give another example.

Example 6.2 Cartesian pendulum in hybrid relational calculus
�

ẋ = u; u̇ = λ · x ; ẏ = v; v̇ = λ · y − 9.81
��� x2 + y2 = l2

�

This system consists of four differential and one algebraic equation in terms of the position
(x , y), horizontal and vertical velocities u and v, and the length l of the pendulum cable.
The differential equations describe the horizontal and vertical components of the pendu-
lum’s movement vector, governed by the laws of conservation of energy and gravity using
a constant λ previously defined. The algebraic equation ties x and y together through
the Pythagorean theorem, ensuring that the length of the cable must be respected by the
movement.

We note that many of the standard operators of the alphabetised relational calculus retain
their standard denotational semantics [30] in this setting, but over the expanded alphabet.
Indeed, an alphabetised relation is simply a hybrid relation with the degenerate alphabet
conα(P) = ∅. For continuous variables, sequential composition behaves like conjunction.
In particular, if we have P ; Q, with P and Q representing evolutions over disjoint
intervals, then their sequential composition combines the corresponding trajectories when
they agree on variable valuations. Put another way, the final condition of P also defines
the initial condition for Q as in the Z schema composition operator.

Similarly, other operators like the Kleene star and Omega iteration operators P ∗ and Pω,
being defined solely in terms of sequential composition, disjunction (internal choice), II,
and fixed point operators, also remain valid in this context. Thus we already have the
core operators of an imperative programming language at our disposal. We prove that
these core operators satisfy our two healthiness conditions in Isabelle (cf. section 7), but
for now we state the following theorem.

Theorem 6.1 The following operators of relational calculus P ; Q, P � b �Q, P∗, II,
x := v, and false are HCT closed.

17



D2.2c - Initial Modelica Semantics (Public)

�true� = � > 0 �false� = false

�P ∧ Q� = �P� ∧ �Q� �P ∨ Q� � �P� ∨ �Q�
��P�� � ��P�� ; ��P��

Table 3: Algebraic laws of durations

The maximally nondeterministic relation true is of course not HCT healthy, and so we
supplement our theory with trueH � HCT (true). We first define the interval operator
from DC [56] and then our own variant.

Definition 6.1 Interval operators

�P� � HCT2(� > 0 ∧ (∀ t ∈ [ti, ti�) • P @ t))
��P�� � �P� ∧

�

v∈conα(P)

(v = v(ti) ∧ v � = lim
t→ti�

(v(t))) ∧ IIdisα(P)

�P� is a continuous specification statement that P holds at every instant over all non-
empty right-open intervals from ti to ti �; it corresponds to the standard DC operator.
We apply HCT2 to ensure that all variables are also piecewise continuous. In this setting
we can use sequential composition P ; Q to express the DC chop operator (P ◦ Q) to
decompose an interval. Our additional interval operator ��P�� pairs continuous variables
with discrete variables at the start and limit of the interval via a coupling invariant,
whilst holding other discrete variables constant. The initial condition of each continuous
variable x in the interval is constrained by the valuation of the corresponding discrete
copy x . Likewise, the condition at the limit of the interval is recorded in the corresponding
discrete after variable x �. In D2.1c [19] this invariant was imposed universally, but here
we have localised it to only continuous operators defined in terms of ��P��.
Crucially, this construction provides a uniform view of discrete and continuous variables
when handled over an interval, and allows the use of standard relational operators for their
manipulation. Moreover, by taking the limit rather than the final value of a continuous
variable (in contrast to D2.1c [19]) we do not constrain the trajectory valuation at ti �

meaning it can be defined by a suitable discontinuous discrete assignment at this instant.
Following [26] we ground our definition of differential equation systems in this interval
operator. This will, for example, allow us to formally refine a DAE, under given initial
conditions, to a suitable solution expressed using the interval operator. Intervals satisfy a
number of standard laws of DC illustrated in Table 3, which we prove in Section 7.

We next introduce an operator, adapted from HCSP [57, 35], to describe the evolution
of a system of differential-algebraic equations.

Definition 6.2 DAE system in semi-explicit form

� v̇1 = f1; · · · ; v̇n = fn | 0 = b1; · · · ; 0 = bm �
� ��(∀ i ∈ 1..n, ∀ j ∈ 1..m • v̇i(t) = fi(t, v1(t), · · · , vn(t),w1(t), · · · ,wm(t)))

∧ 0 = bj(t, v1(t), · · · , vn(t),w1(t), · · · ,wm(t))��

A DAE �Fn |Bm � consists of a set of n functions fi : R × Rn × Rm → R each of which
defines the derivative of variable v i in terms of the independent time variable t and n+m

18



D2.2c - Initial Modelica Semantics (Public)

dependent variables. It also contains algebraic constraints bj : R × Rn × Rm → R that
must be invariant for any solution and do not refer to derivatives. For m = 0 the DAE
corresponds to an ODE, which we write as �Fn �. The DAE operator is defined using
the interval operator to be all non-empty intervals over which a solution satisfying both
the ODEs and algebraic constraint exists. Non-emptiness is important as it means that
a DAE must make progress: it cannot simply take zero time since � > 0, and so a DAE
cannot directly cause “chattering Zeno” [34] effects when placed in the context of a loop,
though normal Zeno effects remain a possibility. Chattering Zeno refers to the situation
when a system makes no progress in time, but is engaged in an infinitely long internal
computation. It thus differs from normal Zeno which makes progress though less and less
at each step.

As previously explained, at the initial time (ti) each continuous variable v i of the system
is equated to the value of the corresponding discrete input variable vi . To obtain a well
defined problem description, we require the following conditions to hold [2]:

1. the system of equations is consistent and neither underdetermined nor overdeter-
mined;

2. the discrete input variables vi provide consistent initial conditions (ICs5);

3. the equations are specific enough to define a unique solution during the interval �.

The system is then allowed to evolve from this point in the interval between ti and ti�
according to the DAEs. At the end of the interval, the corresponding output discrete
variables are assigned. During the evolution all discrete variables and unconstrained
continuous variables are held constant.

Finally, we define the preemption operator, adapted from HCSP .

Definition 6.3 Preemption operator

P [B ]Q � (Q �B @ ti�(P ∧ �¬B�)) ∨ ((�¬B� ∧ B @ ti� ∧ P) ; Q)

Intuitively, P is a continuous process that evolves until the predicate B is satisfied, at
which point Q is activated. This operator is used to capture events in Modelica. The
semantics is defined as a disjunction of two predicates. The first predicate states that,
if B holds in the initial state of ti, then Q is activated immediately. Otherwise, P is
activated and can evolve while B remains false (potentially indefinitely). The second
predicate states that ¬B holds on the interval [ti, ti�) until instant ti�, when B switches
to a true valuation; during that inverval P is executing. Following this, P is terminated
and Q is activated.

5Notice that in the general case ICs for DAE systems may actually involve derivatives v̇ i of vi [43].
Modelica supports the general case and sophisticated algorithms for finding consistent ICs from “guess”
values exist [2, 39]. However, numerical/symbolic methods for solving Initial Value Problems (IVPs) is
not within the scope of our current work. Hence, we only consider less general ICs and presume that
consistent ICs are provided.

19



D2.2c - Initial Modelica Semantics (Public)

7 Mechanisation in Isabelle/UTP

Our Isabelle [38] mechanisation serves two purposes: firstly it validates the model by
enabling us to prove algebraic laws, and secondly it enables theorem proving for hybrid
programs. It is based in a shallow embedding of the UTP6, which provides direct proof
automation through a combination of Isabelle/Circus [10] and our own deep model [15].
UTP relations are represented by predicates over bindings, and bindings over a given
alphabet are represented using record types, where each field corresponds to a variable.
The model is based on a UTP expression type ( �a, �α) uexpr ranging over alphabet type �α
and with return type �a. Alphabetised predicates �α upred are expressions with a boolean
return type, and relations are predicates over a product type ( �α × �β) upred.

We mimic the syntax of UTP predicates as given in most standard publications (e.g. [30,
6]). Where this is not possible, we supplement the same syntax with an added sub-
script u. For example, equality in Isabelle “=” denotes HOL equality, so we use =u for
UTP equality. Input variable and output variable expressions are written $x and $x´
respectively. We also make use of Isabelle’s implementation of Cauchy real numbers and
analysis [12, 20]. Our proofs make heavy use of Isabelle’s automated proof facilities like
auto and sledgehammer [5]. This has allowed us to use Isabelle to validate the healthi-
ness conditions and definitions given in the previous sections. We prove that they respect
appropriate laws, which increases confidence in the correctness of our UTP theory. This
section has been compiled using Isabelle’s document preparation system: all definitions
and theorems have been mechanically verified7.
record ( �d, �c) hyst =

stateu :: �d × �c
timeu :: real
traju :: real ⇒ �c

type-synonym ( �d, �c) hyrel = ( �d, �c) hyst hrelation

A hybrid state ( �d, �c) hyst represents the alphabet, or equivalently the state of the hybrid
relation, at a particular instant. We represent this using a record with three fields: stateu
denoting the state variables, timeu denoting the time, and traju denoting the trajectory
of continuous variables. The record type is parametrised by the discrete portion of the
alphabet, denoted by type �d and the continuous portion denoted by type �c. The state
field’s type is a product of the discrete and continuous state, whilst the trajectory refers
only to the continuous state. Intuitively, this encodes the distinction between discrete
and continuous variables. A hybrid relation is then a homogeneous relation (hrelation)
over the hybrid state. We next give the healthiness conditions of our theory.
definition HCT1 (P) = (P ∧ $time ≥u 0 ∧ $time ≤u $time´)

HCT1 is broadly the same as in Section 6, though we additionally require that the initial
time be no less than zero; this is due to our use of the standard type real that also
encompasses negative numbers.
definition HCT2 (P) =

6See https://github.com/isabelle-utp/utp-main/tree/shallow
7Our Isabelle/UTP theory development, including all omitted proofs, is available at http://www.cs.

york.ac.uk/~simonf/utp2016.

20



D2.2c - Initial Modelica Semantics (Public)

(P ∧ ($time´ >u $time ⇒
(∃ I · {$time, $time´}u ⊆u ranu(I ) ∧ ranu(I ) ⊆u {$time .. $time´}u

∧ (∀ n · n <u #u(I ) − 1 ⇒ $traj cont−onu {I (|n|)u ..< I (|n+1 |)u}u)
∧ sortedu(I ) ∧ distinctu(I ))))

HCT2 also explicitly requires that the trajectory sequence I is both sorted and distinct,
which equates to it being linearly sorted as required by Definition 5.2.
definition HTRAJ (P) = (P ∧ $traj =u $traj´)

We also have to add an auxiliary healthiness condition HTRAJ. This allows us to use
standard HOL binary relations, where there are only inputs and outputs, to represent
hybrid relations. Specifically, we have two copies of the trajectory, a before version and
an after version and so this healthiness condition ensures the trajectory remains constant
throughout. Monotonicity and idempotence of the healthiness conditions is proved by
our automated relational calculus tactic.

With our healthiness conditions defined, we can proceed to define the operators. The
basic operators, such as II and @ are elided here, and we instead focus on the continuous
operators. We first define the two interval operators.
definition

hInt P = HCT ($time´ >u $time ∧ (∀ t ∈ {$time ..< $time´}u · P •u t))

Definition hInt corresponds to the interval operator �P�, and has an almost identical
definition. In our mechanisation, an interval can be written as �P�H where P is a predicate
with the time variable τ free.
definition

hDisInt P = (hInt P ∧ π1($state´) =u π1($state) ∧ π2($state) =u $traj(|$time|)u
∧ π2($state´) =u limu(x → $time´−)($traj(|x|)u))

Our modified interval operator ��P��, represented here by hDisInt conjoins the standard
interval operator with predicates that ensure that discrete variables remain constant and
and that continuous variable copies match the initial value in the trajectory, and the left
limit of the trajectory at the end. Here πn is a function that returns the nth element of a
product; f �x�u represents function application; and limu(x → t−) denotes the left-limit.
This interval operator is written �| P |�H , again with τ free.

Next we define the operators for ODEs and DAEs. The first step is to formally mechanise
the notion of time derivatives (ẋ). Thus we define a predicate hasDerivAt that relates
ODEs to solution functions using the lifting package [32].
type-synonym �c ODE = real × �c ⇒ �c

lift-definition hasDerivAt ::
(real ⇒ �c :: real-normed-vector) ⇒ �c ODE ⇒ real ⇒ ( �a, �b) relation
(- has−deriv - at - [90 , 0 , 91 ] 90 )

is λ F F � τ A. (F has-vector-derivative (F � (τ , F τ))) (at τ within {0 ..})

An explicit system of ODEs ( �c ODE) is encoded as a function real × �c ⇒ �c, where
the real is the time parameter, and �c is a vector of real variables. We require that �c
be within the type class real-normed-vector of real vector spaces. Isabelle’s Multivariate

21



D2.2c - Initial Modelica Semantics (Public)

Analysis library contains a function has-vector-derivative that relates a solution function
F : R → Rn with its deriatives Ḟ : Rn at instant τ within a particular range. It represents
the Fréchet derivative of differential equations in a vector space. We use this to define a
construct F has−deriv F � at τ where F is a solution function, F � is the system of ODEs.
This predicate is accompanied by a large number of rules that can be used to certify
derivatives of polynomial functions. We now use these to encode operators for ODEs,
DAEs, and ODEs under an initial condition.
definition �F ��H = (∃ F · �| F has−deriv F � at τ ∧ &conα =u F(|τ |)u |�H )
definition �F �|B�H = (�F ��H ∧ �|B|�H )
definition I |= �F ��H = (�F ��H ∧ $traj(|$time|)u =u I)

We choose to implement ODEs and DAEs as separate constructs, as the definitions are
simpler, though equivalent to those in the previous section. An ODE �F ��H specifies
that a solution function F to the given ODE must exist and that at each point of the
interval the values of all continuous variables (conα) track this solution function. A DAE
�F �|B�H is then simply an ODE constrained with the algebraic predicate throughout the
interval. We also provide a representation of ODEs as explicit initial value problems by
I |= �F ��H where I gives initial values to all continuous variables.

Finally, we prove some key laws about our hybrid relational calculus. Firstly we show that
sequential composition is HCT closed, which partly validates our healthiness conditions
with respect to the standard relational calculus. This is proved by an apply-style Isabelle
proof which is omitted.
theorem seq-r-HCT-closed:

assumes P is HCT and Q is HCT
shows (P ; ; Q) is HCT

by (metis HCT-seq-r Healthy-def � assms(1 ) assms(2 ))

In order to demonstrate the use of ODEs in this framework, we take the ODE from
the bouncing ball example, and show how its solution can be expressed as a refinement
statement.
theorem gravity-ode-refine:
((v0, h0)u |= �λ (t, v, h). (− g, v)�H ∧ $time =u 0 ) �
(�| &conα =u (v0 − g·τ , v0·τ − g·(τ ·τ) / 2 + h0)u |�H ∧ $time =u 0 )

by (rel-tac ; rule exI ; auto ; vderiv-tac)

As in Example 6.1, we specify the ODE with two variables, v and h that will give the
velocity and height about the ground of the ball. We refine this in the window time = 0
as it makes the solution simpler via an appropriate conjunction. Given initial conditions
of v0 and h0 for the respective variables, solutions to the ODE equations are v0 − g · τ
and (v0 · τ − g · τ 2)/2 + h0, respectively. The solutions are proved correct in Isabelle au-
tomatically by application of our relational calculus tactic rel-tac, followed by existential
introduction (exI ) to introduce the ODE solution, application of the auto tactic, and then
finally application of our own tactic vderiv-tac. This tactic recursively applies the set of
introduction for differentiation in an effort to show that a given ODE is the derivative of
a given solution. This example serves to demonstrate how a theorem prover can reason
about differential equations in terms of their solution intervals making use of refinement
and the Duration Calculus.

22



D2.2c - Initial Modelica Semantics (Public)

8 Semantics of Hybrid DAEs

In this section we give a semantics for flat Modelica whose models are given by a set of
conditional differential, algebraic, and discrete equations, in terms of hybrid relational
calculus.. More specifically, we assume that a Modelica model consists of:

• a set of dynamic variables x ;

• algebraic variables y;

• discrete variables q;

• a set of k ∈ N>0 conditional DAEs, consisting of:

– differential equations ẋ = Fi(x , y, q) for i ∈ 1..k;

– algebraic equations y = Bi(x , y, q) for i ∈ 1..k;

– boolean DAE guards Gi(x , y, q) for i ∈ 1..k − 1, that give the conditions under
which the corresponding set of differential and algebraic equations is active in
terms of the values of discrete and continuous variables at initialisation or the
previous event. We assume that at least one set of equations is active at any
time;

• a set of l ∈ N boolean event conditions Ci(x , y, q) for i ∈ 1..l, that trigger an
event when changing value. These must be specified in terms of the core Modelica
relational operators, namely ≤, <, =, and �=;

• a set of m ∈ N conditional discrete equation blocks, consisting of:

– n boolean discrete-event guards Hi,j(x , y, q, qpre) for i ∈ 1..m, j ∈ 1..n;

– n discrete equations / algorithms Pi,j(x , y, q, qpre) for i ∈ 1..m, j ∈ 1..n. We
assume the discrete equations are sorted into a suitable sequence.

Each conditional DAE describes a possible continuous behaviour using a collection of
differential and algebraic equations. The particular behaviour to be executed is chosen
based on the evaluation of the guards, which take as input the valuations of the discrete
and continuous variables at the (re)start of the continuous evolution. The possible events
that can occur are described by a collection of boolean event conditions, which act as
guards that can stop the continuous evolution. Once one or more of these guards changes
value an event is fired, and possible discrete behaviour is executed. Usually such guards
are implemented in terms of a zero crossing function, though our semantics specifies them
abstractly. The appropriate discrete behaviours are then chosen through a collection of
discrete event guards, and the resulting behaviour by an appropriate discrete equation
that may be specified by a suitable algorithm.

We give the semantics for such a Modelica model M, which is shown in Figure 5, in
terms of four main definitions.

Init denotes the initialisation phase of a Modelica model, where initial values are assigned
to the discrete and continuous variables. For now, we assume that initial values u, v,
and w can be unambiguously assigned to each. Following initialisation, an infinite loop
is entered representing the main body of behaviour.

23



D2.2c - Initial Modelica Semantics (Public)

M = Init ; (DAE [Events ]Discr)ω

Init = x , y, q := u, v,w

DAE =
�

x = F1(ẋ , y, q)
��B1(x , y, q)

��G1 � · · ·
�Gn−1 � �

ẋ = Fn(x , y, q)
��Bn(x , y, q)

�

Events =
�

i∈{1..k}
Ci(x , y, q) �= Ci(x , y, q)

Discr = var qpre •
until qpre = q do

qpre := q ;
P1,1(x , y, q, qpre)�H1,1(x , y, q, qpre)�P1,2(x , y, q, qpre)� · · · ; · · · ;
Pm,1(x , y, q, qpre)�Hm,1(x , y, q, qpre)�Pm,2(x , y, q, qpre)� · · · ;

od

Figure 5: Overall semantics of a Modelica model M

DAE denotes the conditional system of differential and algebraic equations active during
the continuous evolution of the model. It is represented by a conditional predicate that
selects an appropriate set of differential and algebraic equations based on initial values
of discrete and continuous variables.

Events denotes the event preemption condition, and is a disjunction of all possible event
conditions (“relations” in Modelica terminology) in the Modelica model. In this way, the
DAE remains active until one of the event conditions changes from its initial value, at
which point it is preempted.

Finally, Discr describes possible discrete behaviour to be executed during event iteration;
a finite event loop adapted from the pseudo code given on page 263 of [36]. The initial
value of all discrete variables is first copied by creation of a local variable qpre that holds
the initial value of q. Each conditional discrete equation is then evaluated, which may
lead to updates to q, and then the procedure iterates. The event iteration terminates
when no more updates to q are made: a fixed point is reached. In Modelica the existence
of a fixed point is not guaranteed and event iteration can potentially lead to an infinite
loop.

To illustrate, we use the bouncing ball Modelica example from Figure 3. It has continuous
variables representing the height of the ball above the ground h and the velocity of the
ball v. For giving a semantics to this we convert the when expression to an if expression,
so we need only consider semantics of the latter, using the conceptual mapping in Section
8.3.5.1 of [36], which will yield:

c = h<0;
if (c and not(pre(c))) then
reinit(v, -0.8*pre(v));

end if;

24



D2.2c - Initial Modelica Semantics (Public)

An additional variable c of type Boolean is added, and assigned the condition of the when
statement. The when equation itself is replaced by an if equation whose condition is
that c is true now, and was not true previously – i.e. it has become true at the current
instant. We can now give the semantics of this model.

Example 8.1 Bouncing ball semantics in hybrid relational calculus

h, v, c := 1, 0, false ;
(
�

v̇ = −9.81; ḣ = v
�

[(h < 0) �= (h < 0)]
var cpre •

until (cpre = c)do
cpre := c ; c := h < 0 ;
v := −0.8 · v � c ∧ ¬cpre � II

od)ω

We assign initial values for the three variables, and assume that the condition c is false
initially. The DAE is then activated and evolves until the valuation of the if guard h < 0
at time t is different from the initial value, that is (h < 0) �= (h < 0). We note that h
and h are two different variables: h denotes h at time t, whilst h denotes its value at the
beginning of the present DAE evolution, so the inequality corresponds to the value of this
boolean guard changing. At this point, the event iteration begins. We create a variable
to denote the previous value of c, and then enter into the event loop. We then assign
c to cpre, and evaluate the discrete equations. First of all, we evaluate the new value
of c, which is the event condition. Secondly, if c is true and different from its previous
value, we also update v, otherwise we skip. The loop terminates once the value of c has
stablised (which it has in the second iteration). Following this, we iterate the whole loop
and restart the DAE with the new initial values.

This example serves to illustrate the behaviour of a Modelica model in the hybrid rela-
tional calculus. Our preliminary semantics considers a fragment of the event handling
mechanism, excluding practical problems of initialization and numerical integration of
DAEs. Present limitations include the separation of continuous and discrete equations
during the event handling mechanism. More complete Modelica semantics require to
solve a mixed system of the discrete and continuous equations during events. We will
consider these in future iterations of this semantics, define a more complete translation,
and apply it to more substantive examples.

9 Hybrid Reactive Designs

In this section we will show how the operators of the hybrid relational calculus can be
integrated with reactive processes [6] in order to allow the expression of concurrent hybrid
systems. In the previous section we showed how hybrid relations can be used to give a
semantics to Modelica, and so this semantic integration will further allow composition of
Modelica models with models described using (timed) reactive processes such as VDM-
RT [17], and thus provide the basis for formal characterisation of FMI networks (see also
Deliverable D2.2d [8]).

25



D2.2c - Initial Modelica Semantics (Public)

Figure 6: UTP hybrid relation hierarchy

We will achieve the integration through a new denotational model that replaces the CSP-
style sequence based trace model with a continuous time trajectory representation that
draws inspiration from the works of Hayes [23, 25] and Höfner [31]. For details of UTP
reactive processes, please see the “Reactive Designs” section in Deliverable D2.2b [17].
This new model will allow us to embed both CSP-style events and continuous variables
into the trace, which will allow us to embed both the operators of CSP and the hybrid
relational calculus. We achieve this through the creation of the UTP theory hierarchy
illustrated in Figure 6, which we will explain in the following sections.

We give a summary of this work in progress, which will be fully brought to fruition in
the final year of INTO-CPS to give a semantics to CyPhyCircus and thence the lan-
guage of the INTO-CPS toolchain. These preliminary results have been mechanised in
Isabelle/UTP8.

9.1 Relations and Timed Reactive Programs

The model of hybrid relations given in Section 5, whilst an accurate domain for expressing
hybrid behaviour and sufficient to express the semantics of Modelica (see Section 8),
imposes some obstacles to integration with other UTP theories and also with practical
reasoning. This is mainly because the theory, unlike most program models in the UTP,
is not purely relational, but encapsulates continuous variables that are orthogonal to
both input and output variables. This is not a problem for the UTP, since we are
simply extending alphabetised predicates rather than relations as in the right most arm
of Figure 6. However, it does mean that, when using hybrid relations, one has to reason
about trajectories using different laws to those of the usual relational calculus.

For example, given a continuous variable x in a relational composition P ; Q, it is not easy
to subdivide the overall trajectory into the part contributed by P and that contributed
by Q. This is because continuous variables are modelled as total functions. This ensures

8See in particular github.com/isabelle-utp/utp-main/blob/master/utp/utp_trd.thy

26



D2.2c - Initial Modelica Semantics (Public)

that the relational operators work as expected, but makes it difficult to decompose the
behaviour of the system.

The super-relational nature of hybrid relations also complicates mechanical reasoning.
As seen in Section 7, to make use of HOL’s built-in relational calculus it is necessary
to model trajectories as normal relational variables and then use the extra healthiness
condition HTRAJ to ensure they do not change. Although this works, it complicates
reasoning.

Another issue that must be addressed is specifically integration of hybrid relations with
reactive processes and reactive designs, the general UTP theories for concurrent reactive
programs. Reactive programs, in addition to modelling sequential behaviour, also enable
interaction with their environment through abstract communication events. A reactive
process specifies its behaviour in terms of observational variables tr , tr � : seq Event that
record the sequence of events (the trace) before and after execution, wait,wait � : B that
describe whether a process is waiting for interaction or otherwise in an intermediate state,
and ref � : PEvent that records the set of events refused by a process after a given trace
(as in the failures model of CSP [29, 45]).

Reactive designs are a specialisation of reactive process of the form R(P � Q), where
R � R3 ◦ R2 ◦ R1 encapsulates the three reactive healthiness conditions. They are
specified in terms of an assumption P and commitment Q, both of which are used to
constrain the reactive behaviour of the system in terms of tr , tr �, and ref �. Reactive
designs, in particular, are used to provide a UTP model for CSP [6].

Our sister deliverable, D2.2b [17], shows how to give a semantics to VDM-RT using timed
reactive designs — a form of reactive design with support for modelling discrete time —
in the form of the CML language [51]. So, integrations of hybrid relations and timed
reactive processes is the core result needed to give semantics to co-models written using
VDM-RT and Modelica. Clearly, if we are to augment continuous-time modelling with
reactive behaviour, we need to combine the underlying theories to create hybrid reactive
designs, a model for concurrent hybrid programs. In particular this needs to consider the
combination of timed reactive events and continuous evolution, both of which progress
with respect to time.

Timed reactive designs further subdivide the trace into a number of equal time periods,
during which a sequence of events can occur. The original model of timed reactive
processes [47] replaces tr , tr �, and ref with trt , tr �

t : seq+(seq Event × PEvent) which
record a non-empty sequence of time instants, each of which contains a sequence of
events and a set of refused events. The interpretation of the time instant can be any non-
zero period of time, for example, a millisecond or nanosecond, and gives the maximum
granularity for measuring time separation of events. A similar model of discrete time,
called timed reactive designs, is used to give a semantics to CML. Timed reactive designs
use the standard tr and tr � variables, but there exists a distinguished event constructor
tock : PEvent → Event that takes as a parameter a set R of events and provides an event
that records the passage of one unit of time, at the end of which R was refused.

When it comes to continuous-time reactive processes, a number of alternatives exist,
which we have considered. Timed CSP [9], for example, uses a model which records a
time stamp, of type R≥0, alongside each event. Hybrid CSP [26, 57] (HCSP) changes
the observational tr to have type R≥0 → seq Event, such that at each instant a sequence

27



D2.2c - Initial Modelica Semantics (Public)

of events can be recorded, though with the restriction that tr takes the value of �� for
all but a finite number of instants, thus ensuring the trace of events is finite. Clearly tr
here can be seen as a continuous variable, a fact which is readily used in the Duration
Calculus semantics [57] of HCSP .

Within in the context of the UTP, continuous-time behaviour has been considered by
Hayes in his version of the timed reactive design model [25]. Timed reactive designs
model the time dependent behaviour of a system using a partial function σ : T �→ Σ, for
some suitable time domain T and model of the state Σ. A timed reactive design relates
an initial trace σ to a final trace σ�, encapsulating the changes to the state variables.
There is also the requirement that σ ⊆ σ�, so that the timed trace can only be extended,
analogous to healthiness condition R1.

Similar to Hayes’ work, Höfner derives an algebra for hybrid systems [31], which includes
a model of continuous-time traces. He also defines a number of algebraic operators on
timed traces, such as composition, which are then lifted to Kleene algebra operators to
describe the behaviour hybrid programs and automata. This allows him to construct an
algebraic verification technique for hybrid systems. The works of Hayes and Höfner leads
us to the conclusion that there are common principles with reactive processes which we
can exploit.

Thus, as illustrated in Figure 6, we will generalise reactive processes so that they can
accommodate such continuous-time traces. We first create a theory called Generalised
Reactive Processes (in Section 9.2) which substitues the concrete sequence-based trace
model with an algebraic characterisation, resulting in an abstract notion of trace. As
reactive processes yield reactive designs, likewise generalised reactive processes yield gen-
eralised reactive designs. This then allows us to create the theories of hybrid reactive
processes and hybrid reactive designs (in Section 9.3), as specialisations using continuous
timed traces, whilst retaining the standard laws of reactive designs. We finally show
how the operator of the hybrid relational calculus can be embedded into this domain
(illustrated by the red arrow of Figure 6).

9.2 Generalised Reactive Processes

Our approach to hybrid semantics is to generalise the theory of reactive designs to ac-
commodate continuous time trajectories. In our new model, continuous variables are
effectively embedded into the standard relational calculus through a generalised notion
of trace, rather than added as a new core concept, which greatly simplifies reasoning. We
first make the observation that traces need not be given a concrete model, as they are in
the UTP book [30], but can be characterised algebraically. We introduce the following
abstract operators: ��, which denotes the empty trace, x � y, which denotes trace con-
catenation, x ≤ y, a partial order on traces which denotes that x is a prefix of y, and
finally x − y which, when possible, removes the prefix y from x . The behaviour of these
functions is characterised by the following axioms:

28



D2.2c - Initial Modelica Semantics (Public)

Definition 9.1 Trace axioms

(x � y)� z = x � (y � z) (tassoc)
��� x = x � �� = x (tident)

(z � x)− (z � y) = x − y (tcancel)
x − �� = x (tminus)
x ≤ y ⇔ (∃ z • y = x � z) (tprefix)

Trace concatenation is associative and has �� as its identity, and thus traces form a
monoid (tassoc, tident). Trace minus cancels concatenation (tcancel), and removing an
empty prefix has no effect (tminus). Finally we require that if x is a prefix of y then
this equates to there existing a suffix z such that y = x � z . A possible model for these
axioms is the standard sequence model of the UTP book, which satisfies these axioms.
Using these operators we can generalise the healthiness conditions of reactive processes
as shown below. The definitions look unchanged from those traditionally adopted, but
the sequence operators are those defined axiomatically above.

Definition 9.2 Generalised reactive healthiness conditions

R1(P) � P ∧ tr ≤ tr �

R2(P) � P [��, tr � − tr/tr , tr �]� tr ≤ tr � �P

R3(P) � IIrea �wait �P

R � R3 ◦ R2 ◦ R1

The axioms of Definition 9.1 are sufficient to prove that each of these healthiness condi-
tions is idempotent and monotone, as demonstrated in the companion Isabelle theory9.
Moreover, they are also sufficient to prove a significant number of the standard laws of
reactive designs [6, 41, 40], such as distribution through operators like internal choice and
sequential composition, and that they induce a complete lattice. This then affords us a
very general model of reactive programs with an abstract definition of trace, which we
can now instantiate to accommodate continuous variables.

9.3 Timed Traces and Hybrid Reactive Designs

We adopt Hayes model of timed traces [23], which form the basis for timed reactive
designs [25], to allow integration of continuous variables into our traces. We show that
timed traces satisfy the axioms of reactive traces. This allows us to view timed reactive
designs in the guise of normal UTP reactive processes. We formally define our adapted
model of timed traces, TT, below (cf. Definition 5.2):

9See https://github.com/isabelle-utp/utp-main/blob/shallow.2016/utp/utp_reactive.thy

29



D2.2c - Initial Modelica Semantics (Public)

x

time

0 lt
0

t
1

Figure 7: Example timed trace

Definition 9.3 Timed traces

TT �





f : R≥0 �→ Σ
| ∃ t • dom(f ) = [0, t)

∧ t > 0 ⇒ ∃ I : Roseq •




ran(I ) ⊆ {0..t}
∧ {0, t} ⊆ ran(I )

∧
�

∀ n < #I − 1 •
f cont-on [In, In+1)

�








where
Roseq � {x : seqR | ∀ n < #x − 1 • xn < xn+1}
f cont-on [m, n) � ∀ t ∈ [m, n) • lim

x→t
f (x) = f (t)

An example of such a timed trace is shown in Figure 7. We require that timed traces (TT)
have the contiguous domain [0, �), which is right-open to the end point �10. Moreover, we
require that the trace is piecewise continuous, meaning it has a finite set of discontinuities,
similar to our definition of HCT2 in Section 5.2. Since we need to talk about limits
and continuity of the continuous state space Σ. We require that this be a topological
space, such as Rn, though it can also contain discrete topological entities, such as CSP
events.

Next we can define the trace operators as below.

Definition 9.4 Timed trace operators

end(f ) � ιt • dom(f ) = [0, t)
�� � ∅

f � g � λ i •
�

f (i) if i < end(f )
g(i − end(f )) otherwise

f ≤ g ⇔ end(f ) ≤ end(g) ∧ (∀ i < end(f ) • f (i) = g(i))

g − f �
�
λ i • f (i + end(g)) if f ≤ g
⊥ otherwise

10See mechanisation of TT in https://github.com/isabelle-utp/utp-main/blob/master/utils/ttrace.thy

30



D2.2c - Initial Modelica Semantics (Public)

0 l
0

l
0  

+ l
10 l

0

0 l
1

=

⌢

Figure 8: Timed trace concatenation

Function end(f ) which gives the end time of a timed trace f through application of the
definite description operator. �� denotes the empty timed trace, which is simply the
empty partial function. f � g, as illustrated by Figure 8, concatenates timed traces f
and g by shifting the trace domain index i when it goes beyond the end of f . f ≤ g is
a prefix operator for timed traces: it requires that f be no longer than g, and that the
traces agree on values up to the end of f . Thus f ≤ g corresponds to f ⊆ g. Finally, g− f
removes the initial trace of g contained in f , assuming that f is a prefix of g.

Trace concatenation and subtraction are both closed under TT. These definitions also
satisfy our trace axioms11, and thus one can integrate continuous-time traces into gener-
alised reactive designs with tr , tr � : TT, which equips us with a theory of hybrid reactive
designs, as illustrated in Figure 6. In this context, for instance, R1 ensures that the
continuous trace must grow monotonically, and thus that each behaviour must have a
positive duration: � ≥ 0. This instantiation means we automatically obtain the laws of
reactive processes and designs. In particular, the following law shows how a continuous
trace can be decomposed for a hybrid reactive process:

Theorem 9.1 (Sequential trace decomposition) Assume that P,Q are both R1-R2
hybrid reactive processes, then their sequential composition can be rewritten as follows.

(P ; Q) = ∃ tt1 tt2 • ((P [��, tt1/tr , tr �] ; Q[��, tt2/tr , tr �]) ∧ tr � = tr � tt1 � tt2)

As in Section 5, we assume that the alphabet of a hybrid relation P can be subdivided into
conα(P) and disα(P), that is, the continuous and discrete variables. We then set Σ, the
continuous state, to {f : Var �→ U | (∀ x ∈ dom(f ) • f (x) : xτ ) ∧ dom(f ) = conα(P)},
that is a partial mapping from continuous variables to values of the correct type. This

11See https://github.com/isabelle-utp/utp-main/blob/8d62a2e1da72e4076e00118c8f6c317420fdf335/
utils/ttrace.thy#L390

31



D2.2c - Initial Modelica Semantics (Public)

new model then allows us to recreate the core operators of the hybrid relational calculus.

Definition 9.5 Hybrid relational calculus using timed traces

tt � tr � − tr
x(t) � tt(t)(x)

� � end(tt)
P @ τ � {x �→ tt(t)(x) | x ∈ conα(P) \ {t}} † P
�P� � tr � > tr ∧ (∀ t ∈ [0, �) • P @ t)

��P�� � �P� ∧
�

v∈conα(P)

�
v = v(0) ∧ v � = lim

t→�
(v(t))

�
∧ IIdisα(P)

Here, tt denotes the portion of the trace that the current process contributes to. A
continuous variable x(t) takes its value from the continuous state at t by selecting the
appropriate variable in the domain. The definitions then broadly follow those given in
Section 5. As before, all of the core relational calculus operators retain their standard def-
initions, which is clearly the case since we are within the theory of reactive designs.

A notable difference with this version of the calculus is its modelling of time. A hybrid
relation’s continuous behaviour takes place in the interval [ti, ti�), whereas here the interval
is [0, �), and there is no observational variable specifically for global time; as in [25] time
is just a property of the trace. This means that hybrid reactive designs can only observe
time from when they are started, and not at arbitrary times, as ensured by healthiness
condition R2.

In terms of the CSP style communication, we aim to follow a similar approach to Hybrid
CSP [26] and introduce additional continuous variables into Σ, namely tr : Event and
ref : PEvent that denote the events that are accepted and refused at each given time
instant. This will then complete our integration of reactive processes and hybrid relations,
and provide the semantic model for CyPhyCircus. Most likely, the model for CyPhyCircus
will be a hybrid reactive design

R(P ∧ ��R�� � Q ∧ ��G��)

where P and Q are the precondition and postcondition on the discrete state, and R and G
are assumptions and commitments on the continuous variables. Such a construction will
enable us to apply contractual-style program construction and reasoning to concurrent
Cyber-Physical Systems.

10 Conclusion

We have constructed a UTP theory of hybrid relations, which extends the alphabetised
relational calculus with continuous variables whose behavioural evolution is constrained
by healthiness conditions. The signature of this theory is the hybrid relational calculus
enables modelling hybrid systems using imperative programming constructs, differential-
algebraic equations, and continuous event preemption. We have then shown how this

32



D2.2c - Initial Modelica Semantics (Public)

theory can be used to give an initial semantics to the Modelica language, and in par-
ticular the latter’s event preemption cycle. Finally, we have shown the way forward in
integrating the hybrid relational calculus with concurrent and reactive behaviour through
a generalised model of UTP reactive processes, which equips us with hybrid reactive de-
signs.

There are three main strands of work to be followed in the final year of INTO-CPS in this
task, some of which involves collaboration with Task T2.4. The first is to develop our
theory of hybrid reactive designs further, prove its fundamental laws in Isabelle/UTP, and
use it to give a semantics to our proposed lingua franca, CyPhyCircus. The second strand
of work is to use CyPhyCircus to give a more comprehensive semantics for Modelica,
including the description of block diagrams. We will also develop further examples which
illustrate the Modelica semantics, and enable us to tackle more complex models. The
third strand, in collaboration with Task 2.4, is to integrate this semantic model with the
FMI semantics described in [8], to enable semantic integration of multi-models involving
Modelica, VDM-RT, and other modelling languages. This will involve giving a Modelica
model an interface using the FMI get, set, and doStep events to allow its orchestration
by a master algorithm.

33



D2.2c - Initial Modelica Semantics (Public)

References

[1] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implementation of a Modelica
compiler using JastAdd attribute grammars. Science of Computer Programming,
75(1–2):21–38, 2010. Special Issue on ETAPS 2006 and 2007 Workshops on Language
Descriptions, Tools, and Applications (LDTA ’06 and ’07).

[2] Bernhard Bachmann, Peter Aronsson, and Peter Fritzson. Robust initialization of
differential algebraic equation. In 5th Int. Modelica Conference, Vienna, Austria,
September 2006.

[3] A. Beg and A. Butterfield. Development of a prototype translator from Circus to
CSPm. In Proc. 9th Intl. Conf. on Open Source Systems and Technologies (ICOSST),
pages 16–23. IEEE, December 2015.

[4] M. M. A. Beg. Translating from “State-Rich” to “State-Poor” Process Algebras. PhD
thesis, Department of Computer Science, Trinity College Dublin, April 2016.

[5] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof in
Isabelle/HOL. In FroCoS, volume 6989 of LNCS, pages 12–27. Springer, 2011.

[6] A. Cavalcanti and J. Woodcock. A tutorial introduction to CSP in unifying theories
of programming. In Refinement Techniques in Software Engineering, volume 3167
of LNCS, pages 220–268. Springer, 2006.

[7] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Unifying classes and pro-
cesses. Software and System Modeling, 4(3):277–296, 2005.

[8] Ana Cavalcanti and Jim Woodcock. Foundations for FMI comodelling. Technical
report, INTO-CPS Deliverable, D2.2d, December 2016.

[9] J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical Computer
Science, 138(2):243–271, 1995.

[10] A. Feliachi, M.-C. Gaudel, and B. Wolff. Isabelle/Circus: a process specification and
verification environment. In VSTTE 2012, volume 7152 of LNCS, pages 243–260.
Springer, 2012.

[11] C. J. Fidge. Modelling discrete behaviour in a continuous-time formalism. In
K. Araki, A. Galloway, and Taguchi K., editors, Proc. 1st Intl. Conf. on Integrated
Formal Methods (IFM). Springer, 1999.

[12] J. D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In 13th. Intl.
Conf. on Theorem Proving Higher Order Logics (TPHOLs), volume 1869 of LNCS,
pages 145–161. Springer, 2000.

[13] S. Foster, A. Miyazawa, J. Woodcock, A. Cavalcanti, J. Fitzgerald, and P. Larsen.
An approach for managing semantic heterogeneity in systems of systems engineering.
In Proc. 9th Intl. Conf. on Systems of Systems Engineering. IEEE, 2014.

[14] S. Foster, B. Thiele, A. Cavalcanti, and J. Woodcock. Towards a UTP semantics for
Modelica. In Proc. 6th Intl. Symp. on Unifying Theories of Programming, volume
10134 of LNCS. Springer, June 2016. To appear.

34



D2.2c - Initial Modelica Semantics (Public)

[15] S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mechanised theory engineer-
ing framework. In David Naumann, editor, Proc. 5th Intl. Symposium on Unifying
Theories of Programming (UTP 2014), volume 8963 of LNCS, pages 21–41. Springer,
2014.

[16] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with
lenses. In Proc. 13th Intl. Conf. on Theoretical Aspects of Computing (ICTAC),
volume 9965 of LNCS. Springer, 2016.

[17] Simon Foster, Ana Cavalcanti, Samuel Canham, Ken Pierce, and Jim Woodcock.
Final Semantics of VDM-RT. Technical report, INTO-CPS Deliverable, D2.2b, De-
cember 2016.

[18] Simon Foster, Ana Cavalcanti, Kenneth Lausdahl, Ken Pierce, and Jim Woodcock.
Initial Semantics of VDM-RT. Technical report, INTO-CPS Deliverable, D2.1b,
December 2015.

[19] Simon Foster, Bernhard Thiele, and Jim Woodcock. Differential Equations in the
Unifying Theories of Programming. Technical report, INTO-CPS Deliverable, D2.1c,
December 2015.

[20] J. Harrison. A HOL theory of Euclidean space. In J. Hurd and T. Melham, edi-
tors, Proc. 18th Intl. Conf. on Theorem Proving in Higher Order Logics (TPHOLs),
volume 3603 of LNCS, pages 114–129. Springer, 2005.

[21] W. Harwood, A. Cavalcanti, and J. Woodcock. A theory of pointers for the UTP. In
Proc. 5th. Intl. Colloq. on Theoretical Aspects of Computing (ICTAC), volume 5160
of LNCS, pages 141–155. Springer, 2008.

[22] I. Hayes. A predicative semantics for real-time refinement. In A. McIver and C. Mor-
gan, editors, Programming Methodology. Springer, 2003.

[23] I. Hayes. Termination of real-time programs: Definitely, definitely not, or maybe.
In S. Dunne and B. Stoddart, editors, Proc. 1st Intl. Symp. on Unifying Theories of
Programming, volume 4010 of LNCS, pages 141–154. Springer, February 2006.

[24] I. Hayes and M. Utting. A sequential real-time refinement calculus. Acta Informatica,
37(6):385–448, February 2001.

[25] I. J. Hayes, S. E. Dunne, and L. Meinicke. Unifying theories of programming that
distinguish nontermination and abort. In Mathematics of Program Construction
(MPC), volume 6120 of LNCS, pages 178–194. Springer, 2010.

[26] Jifeng He. From CSP to hybrid systems. In A. W. Roscoe, editor, A classical mind:
essays in honour of C. A. R. Hoare, pages 171–189. Prentice Hall, 1994.

[27] Jifeng He. HRML: a hybrid relational modelling language. In IEEE International
Conference on Software Quality, Reliability and Security (QRS 2015), August 2015.

[28] T. A. Henzinger. The theory of hybrid automata, pages 278–292. IEEE, 1996.

[29] Tony Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, New Jersey 07632, 1985.

[30] Tony Hoare and Jifeng He. Unifying Theories of Programming. Prentice-Hall, 1998.

35



D2.2c - Initial Modelica Semantics (Public)

[31] Peter Höfner and Bernhard Möller. An algebra of hybrid systems. Journal of Logic
and Algebraic Programming, 78(2):74–97, 2009.

[32] B. Huffman and O. Kunčar. Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In 3rd Intl. Conf. on Certified Programs and Proofs, volume 8307 of
LNCS, pages 131–146. Springer, 2013.

[33] David Kågedal and Peter Fritzson. Generating a Modelica compiler from natural
semantics specifications. In Proceedings of the 1998 Summer Computer Simulation
Conference (SCSC’98), 1998.

[34] Edward Lee. Constructive models of discrete and continuous physical phenomena.
IEEE Access, 2014.

[35] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for Hybrid
CSP. In 8th Asian Symp. on Programming Languages and Systems (APLAS), volume
6461 of LNCS, pages 1–15. Springer, 2010.

[36] Modelica Association. Modelica - A Unified Object-Oriented Language for Systems
Modeling - Version 3.3 Revision 1. Standard Specification, July 2014.

[37] Carroll Morgan. Programming from Specifications. Prentice-Hall, London, UK, 1990.

[38] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[39] L. A. Ochel and B. Bachmann. Initialization of Equation-Based Hybrid Models
within OpenModelica. In 5th Intl. Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pages 97–103, Nottingham, UK, April 2013.

[40] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, Department of Computer Science - University of York, UK, 2006. YCST-
2006-02.

[41] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics
for Circus. Formal Aspects of Computing, 21(1):3 – 32, 2007.

[42] M. V. M Oliveira, A. C. A. Sampaio, and M. S. C. Filho. Model-checking Circus
state-rich specifications. In 11th Intl. Conf. on Integrated Formal Methods, volume
8739 of LNCS, pages 39–54. Springer, 2014.

[43] Constantinos C. Pantelides. The consistent initialization of differential-algebraic
systems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.

[44] André Platzer. Logical Analysis of Hybrid Systems. Springer, 2010.

[45] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[46] Lucas Satabin, Jean-Louis Colaco, Olivier Andrieu, and Bruno Pagano. Towards a
Formalized Modelica Subset. In Hilding Elmqvist Peter Fritzson, editor, 11th Int.
Modelica Conference, Versailles, France, September 2015.

[47] Adnan Sherif, Ana Cavalcanti, He Jifeng, and Augusto Sampaio. A process algebraic
framework for specification and validation of real-time systems. Formal Aspects of
Computing, 22:153–191, 2010.

36



D2.2c - Initial Modelica Semantics (Public)

[48] Bernhard Thiele, Alois Knoll, and Peter Fritzson. Towards Qualifiable Code Gener-
ation from a Clocked Synchronous Subset of Modelica. Modeling, Identification and
Control, 36(1):23–52, 2015.

[49] Kun Wei, Jim Woodcock, and Ana Cavalcanti. Circus Time with Reactive Designs.
In Unifying Theories of Programming, volume 7681 of LNCS, pages 68–87. Springer,
2013.

[50] J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refinement.
In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

[51] Jim Woodcock. Engineering UToPiA - Formal Semantics for CML. In Cliff Jones,
Pekka Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods, volume 8442 of
Lecture Notes in Computer Science, pages 22–41. Springer International Publishing,
2014.

[52] Jim Woodcock and Jim Davies. Using Z – Specification, Refinement, and Proof.
Prentice Hall International Series in Computer Science, 1996.

[53] F. Zeyda, S. Foster, and L. Freitas. An axiomatic value model for Isabelle/UTP. In
Proc. 6th Intl. Symp. on Unifying Theories of Programming, volume 10134 of LNCS.
Springer, 2016. To appear.

[54] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen. Formal verification of a
descent guidance control program of a lunar lander. In 19th International Symposium
on Formal Methods (FM), volume 8442 of LNCS, pages 733–748. Springer, 2014.

[55] C. Zhou and M. R. Hansen. Chopping a point. In Proc. 7th BCS-FACS Refinement
Workshop. Springer, 1996.

[56] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.

[57] C. Zhou, W. Ji, and A. P. Ravn. A formal description of hybrid systems. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066 of
LNCS, pages 511–530. Springer, 1996.

[58] C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid
real-time systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, volume 736 of LNCS, pages 36–59. Springer, 1993.

[59] L. Zou, N. Zhan, S. Wang, and M. Fränzle. Formal verification of simulink/stateflow
diagrams. In 13th International Symposium on Automated Technology for Verifica-
tion and Analysis, volume 9364 of LNCS, pages 464–481. Springer, 2015.

37


