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Abstract

This deliverable reports on the progress towards a definition of formal semantics for the
continuous-time modelling language Modelica in Task 2.3 of INTO-CPS. The basis of
dynamic modelling in Modelica is Differential Algebraic Equations (DAEs) and so this
initial work focuses on giving a formal semantics to a simple language with DAEs in
the context of the Unifying Theories of Programming (UTP). We describe the start of
the art in semantics for Modelica, including its implementation of hybrid DAEs. We
then give our UTP theory of differential equations, and an experimental mechanisation
of this theory in Isabelle/HOL. This UTP theory will provide the basis for the Modelica
semantics in the remaining years of INTO-CPS.
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Acronyms

DAE differential algebraic equation.

EBNF Extended Backus–Naur Form.
EOO equation-based object-oriented.

MLS Modelica Language Specification.

ODE ordinary differential equation.

PDE partial differential equation.
PELAB Programming Environments Laboratory.

RML Relational Meta Language.

Symbols

c(te) vector containing all Boolean condition ex-
pressions, e.g., if-expressions.

m(te) vector of discrete-time variables of type dis-
crete Real, Boolean, Integer, String.
Change only at event instants te.
.

mpre(te) values of m immediately before the current
event at event instant te.

p parameters and constants.

t time.

v(t) vector containing all elements in the vectors
x(t), ẋ(t), y(t), [t], m(te), mpre(te), p.

x(t) vector of dynamic variables of type Real, i.e.,
variables that appear differentiated at some
place.

ẋ(t) differentiated vector of dynamic variables.

y(t) vector of other variables of type Real which do
not fall into any other category (= algebraic
variables).
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1 Introduction

This deliverable presents initial work towards creation of a formal denotational semantics
for continuous-time models written using the Modelica language [Mod14]. The creation
of such a semantics will provide firm mathematical foundations for the language, allow
us to consider formal links between Modelica and other languages in INTO-CPS (such as
VDM-RT and FMI), and enable the possibility of theorem-proving support for continuous
models for the purpose of verification. The Modelica language supports modelling using
a conceptual framework based on ordinary differential equations (ODEs) and differential
algebraic equations (DAEs) combined with an event handling mechanism. The aim of
this deliverable is three-fold:

1. to provide an overview of the foundations of the Modelica language, including the
existing work on semantics;

2. to highlight the main aspects of the language that should be considered;

3. to provide an initial UTP [HH98] theory of continuous time and differential equa-
tions that will provide the basis for the development of Modelica semantics in
subsequent years.

In Section 2 we provide a detailed description of the Modelica language, explain its
semantic foundations, different approaches to formal semantics already available, and
provide some aspirations for our work. In particular we examine the flattening process
whereby a collection of Modelica objects is converted to a pure hybrid DAE system.
We then describe the hybrid DAE core of the Modelica language, and compare this to
the Functional Mockup Interface’s (FMI) representation of Hybrid ODEs. We conclude
this Section with a collection of Modelica examples. In Section 3 we describe the UTP
(Unifying Theories of Programming) semantic framework [HH98] that we will use as
a means to give Modelica a formal semantics, along with other continuous time and
dynamical systems modelling languages. In Section 4 we describe our UTP theory of
differential algebraic equations. This allows the definition of hybrid programs that mix
continuous and discrete behaviour, and also specifications regarding their behaviour. This
theory will, in subsequent years, form a key part of INTO-CSP, a Hybrid CSP [He94]
inspired language that we intend to use as a lingua franca for all the notations used
in INTO-CPS. In Section 5 we report on the current work towards mechanisation of
our UTP theory in the Isabelle/HOL proof assistant [NWP02]. Finally in Section 6 we
conclude the discussion.

2 Foundations of Modelica

2.1 Objectives of the Modelica Language

Modelica is language for describing the dynamic behaviour of technical systems consisting
of mechanical, electrical, thermal, hydraulic, pneumatical, control and other components.
The behaviour of models is described with

• ordinary differential equations (ODEs),
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• algebraic equations (AEs),

• event handling and recurrence relations (sampled control).

Object-oriented concepts are supported as a means of managing the complexity inherent
to modern technical systems. Modelica can therefore be called an equation-based object-
oriented (EOO) language. That term, coined by Broman [Bro10], nicely subsumes the
central, distinguishing language characteristics.

Equation-based: Behavior is described declaratively using mathematical equations.

Object-oriented: Objects encapsulate behavior and constitute building blocks that are
used to build more complex objects.

The most recent standard version is the Modelica Language Specification (MLS) 3.3
[Mod14]. An important extension in MLS 3.3 if the addition of support for improved
discrete-time modelling for control algorithms [Mod14, Chapter 16 and 17] inspired by
synchronous languages semantics [BEH+03].

It is worth noting that directly describing models using partial differential equations
(PDEs) is currently beyond the scope of the Modelica language1. However, it is possible
to use results of tools that support PDEs or discretise simple PDEs manually.

2.2 Semantic Foundation

Quoting from [Mod14, Section 1.2]:

The semantics of the Modelica language is specified by means of a set of
rules for translating any class described in the Modelica language to a flat
Modelica structure. A class must have additional properties in order that its
flat Modelica structure can be further transformed into a set of differential,
algebraic and discrete equations (= flat hybrid DAE). Such classes are called
simulation models.

Figure 1 illustrates the basic idea. It suggests itself to discern the depicted two stages
when giving semantics to Modelica models.

In practical Modelica compiler implementations, the translation to a flat Modelica struc-
ture is typically mapped to a “front-end” phase and the translation to an executable
simulation to a “back-end” phase of the translation process. Figure 2 depicts a such a
typical translation process that is classified into several stages.

Sometimes a dedicated “middle-end” phase is defined; it is responsible for the symbolic
equation transformations performed during sorting and optimising the hybrid differential
algebraic equation (hybrid DAE) into a representation that can be efficiently solved by a
numerical solver. In that case the “back-end” phase would only be responsible for code
generation (typically C code) from the optimized sorted equations.

The following characterisation of the different stages is taken from [Thi15, p. 39]:
1There has been research in that direction, e.g., [Sal06, LZZ08], but so far no common agreement

exists whether the Modelica language should be extended to support PDEs and how a such an extension
should be done.
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Modelica Model

Flat Modelica
(Hybrid DAE)

Simulation Result

Modelica
Specification

Mathematical denotation
for hybrid DAE system

Figure 1: Modelica semantics. From model to simulation result. The squiggle arrow
denotes a degree of fuzziness — a simulation result is an approximation to the in general
inaccessible exact solution of the equation system and the specification does not prescribe
a particular solution approach.

Lexical Analysis and Parsing This is standard compiler technology.

Elaboration Involves type checking, collapsing the instance hierarchy and generation
of connection equations from connect equations. The result is a hybrid differen-
tial algebraic equation (DAE) (consisting of variable declarations, equations from
equations sections, algorithm sections, and when-clauses for triggering discrete-time
behavior).

Equation Transformation This step encompasses transforming and manipulating the
equation system into a representation that can be efficiently solved by a numerical
solver. Depending on the intended solver the DAE is typically reduced to an index
one problem (in case of a DAE solver) or to an ODE form (in case of numerical
integration methods like Euler or Runge-Kutta).

Code generation For efficiency reasons tools typically allow (or require) translation of
the residual function (for an DAE) or the right-hand side of an equation system (for
an ODE) to C-code that is compiled and linked together with a numerical solver
into an executable file.

Simulation Execution of the (compiled) model. During execution, the simulation results
are typically written into a file for later analysis.

The Modelica Language Specification (MLS) is described using the English language, its
semantics is therefore to some extent subject to interpretation. It appears also notable
that the intermediate hybrid DAE representation (denoted as Flat Modelica in Figure 2)
is not formally specified in the MLS, i.e., no concrete syntax description, e.g., in Ex-
tended Backus–Naur Form (EBNF), is provided (despite the conceptual importance of
Flat Modelica). The translation from an instantiated Modelica model to a Flat Mod-
elica representation is called flattening of Modelica models (hierarchical constructs are
eliminated and a “flat” set of Modelica “statements” is produced).
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Modelica model

AST

Optimized
sorted equations

Simulation results

Simulation

Lexical Analysis and Parsing

Elaboration

Hybrid DAE

Code generation

Equation transformation

Executable

Flat ModelicaCompile
time

Runtime

Compiler
front-end

Compiler
back-end

Figure 2: The typical stages of translating and executing a Modelica model.

The MLS [Mod14, Appendix C] discusses how a “flat” set of Modelica “statements” is
mapped into an appropriate mathematical description form denoted as Modelica DAE.
It is this mapping to a mathematical description that allows to associate dynamic se-
mantics to the declarative Flat Modelica description. This will be further discussed in
Section 2.4.

2.3 Formal Specification Approaches for Modelica

This section gives a brief (non-exhaustive) account of previous work related to formally
specifying aspects of the Modelica language.

2.3.1 Operational Semantics

A first attempt to formalise aspects of the Modelica language was made at a time where
no complete implementation was available and was performed by Kågedal and Fritzson
to discover and close gaps in the early specification documents [KF98]. Kågedal and
Fritzson distinguish between static semantics (which describes how the object-oriented
structuring of models and their equations work) and the dynamic semantics (which de-
scribes the simulation-time behaviour) of Modelica models. Like most later work on
formalizing Modelica semantics the work by Kågedal and Fritzson [KF98] addresses the
static semantics and does not intend to describe the equations solving process, nor the
actual simulation. The formal semantics provided in their work is expressed in a high-
level specification language called Relational Meta Language (RML) [Pet95], which is
based on natural semantics (an operational semantics specification style). A compiler
generation system allows generating a translator from a language specification written in
RML. The paper explains the basic ideas behind that approach, but it does not list the
complete RML source-code that was written during that early effort.

Development and usage of efficient language implementation generators has been a long-
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term research effort at the Programming Environments Laboratory (PELAB)2 at Lin-
köping University. In [FPBA09], Peter et al. report on practical experience gained with
various approaches. The biggest effort was developing a complete Modelica compiler
using RML as the specification language. This implementation formed the base for the
OpenModelica environment [FAL+05]. A remarkable observation reported in the paper
is the enormous growth of the RML code over time; we reproduce the data below (where
we refer to lines of RML code, including comments).

Lines OM 1998 Lines OM 2003 Lines OM 2006
8709 36050 80064

Nowadays the development of OpenModelica has swapped from RML to MetaModelica.
MetaModelica is a language developed at PELAB that introduces language modelling
features known from languages like RML into the Modelica language. One of its develop-
ment motivations was to provide a language with a more gentle learning curve than RML,
particularly in regard to prospective OpenModelica developers without a background in
formal specification methods. MetaModelica [PF06] has evolved over the years and,
more recently, a bootstrapping version has been used in the OpenModelica development
[SFP14].

An ongoing project that aims to formalize a clocked discrete-time subset of the Modelica
language is the CERTMOD3 project. First results that formally describe the static-name
lookup mechanism are published in [SCAP15].

2.3.2 Reference Attribute Grammars

Åkesson et al. report on leveraging modern attribute grammars mechanisms to support
the front-end phase of a Modelica compiler [ÅEH10]. They use the attribute grammars
metacompilation system JastAdd for implementing their Modelica compiler. The Model-
ica compiler of the open-source JModelica.org4 platform is based on this technology.

2.3.3 Translational Semantics

A substantial extension in the MLS 3.3 was the integration of language elements moti-
vated by synchronous languages like Lustre, Esterel, or Signal [BEH+03]. The synchronous-
language paradigm has been particularly successful in the development of safety-critical
control software like flight control systems. Thiele et al. [TKF15] discuss an approach that
leverages the synchronous-language elements extension of Modelica to enable a model-
based development process for safety-related applications. For that, they aim at map-
ping a Modelica subset for digital control-function development to a well understood
synchronous data-flow kernel language. That mapping is established by providing a
translational semantics from the Modelica subset to the synchronous data-flow kernel
language.

2http://www.ida.liu.se/labs/pelab/ (Oct, 2015).
3http://cordis.europa.eu/project/rcn/111584_en.pdf, (Nov, 2015).
4http://www.jmodelica.org/ (Oct, 2015).
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2.3.4 Summary

Several formal specification approaches have been used to give semantics to Modelica,
however one needs to be aware of their scopes and restrictions.

The translational semantics approach (Section 2.3.3) is restricted to a discrete-time sub-
set of the Modelica language, deemed suitable for safety-related applications. The subset
is strongly restricted in order to lower tool qualification efforts for a code generator that
is based on that subset (trade-off between language expressiveness and tool qualification
efforts). There is no notion of differential equations within that language subset. Conse-
quently, semantic models for continuous-modelling languages is not within the scope of
that previous work.

Both the operational semantics approach based on RML/MetaModelica (Section 2.3.1)
and the reference attribute-grammar approach based on JastAdd (Section 2.3.2) are tar-
geted at describing the instantiation and flattening of Modelica models (static semantics).
The result after that stage is basically the Flat Modelica representation (see Figure 2). In
addition RML/MetaModelica is also used in the equation transformation (“middle-end”)
of the compiler. In both cases, the primary rationale of the formal description is gen-
erating compilers using language-implementation generators, rather than (mechanised)
proving of certain properties. The operational semantics approach used in the ongoing
CERTMOD5 project aims to describe static and dynamic semantics for a discrete-time
subset of Modelica.

Neither the operational semantics approach nor the reference-attribute grammar ap-
proach targets the dynamic semantics of hybrid systems (i.e. the simulation-time be-
havior of dynamic systems that exhibit both continuous and discrete dynamic behavior)
of Modelica models. The aim of this work is to investigate the formalization of Mod-
elica language aspects related to the dynamic semantics of hybrid system models. In
particular, we will formalise a UTP denotational semantics for both dynamic modelling
and event-based constructs. This can then later be used to derive a complete opera-
tional semantics for the kernel language, which we will describe further in Sections 3 and
4.

2.4 Modelica Hybrid DAE Representation

[Mod14, Appendix C] discusses the mapping of a Modelica model into an appropriate
mathematical description form. This section describes the principle form of the repre-
sentation without aiming to cover every detail and special case6. Table 3 describes the
symbols used in the mathematical description.

2.4.1 Equations

Flat Modelica can be conceptually mapped to a set of equations consisting of differential,
algebraic and discrete equations of the following form (see Table 3 for brief description
of the used symbols):

5http://cordis.europa.eu/project/rcn/111584_en.pdf, (Nov, 2015).
6E.g., the semantics of operators like noEvent(), or reinit() is not covered.
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Symbol Description
p parameters and constants
pB parameters and constants of type Boolean, pB ⊆ p
t time
x(t) vector of dynamic variables of type Real, i.e., variables that appear

differentiated at some place
ẋ(t) differentiated vector of dynamic variables
y(t) vector of other variables of type Real which do not fall into any other

category (= algebraic variables)
m(te) vector of discrete-time variables of type discrete Real, Boolean, In-

teger, String. Change only at event instants te

mB(te) vector of discrete-time variables of type Boolean, mB(te) ⊆ m(te).
Change only at event instants te

mpre(te) values of m immediately before the current event at event instant te

mB
pre(te) values of mB immediately before the current event at event instant te,

mB
pre(te) ⊆ mpre(te)

c(te) vector containing all Boolean condition expressions, e.g., if-expressions
v(t) vector containing all elements in the vectors x(t), ẋ(t), y(t), [t], m(te),

mpre(te), p

Table 3: Notation used in the Modelica hybrid DAE representation.

1. Continuous-time behaviour. The system behavior between events is described by a
system of differential and algebraic equations (DAEs):

f
�
x(t), ẋ(t), y(t), t, m(te), mpre(te), p, c(te)

�
= 0 (1a)

g
�
x(t), y(t), t, m(te), mpre(te), p, c(te)

�
= 0 (1b)

2. Discrete-time behaviour. Behaviour at an event at time te. An event fires if any of
condition c(te) change from false to true. The vector-value function fm specifies
the right-hand side (RHS) expression to the discrete variables m(te). The argument
c(te) is made explicit for convenience (alternatively it could have been incorporated
directly into fm). The vector c(te) is defined by the vector-value function fe which
contains all Boolean condition expressions evaluated at the most recent event te.

m(te) := fm

�
x(te), ẋ(te), y(te), mpre(te), p, c(te)

�
(2)

c(te) := fe

�
mB(te), mB

pre(te), pB, rel(v(te))
�

(3)

where rel(v(te)) = rel([x(t); ẋ(t); y(t); t; m(te); mpre(te); p]) is a Boolean-typed vector-
valued function containing the relevant elementary relational expressions (“<”,
“<=”, “>”, “>=”, “==”, “<>”) from the model, containing variables vi, e.g.,
v1 > v2, v3 ≥ 0.
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2.4.2 Simulation

Simulation means that an initial value problem (IVP) is solved. The equations define a
DAE which may have discontinuities, a variable structure and/or which are controlled by
a discrete-event system. Simulation is performed in the following way:

1. The DAE (1) is solved by a numerical integration method. Conditions c as well as
the discrete variables m are kept constant. Therefore, (1) is a continuous function
of continuous variables and the most basic requirement of numerical integrators is
fulfilled.

2. During integration, all relations from (3) are monitored. If one of the relations
changes its value an event is triggered, i.e., the exact time instant of the change is
determined and the integration is halted.

3. At an event instant, (1)–(3) is a mixed set of algebraic equations, which is solved
for the Real, Boolean and Integer unknowns. New values of the discrete variables
m and of new initial values for the states x are determined.

4. After an event is processed, the integration is restarted at 1.

There might have been discontinuous variable changes at an event that trigger another
event. This case is described in the next section.

2.4.3 Event Iteration

At an event instant, including the initial event, the model equations are reinitialized
according to the following iteration procedure:

known variables: x, t, p

unkown variables: ẋ, y, m, mpre, c

// mpre = value of m before event occured
loop

solve (1)–(3) for the unknowns, with mpre fixed
if m = mpre then break
mpre := m

end loop

The iterative process of triggering events and solving the reinitialization problem is called
event iteration. It is an example of a so-called fixed-point procedure, i.e., the iterative
process is assumed to converge to a fixed point.

2.4.4 Remarks on DAEs

DAEs are distinct from ODEs in that they are not completely solvable for the derivatives
of all components of the function x(t) because these may not all appear (i.e., some
equations are algebraic).

14
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Consider following DAE given in the general form

f(x, ẋ, y, t) = 0 (4)

where x = x(t), ẋ = ẋ(t) ∈ Rn, y = y(t) ∈ Rm, f : G ⊆ Rn ×Rn ×Rm ×R → Rn+m.

For a set of initial conditions (x0, ẋ0, y0, t0) = 0 to be consistent, it must satisfy system
(4) at an initial time t0:

f(x0, ẋ0, y0, t0) = 0. (5)

The consistent initialization of such systems is the problem that Pantelides considered in
his famous paper [Pan88].

Note that “initial conditions” here refers to the vector (x0, ẋ0, y0) rather than simply
(x0, y0), hence elements of ẋ0 may appear in (5). There is another complication as [Pan88]
describes:

Differentiating some or even all of the original equations produces new equa-
tions which must also be satisfied by the initial conditions. This need not
necessarily constrain the vector (x0, ẋ0, y0) further: differentiation can also
introduce new variables (time-derivatives of ẋ and y) and it may well be the
case that the new equations can be satisfied for all possible values of the initial
conditions and appropriate choices of values for the new variables. Thus, in
this case no useful information is generated by differentiation.

Pantelides then proposes an algorithm to analyze the structure of the system equations
and determine the minimal subset for which differentiation may yield useful information
in the sense that it imposes further constraints on the vector of initial conditions. This
algorithm is not only useful for the initialization of a DAE system, but also for transform-
ing the DAE system to a corresponding ODE system. The algorithm is further detailed
below.

An important property for DAEs is the notion of the DAE index. There exist different
definitions for DAE index in the literature. The following informal definition is from
[Fri14, Section 18.2.2]. A more formal definition can be found in [AP98, Definition 9.1,
p. 236].
Definition 2.1. DAE index or differential index. The differential index of a general DAE
system is the minimum number of times that certain equations in the system need to be
differentiated to reduce the system to a set of ODEs, which can then be solved by the
usual ODE solvers.

The DAE index can therefore be seen as measurement for the distance between a DAE
and a corresponding ODE.

An ODE system in explicit state-space form is a DAE system of index 0 :

ẋ = f(x, t) (6)

The following semi-explicit form of DAE system:

ẋ = f(x, y, t) (7a)
0 = g(x, y, t) (7b)
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is of index 1 if ∂g(x,y,t)
∂y

is non-singular, because then one differentiation of (7b) yields ẏ
in principle.

DAEs with an index > 1 are called higher-index DAEs.

Bachmann et al. [BAF06, Section 4.4] describe the typical approach in which higher-index
DAEs are solved by a Modelica tool:

1. Use Pantelides algorithm to determine how many times each equation has to be
differentiated to reduce the index to one or zero.

2. Perform index reduction of the DAE by analytic symbolic differentiation of certain
equations and by applying the method of dummy derivatives [MS93]. The method
of dummy derivatives for index reduction augments the DAE system with differen-
tiated versions of equations, and replaces some of the differentiated variables with
new algebraic variables called dummy derivatives [Fri14, Section 18.2.4.1].

3. Select the core state variables to be used for solving the reduced problem. These
can either be selected statically during compilation, or in some cases selected dy-
namically during simulation.

4. Use a numeric ODE solver to solve the reduced problem.

We can potentially invoke a similar approach in our semantics by only considering the
underlying ODEs themselves, and using the index reduction to convert from the Modelica-
level DAE. Nevertheless, there may be benefit for theorem proving in directly considering
DAEs, and so we will consider both possibilities.

2.5 Super-Dense Time

The Functional Mock-up Interface (FMI) 2.0 standard for model exchange discusses a
mathematical description for ODEs in state space form with event handling denoted as a
“hybrid ODE” [FMI14, Section 3.1]. Modelica tools contain symbolic algorithms for DAE
index reduction. These algorithms allow reduction of the DAE index in order to solve
DAEs using numerical reliable methods and therefore also allow transform of the DAE
formulation to an ODE formulation (transforming the DAE to an ODE for simulation is
indeed the preferred method for some Modelica tools).

Studying the FMI description for hybrid ODEs is also interesting in the context of pro-
viding a dynamic semantics to Modelica models for the following reasons:

1. DAE index reduction methods allow transformation of a Modelica hybrid DAE to
an FMI hybrid ODE.

2. It allows relation of the mathematical description used in the FMI standard [FMI14,
Section 3.1] with the mathematical description from the Modelica standard [Mod14,
Appendix C].

The mathematical description of FMI’s Model Exchange interface [FMI14, Section 3.1]
employs the concept of super-dense time for giving semantics to hybrid ODEs.
Definition 2.2. Super-dense time The independent variable time t ∈ T is a tuple
t = (tR, TI) where tR ∈ R, tI ∈ N = {0, 1, 2, . . .}, see e.g., [LZ07].
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Super-dense time provides a suitable formalism to reason about the dynamical evolution
of hybrid system variables. Table 4 describes the ordering defined on super-dense time.
Figure 3 depicts the concept graphically.

Operation Mathematical meaning Description
t1 < t2 (tR1, tI1) < (tR2, tI2) ⇔ (tR1 < tR2) ∨�

(tR1 = tR2) ∧ (tI1 < tI2)
� t1 is before t2

t1 = t2 (tR1, tI1) = (tR2, tI2) ⇔ (tR1 = tR2) ∧
(tI1 = tI2)

t1 is identical to t2

t+ (tR, tI)+ ⇔ (limε→0(tR + ε), tImax) right limit at t. tImax is the
largest occurring Integer index of
super dense time

−t −(tR, tI) ⇔ (limε→0(tR − ε), 0) left limit at t

•t •(tR, tI) ⇔
�−t if tI = 0

(tR, tI − 1) if tI > 0
previous time instant (= either
left limit or previous event in-
stant)

v+ v(t+) value at the right limit of t
−v v(−t) value at the left limit of t
•v v(•t) previous value (= either left limit

or value from the previous event)

Table 4: Ordering defined on super-dense time T.

(t,0)

(t,1)

(t,2)

(u,0)

(v,0)

(v,1)

(v,2)

(v,3)

real time
Figure 3: Super-dense time modelling T = R × N.

In particular, note that super-dense time allows signals to have an ordered sequence of
values at the same time instant. This is important since a time model based on the set
of real numbers (t ∈ R) is not semantically rich enough to capture an ordered sequence
of signal values during an event iteration as described in Section 2.4.3.

2.6 Examples

This section points out aspects of Modelica by providing a collection of concrete examples.
These serve to illustrate the key semantic concepts from Modelica, and how the current
simulation tool implements them.
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2.6.1 Hello World (ODEs)

The “hello world” program of Modelica is a simple ODE. Listing 1 describes the initial
value problem (IVP)

ẋ = −x, (8)
with initial condition (IC): x(t0) = 1.

Listing 1: HelloWorld example.
1 model HelloWorld "Simple ODE"
2 parameter Real c = -1;
3 Real x(start =1, fixed=true);
4 equation
5 der(x) = c*x;
6 end HelloWorld ;

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 10
numberOfIntervals 10

Variable x of the HelloWorld example is plotted in Figure 4. The dot within the graph

0 2 4 6 8 10
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

e−t

x

Figure 4: Plot for the “Hello World” example (Listing 1).

of x depicts an entry for the variable at this point within the generated result file. In
addition the symbolic solution of the IVP (8), x(t) = e−t, is plotted.
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2.6.2 Cartesian Pendulum (DAEs)

A frequently presented example of a DAE system results from modelling the motion of a
pendulum in Cartesian coordinates.

Figure 5 shows a pendulum in Cartesian coordinates (x, y) with the center in (0, 0) and a
length l. Of course, it is well known that the equations simplify to the ODE lθ̈ = −g sin θ

x

y

Figure 5: Pendulum with Cartesian coordinates (x, y).

if using a polar coordinate system instead of a Cartesian coordinate system. However,
this is not the point of this example (but of course results based on this ODE can be used
to validate the DAE solution based on using Cartesian coordinates).

The Lagrangian L = T −V can be computed from the kinetic energy T and the potential
energy V .

L = 1
2(ẋ2 + ẏ2) − mgy.

The motion is restricted on to a circle with radius l that gives rise to the equality con-
straint

g = x2 + y2 − l2 = 0.

Using the method of Lagrange multipliers, the equality constraint can be included in the
new Lagrangian

L� = L + λg = 1
2(ẋ2 + ẏ2) − mgy + λ(x2 + y2 − l2)

where λ is a Lagrange multiplier7. The Euler-Lagrange equation, then, is given by
d

dt

∂L�

∂(ẋ, ẏ, λ̇)
− ∂L�

∂(x, y, λ) = 0.

Evaluation of the Euler-Lagrange equation, substituting ẋ = u, ẏ = v and assuming mass
m = 2, results in the DAE system

ẋ = u, ẏ = v, (9a)
u̇ = λx, v̇ = λy − g, (9b)

x2 + y2 = l2. (9c)
7See, e.g., section “Lagrange multipliers and constraints” at https://en.wikipedia.org/wiki/

Lagrangian_mechanics (Nov, 2015).
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The momentum variables u and v should be governed by the law of conservation of
energy and their direction should point along the circle. Neither condition is explicit in
the equations above.

Since this is an initial value problem (IVP), a compatible set of initial conditions needs
to be provided. One possibility is to use (x(t0) = x0, u(t0) = u0), where x0 is constrained
to be between −l ≤ x0 ≤ l. In addition, a sign is needed for the value of y(t0), since
there are the two possibilities y(t0) = ±

√
l2 − x2.

The “CartesianPendulum” Modelica model is given in Listing 2.

Listing 2: Cartesian pendulum example.
1 model CartesianPendulum " modelling the motion of a pendulum

in Cartesian coordinates "
2 parameter Real l = 1;
3 parameter Real g = 9.8;
4 parameter Real x_start = 0.5;
5 Real x(start= x_start, fixed=true);
6 Real u(start =0, fixed=true);
7 Real y(start= -sqrt(l^2 - x_start ^2));
8 Real v,lambda ;
9 equation

10 der(x) = u;
11 der(u) = lambda*x;
12 der(y) = v;
13 der(v) = lambda*y - g;
14 x^2 + y^2 = l^2;
15 end CartesianPendulum ;

Notice that that start values (initial conditions) are specified for variables x, u, and y
(lines 5 – 7). The start values for x and u are specified as fixed, but not so the start
value for y. If no value for fixed is provided, the default value fixed=false is used
for variables (for constants and parameters the default value for fixed is true). The
meanings for variable attributes start and fixed are as follows:

Attribute Meaning
start Initial value of variable
fixed = true: Value of start is a fixed initial condition

= false: Value of start is a “guess” value (i.e., the value can be
changed by the simulator in order to find a consistent set of start values)

Hence, line 7 does not specify a fixed initial condition for y (if it did, the initialization
problem would be overspecified), instead it proposes a “guess” value for y in order to
guide the initialization algorithm to find the solution of y in the negative realm, i.e.,
y = −

√
l2 − x2 (the situation depicted in Figure 5) rather than possibly selecting y =√

l2 − x2 (which is also a valid solution that corresponds to the pendulum being in a
“standing” position).

The model in Listing 2 can be simulated in OpenModelica. Simulation results for variables
x and y are plotted in Figure 6.
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Figure 6: Plot for the Cartesian pendulum example (Listing 2).

Remark. In order to transform DAE system (9) to an ODE system (see Section 2.4.4),
equation (9c) needs to be differentiated three times. First time derivative:

ẋx + ẏy = 0
⇒ ux + vy = 0.

Second time derivative:

u̇x + v̇y + uẋ + vẏ = 0
⇒ λ(x2 + y2) − gy + u2 + v2 = 0

⇒ l2λ − gy + u2 + v2 = 0

Third time derivative:

l2λ̇ − gẏ + 2uu̇ + 2vv̇ = 0
⇒ l2λ̇ − gv + 2λux + 2λvy − 2gv = 0

⇒ l2λ̇ − 3gv = 0.

Hence, the DAE system (9) is a higher-index DAE with a differential index of 3, which
is typical for constrained mechanical systems.

2.6.3 If-expressions (relation triggered events)

The aim of this section is to introduce relation triggered events. Relation triggered events
are explained by using a discontinuous function of the form

y(x) =





a1x + b1 if x < x1

a2x + b2 if x1 ≤ x < x2

a3x + b3 else
(10)
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x

centerleft right

y

Figure 7: Schematic diagram of a discontinuous function of the form (10).

depicted in Figure 7; it is inspired by [Cel13, lecture 22].

A Modelica model using if-expressions to describe two equations that resemble (10) is
shown below (however, notice that the model declares equations, not functions!).

Listing 3: If-expressions example.
1 model IfExpressions
2 parameter Real a1 = 1, a2 = 3, a3 = 0.5;
3 parameter Real x1 = -3, x2 = -1;
4 parameter Real b1 = -1;
5 parameter Real b2 = a1*x1 + b1 - a2*x1 + 2;
6 parameter Real b3 = a2*x2 + b2 - a3*x2;
7 Real x(start =-6), y, z;
8 equation
9 der(x) = 1;

10 y = if x < x1 then a1*x + b1
11 else if x < x2 then a2*x + b2
12 else a3*x + b3;
13 y = if z < x1 then a1*z + b1
14 else if z < x2 then a2*z + b2
15 else a3*z + b3;
16 end IfExpressions ;

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 10
numberOfIntervals 3

The variables y and z are plotted in Figure 8. The equation in line 13–15 is solved
for z and not for y. Hence, if the equation in line 10–12 is considered as a function
f : X → Y , then the equation in line 13–15 can be considered as the inverse function
f−1 : Y → X.

Dots within the graph depict a data entry for the respective variable within the generated
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Figure 8: Plot for if-expression example.

result file. Note that the plot has entries at the switching points. The solver detects if
a relation changes its value and determines the time instant within some prescribed
accuracy. After determining the time instant, continuous-time integration proceeds until
that time instant, integration is halted and an event is triggered, the if-clause is changed
at the event and integration is restarted.

2.6.4 Hysteresis (Discrete State Variables)

The hysteresis relation depicted in Figure 9 can be modelled by combining Real and
Boolean equations with discrete state variables.

Listing 4: Hysteresis example.
1 model Hysteresis
2 Real y,u;
3 Boolean high(start=true, fixed=true);
4 equation
5 u = 1.5* cos(time);
6 high = not pre(high) and u >= 1 or
7 pre(high) and u > -1;
8 y = if high then 0.5 else -0.5;
9 end Hysteresis ;

The Boolean variable high is a discrete state variable and therefore needs an initial value.
The Expression pre(high) returns the value of high immediately before the current event
at event instant te. In the hybrid DAE representation presented in Section 2.4.1 that
corresponds to pre(high) ∈ mpre(te). Using the super-dense time model (see Table 4),
expression pre(v) corresponds to •v. It is possible to formulate the equation for high
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y

Figure 9: Hysteresis relation.

in the more compact, but possibly harder to understand form “high = u >= 1 or pre
(high)and u > -1;”.

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 10
numberOfIntervals 10

Variables u, y, and high are plotted in Figure 10. Dots within the graph depict a data
entry for the respective variable within the generated result file. For the Boolean variable
high the value “1” depicts true while “0” depicts false. The plot has entries at the
event points that show that the solver detected the switching point within some prescribed
accuracy.
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Figure 10: Plot for Hysteresis example.
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2.6.5 When-equations (Instantaneous Equations)

The aim of this section is to introduce instantaneous equations and their activation at
events.

Relations trigger events (see Section 2.6.3) by implicitly introducing event conditions
c(t) (compare equation (3)) that are monitored by the solver during continuous-time
integration. In the Modelica language, Boolean variables are used to signal events (hence,
there is no dedicated data type for events). Figure 11 describes various event-related
operators that are available in the language. It is possible to associate equations to an

edge(b) Returns true if Boolean
variable b changes from
false to true ≡ “(b and
not pre(b))”.

change(b) Returns true if a non-
Real variable v changes
its value ≡ “(v<>pre(v))
”.

sample(t0,td) Returns true at times t0+
i · td, where i = 0, 1, 2, . . ..

initial() Returns true during the
initialization phase and
false otherwise.

t

y=y(x(t))

0

false
true b=y>0

false
true c=edge(b)

false
true d=change(b)

e=sample(t0, td)

t0 t0+td t0+2td t0+3td
false
true

false
true f=initial()

Figure 11: Important event related operators (see [Mod14, Section 3.7.3])

event that are only active during the event (i.e., at a time interval of zero duration) and are
otherwise deactived by using when-equations. These equations are called instantaneous
equations.

Listing 5 shows the usage of when-equations and the event operators introduced in Fig-
ure 11.

Listing 5: When-equations and event related operators example.
1 model WhenEquations
2 " When-equations and event related operators "
3 Boolean c(start= false,fixed =true), ev1, ev2;
4 Integer di1(start =0, fixed=true), di2(start =0, fixed=true),
5 di3(start =0, fixed=true), di4(start =0, fixed=true);
6 Real x;
7 equation
8 x = sin(time);
9 c = x > 0;

10 when {c} then
11 di1 = pre(di1) + 1;
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12 end when;
13 // Conceptual mapping of when equations to if expressions
14 ev1 = edge(c) and not initial ();
15 di2 = if ev1 then pre(di2) + 1 else pre(di2);
16

17 // Other event related operators
18 ev2 = change(c);
19 when {initial (), ev2} then
20 di3 = pre(di3) + 1;
21 end when;
22 when {sample (7.0, 1.0)} then
23 di4 = pre(di4) + 1;
24 end when;
25 end WhenEquations ;

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 10
numberOfIntervals 5

The Variables di1, di2, di3, di4 and the zero-crossing function x = sin(t) are plotted in
Figure 12. The triangle markers within the graph depict a data entry for the respective
variable within the generated result file. A when-equation is activated if there is an “edge”
in one of its Boolean conditions when {b1, b2, . . . , bn} then (line 10) or by explicit events
like in lines 19 and 22. Furthermore, when-equations are not active during initialization.
However, by using the initial() operator, when-equations can be activated explicitly
during initialization (see line 19).

0 2 4 6 8 10
time (s)

−1

0

1

2

3

4

5

di1

di2

di3

di4
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Figure 12: Plot for when-equations and event related operators example.
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Remark. [Mod14, Section 8.3.5.1] defines a conceptual mapping from when-equations
to if-expressions. The idea is indicated in Listing 5 where di1 (lines 10–12) has equal
observable behaviour as di2 (lines 14–15) (see Figure 12).

2.6.6 Event Iteration

A model featuring event iteration as described in Section 2.4.3 is given if Listing 6.

Listing 6: Event iteration example.
1 model EventIteration "Event iterations and initialization "
2 Boolean iev1(start= false,fixed =true),
3 ev1(start= false,fixed =true),
4 ev2(start= false,fixed =true),
5 ev3(start= false,fixed =true),
6 c(start= false,fixed =true);
7 Integer v1(start =0, fixed=true), v2(start =0, fixed=true),
8 v3(start =0, fixed=true);
9 Real x, du, y;

10 equation
11 iev1 = initial ();
12 ev1 = pre(iev1);
13 v1 = if iev1 and ev1 then pre(v1) + 1 else pre(v1);
14 v2 = if iev1 or ev1 then pre(v2) + 1 else pre(v2);
15

16 x = sin(time);
17 c = x > 0;
18 ev2 = edge(c);
19 ev3 = pre(ev2);
20 // Not valid to replace initial () by iev1!
21 when {initial (), ev1, ev2, ev3} then
22 Modelica.Utilities.Streams.print ("v3: " + String(v3));
23 v3 = pre(v3) + 1;
24 du = v3 + y;
25 end when;
26 der(y) = 0.1* v3;
27 initial equation
28 y = v2 + v3;
29 end EventIteration ;

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 10
numberOfIntervals 5

The Variables v1, v2, v3, y and the zero-crossing function x = sin(t) are plotted in
Figure 13. The triangle markers within the graph depict a data entry for the respective
variable within the generated result file.
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Figure 13: Plot for the event iteration example of Listing 6.

Listing 6 demonstrates several aspects of events and initialization in the Modelica lan-
guage that can be observed in the plots of Figure 13:

• The initial() operator allows triggering of an event at initialization time. That
event can be used to enable equations that are active during initialization.

• Events can be propagated by Boolean variables. Lines 13 and 14 use Boolean
operators on Boolean event variables that are used as conditionals for if-expressions.

• Instantaneous equations that are activated using when-equations are not active
during initialization, unless explicitly activated by using the initial() operator
(line 21). Due to [Mod14, Section 8.6] it is not legal to replace initial() by iev1
here.

• Line 22 shows a function call for writing simulation values to the standard output.
Modelica functions are supposed to be “pure” mathematical functions, in the sense
that they are side-effect free with respect to the internal Modelica simulation state
[Mod14, Section 12.3]. Modelica functions that do not fulfil that property are
supposed to be declared as impure functions. Since writing to standard output has
no effect on the internal simulation state, the function used in this example is a
“pure” function.

• The initial equation sections (line 27) allow stating purely algebraic constraints
between variables that must hold during the initial time instant. Notice that instead
of activating equations using when initial()then it is equally possible to activate
them by putting them into an initial algorithm section.

• Further, we note that there is no event iteration during initialization. The event
ev1 (line 12) is active after initialization, hence y = 2 after initialization.

• Assigning a fixed start value to a discrete variable x(start=x_start,fixed=true)
is equal to declaring an initial equation pre(x)=x_start;.

28



D2.1c - UTP Differential Equations (Public)

• Assigning a fixed start value to a non-discrete variable x(start=x_start,fixed=
true) is equal to declaring an initial equation x=x_start;.

• For further information on the initialization of Modelica models see [Mod14, p. 95].

2.6.7 Bouncing Ball (Reinitialization)

A famous model for a hybrid systems is the bouncing ball. A possible Modelica imple-
mentation for a ball with mass 1 kg that falls from an initial height of p = 2 m and an
impact coefficient of 0.8 is given in Listing 7. When the ball hits the ground it changes its
velocity discontinuously and bounces back. An UTP version of the bouncing ball model
is provided in Example 4.1 on page 41.

Listing 7: Bouncing ball example.
1 model BouncingBall
2 Real p(start =2, fixed=true), v(start =0, fixed=true);
3 equation
4 der(v) = -9.81;
5 der(p) = v;
6 when p <= 0 then
7 reinit(v, -0.8* pre(v));
8 end when;
9 end BouncingBall ;

The operator reinit(x, expr) (line 7) allows a discontinuous reinitialization of a contin-
uous-time state variable x with a value computed from an expression expr. The operator
can only be applied in the body of a when-clause.

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 8
numberOfIntervals 80

The Variable p is plotted in Figure 14 for two time intervals. In the first interval t = [0, 4] s
the ball behaves as expected. However, at some point in the second domain the ball
suddenly falls through the ground.

The reason for this is that p is smaller than zero when the event occurs and at some
point during simulation the velocity -0.8*v is not large enough so that the ball will not
fly above p=0. Consequently, no new event is triggered and the ball accelerates in the
direction of gravity. This apparently simple model is in fact quite interesting since it
exhibits Zeno behavior. The Zeno behaviour can be informally described as the system
making an infinite number of jumps in a finite amount of time.

From a physical point of view one can argue that the model above is wrong, because the
constraint of the ground is not described properly. However, a detailed ground model
might slow down simulation dramatically and at least the model above can be changed
easily so that it shows reasonable behavior by stating a condition that switches to another
equation if the ball falls through the ground (see Listing 8).
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Figure 14: Plot for the bouncing ball example of Listing 7.

Listing 8: Improved bouncing ball example.
1 model ReasonableBouncingBall
2 Real p(start =2, fixed=true), v(start =0, fixed=true);
3 Boolean flying;
4 equation
5 der(v) = if flying then -9.81 else 0;
6 flying = not (p <= 0 and v <= 0);
7 der(p) = v;
8 when p <= 0 then
9 reinit(v, -0.8* pre(v));

10 end when;
11 end ReasonableBouncingBall ;

2.6.8 Prioritizing event actions and event synchronization

A model featuring prioritized event actions and (un)synchronized events is shown in
Listing 9.

Listing 9: Example for prioritized event actions and (un)synchronized events.
1 model WhenPriority "Event priority and event

synchronization "
2 import S = Modelica.Utilities.Streams ;
3 Integer x(start =0, fixed=true), y(start =-1, fixed=true),
4 z(start =-2, fixed=true);
5 equation
6 when pre(x) == 2 then
7 S.print ("A x: "+String(x));
8 x = pre(x) + 3;
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9 elsewhen pre(x) > 4 then
10 S.print ("B x: "+String(x));
11 x = pre(x) + 1;
12 elsewhen pre(x) > 3 then
13 S.print ("C x: "+String(x));
14 x = pre(x) + 2;
15 elsewhen time > 2 then
16 S.print ("D x: "+String(x));
17 x = pre(x) + 2;
18 end when;
19 // No guarantee that event is triggered at
20 // exactly the same time instant as above
21 when time > 2 then
22 S.print ("E y: "+String(y));
23 y = pre(x) + 1;
24 end when;
25 // "Synchronized" event,
26 // propagated through data-flow analysis of x
27 when x == 2 then
28 S.print ("F z: "+String(z));
29 z = x + 1;
30 end when;
31 // It is an error to activate the following line
32 // when time > 3 then x = 0; end when;
33 end WhenPriority ;

Using when/elsewhen constructs allows prioritizing event actions, where the declaration
order of the different parts determines the priority (last elsewhen has lowest priority).
This order ensures that the single-assignment rule is always fulfilled (if two events are
triggered at the same time, the equations in the upper part take priority). Notice that
it is an error if the same left-hand side (LHS) variable is assigned in two different when-
equations, e.g., if line 32 was activated that would result in an erroneous model (since
in general it cannot be excluded that two different when-clauses can get activated at the
same time, and thus violate the single-assignment rule).

The model is simulated in OpenModelica using the settings below (for the remaining
settings, default settings are used):

startTime 0
stopTime 5
numberOfIntervals 5

The print statements allow tracing the order in which the when-clauses are activated:

D x: 2
E y: 1
F z: 3
A x: 5
B x: 6
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It is notable that independent events are not guaranteed to be triggered at exactly the
same time [Mod14, Section 8.5]. Hence, it is not guaranteed from the specification that the
equations within the when-clauses in line 15 and 21 are synchronized (hence, there is no
guarantee that they will be concurrently satisfied). To achieve guaranteed synchronization
between when-clauses, it has to be explicitly modeled by propagating the event through
data-flow dependencies and exploiting the synchronous principle that computation at an
event takes no time (see [Fri14, Section 13.2.3 and 13.2.6.6]). This has been used to
synchronize the when-clauses in line 15 and 27.

The Variables x, y, and z are plotted in Figure 15. The triangle markers within the graph
depict a data entry for the respective variable within the generated result file.
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Figure 15: Plot for the example of prioritizing events from Listing 9.

2.6.9 Other notable examples

The purpose of the presented examples is to depict important aspects of the dynamic
semantics of Modelica models. The examples are not supposed to cover the complete
dynamic semantics of the Modelica language.

The following list provides a (non-exhaustive) selection of other notable examples from
literature related to the semantics of Modelica models or hybrid systems in general:

• Fritzson’s comprehensive Modelica book [Fri14] contains instructive examples cover-
ing a wide range of the Modelica language. In the context of this work, particularly
Chapter 13 “Discrete Events and Hybrid and Embedded System Modeling” of this
book is of great relevance.

• Otter et al. [OEM99] discuss hybrid modelling in Modelica based on several exam-
ples like sampled data systems (digital control applications), ideal electrical switches
and mechanical friction.
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• Recent work from Bliudze and Furic leverages ideas from [BBCP12] for giving a
Zeno-free operational semantics for hybrid systems and coping with composition
issues stemming from the use of idealized hybrid models using two demonstrative
examples [BF14, Listing 1 “Bouncing Ball”, Listing 3,4 “Double Fuse”].

• Lee and Zheng discuss an operational semantics for hybrid systems (using the con-
cept of super-dense time) with instructive examples [LZ05, Section 2 “Sticking
Masses”, Figure 13 “bouncing ball”].

• The reinit() operator is known to be a problematic construct in the Modelica
language that has to be used carefully (however, no better alternatives have been
found, yet). Bourke et al. provide an example in [BBCP15, Slide 15]. Fritzson
discusses the operator in [Fri14, Section 8.3.6].

2.6.10 Summary

The dynamic semantics of the Modelica language is complex. The main points raised in
the examples are:

• Solving the IVP for DAE systems is in general much more involved than solving
ODE systems. Index reduction methods play an important part in the solution (see
the “Cartesian Pendulum” example in Section 2.6.2).

• Handling of discontinuous equations by relation triggered events (Section 2.6.3).

• Introducing instantaneous equations and related operators (Section 2.6.5).

• Event iterations (Section 2.6.6).

• Reinitialization of continuous-time state variables (Section 2.6.7).

• Prioritizing event actions (Section 2.6.8).

• Event synchronization (Section 2.6.8).

The examples illustrate key concepts of Modelica that can serve as a guidelines for later
formalization efforts.

3 Unifying Theories of Programming

Unifying Theories of Programming [HH98] (UTP) is a mathematical framework for the
specification and study of heterogeneous programming language semantics. We will use
the UTP to give a denotational semantics to Modelica, as a well as several of the other
languages in INTO-CPS. The UTP is based on the idea that any program or temporal
model can be expressed as a logical predicate that describes how the program variables
change over time. This idea of “programs-as-predicates” [Heh93] means that the duality
of programs and specifications all but disappears as programs themselves are just a class
of logical specification.

This powerful idea provides a strong basis for unification of heterogeneous languages and
semantic models, since many different shapes of models can be given a uniform view. The
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P ; Q � ∃ṽ0 • (P [ṽ0/ṽ�] ∧ Q[ṽ0/ṽ]) for ṽ = outα(P ), ṽ� = inα(Q)

x :=A v � x� = v ∧ y�
1 = y1 ∧ · · · ∧ y�

n = yn for yi ∈ in(A) \ {x}
P � Q � P ∨ Q

P � b�Q � (b ∧ P ) � (¬b ∧ Q)

P � � νX • (II � P ; X)

P ω � µX • (P ; X)

α(P ; Q) = inα(P ) ∪ outα(Q)

α(x :=A v) = A

α(P � b�Q) = α(P ) ∪ α(b) ∪ α(Q)

α(P � Q) = α(P ) ∪ α(Q)

α(P �) = α(P ω) = α(P )

Table 5: UTP imperative operator predicate definitions and alphabets

UTP further allows that different semantic presentations, such as denotational, algebraic,
axiomatic, and operational, can be formally linked, for example through suitable Galois
connections. This ensures that consistency is maintained between semantics and that
tools that implement the different semantic models can, nevertheless, be combined for
multi-pronged analysis and verification of models.

The UTP has been mechanised in the Isabelle/HOL proof assistant [NWP02] in the form
of Isabelle/UTP [FZW14]. This means that proofs of algebraic, refinement, operational,
and other forms of laws can be machine checked, and also applied to verification of models
through Isabelle’s powerful proof automation [BBN11].

The UTP provides a language of alphabetised predicates: for a predicate P , the alphabet
α(P ) gives the variables over which the predicate ranges. The calculus provides the
operators typical of first order logic, such as connectives ∧, ∨, ¬, ⇒ and quantification
∀x.P, ∃x.P, [P ], where [P ] represents the universal closure of P . UTP predicates are
ordered by a refinement partial order P � Q, that equates to universal closure of reverse
implication [Q =⇒ P ]. A particularly interesting subclass of such predicates are
alphabetised relations, which describe a program in terms of its input variables x, y ∈
inα(P ) and its (primed) output variables x�, y� ∈ outα(P ). Imperative programs can
thus be given denotational semantics using the alphabetised relational calculus, whilst
maintaining the predicative core.

Imperative programs can be described using relational operators such as sequential com-
position P ; Q, if-then-else conditional P � b�Q, non-deterministic choice �, assignment
x :=A v (for expression v and alphabet A), and skip IIA all of which are given predicative
interpretations. For such imperative programs, the refinement operator P � Q corre-
sponds to behavioural refinement, where the refined program Q is more deterministic
than P . This also induces a complete lattice on programs, where true, the most non-
deterministic program represents the bottom of the lattice, and false, the miraculous
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program, is the top. Recursive and iterative constructions can then be specified using
lattice and fixed point operators, such as

�
, µX.P , and the derived iteration operators

P � (finite iteration) and P ω (infinite iteration).

All these operators are given a purely predicative interpretation, as described in the UTP
book [HH98] and illustrated in table 5. Sequential composition of programs P , with
output alphabet (outα) in variable vector ṽ�, and Q, with input alphabet (inα) in vector
ṽ, specifies the existence of a vector of intermediate variables ṽ0 upon which both programs
must agree. This agreement is specified by renaming, respectively, the output and input
variables according to ṽ0, and then conjoining the results. Sequential composition thus
feeds the output of the first program into the input of the second. Assignment updates
the value of a variable with an expression, and leaves other variables unchanged. Non-
deterministic choice and conditional are given a simple predicative interpretation. Finally
the iteration operators are defined using fixed points.

More sophisticated language constructs can be expressed by further enriching the theory
of alphabetised relations to create new UTP theories. A UTP theory consists of three
things:

1. a set of observational variables;

2. a signature;

3. a set of healthiness conditions.

The observational variables record behavioural semantic information about a particular
program. For example, we may have an observational variable for recording the current
time called clock : R, or we may have a variable for event traces called tr : N → Event that
records, at each discrete time instance, the event that occurred. These kinds of variables
are distinguished from program variables in that they cannot be queried or manually
altered during the running of a program. They purely exist to record logical information
about a particular model. The signature then uses these operational variables to define
the main operators of the target language.

The domain of observational variables can be restricted by the use of healthiness condi-
tions. A healthiness condition is a kind of invariant on the behaviour of an observational
variable. For example, it is intuitively the case that time only moves forward, and so a
relational observation like C � clock = 3∧ clock� = 1 ought not to be possible, since time
is observed moving backwards. We can restrict this kind of behaviour with an invariant
clock ≤ clock�. In the UTP such conditions are expressed as idempotent commuting
functions, for example HT (P ) = P ∧ clock ≤ clock�, so that healthiness can be expressed
as a fixed point: P = HT (P ). If we apply HT to our errant predicate C the predicate
false will result. This represents a the miraculous program, which well describes the
situation when time moves backwards. Clearly then C is not HT -healthy, and should be
rejected from the theory signature.

UTP theories can be used to describe a domain useful for modelling particular problems
– for instance, we can add further conditions to HT to provide a theory of real-time pro-
grams. UTP theories can also be composed to produce modelling domains that combine
different language aspects. Put more simply, UTP theories provide the building blocks
for a heterogeneous language’s denotational semantics [FMW+14]. Such a denotational
semantics provides the “gold standard” for the meaning of language constructs and can
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Figure 16: Modelica in the Unifying Theories of Programming

then be used to derive other presentations, such as operational. Thus for Modelica, we
focus on a denotational semantics.

Disjoint heterogeneous domains can also be linked through Galois connections that de-
scribe the best approximations of a predicate in one theory in another. For example, in
Modelica we could think about a Galois connection between the continuous time world
and the discrete time world that applies a suitable sampling frequency. This would then
allow us to apply verification techniques for discrete time processes present in model
checking technologies like FDR38. Thus the UTP can thought of as a lingua franca in
which heterogeneous language semantics can be compared, linked, and ultimately uni-
fied.

In previous work we have used this approach to give a semantics to the Circus lan-
guage [OCW07], a formal modelling language that elegantly combines support for rich-
state modelling in the style of Z [WD96], with concurrency and communication in the
style of CSP [Hoa85]. Circus has also been extended to encompass further programming
paradigms including object-orientation [CSW05, SCS06] and real-time [WWC13, Woo14],
all of which are underpinned by UTP theories. We will thus develop a UTP theory of
continuous time and differential algebraic equations as a necessary building block to pro-
viding the semantics of Modelica, that we will combine with other theories already part
of the UTP as illustrated in Figure 16. These theories will be combined with theories
from parallel tasks to define our overall lingua franca language, INTO-CSP.

4 UTP Theory of Differential Equations

In this section we describe how we give an account of hybrid Differential Algebraic Equa-
tions (DAEs) in the Unifying Theories of Programming (UTP). As such, this is a pre-
liminary theory and will continue to evolve through the life of INTO-CPS, particularly
as in terms of the model of continuous time. UTP is, thus far, mainly concerned with
description of behaviour of discrete systems by binary relations, and so we will need to

8FDR3 – The CSP refinement checker. https://www.cs.ox.ac.uk/projects/fdr/
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Off

ẋ = 0.1x
x ≥ 18

x = 20

x < 19

x > 21

On

ẋ = 5− 0.1x
x ≤ 22

Figure 17: A simple thermostat hybrid automaton

P, Q ::= stop | skip | v := e | ch?x | ch!e | �F (ṡ, s) = 0 & B� |
P ; Q | B → P | P �d Q | P �[]i∈I(ioi → Qi) | P �

Table 6: Grammar of HCSP processes

introduce some additional notions and constructs to provide for continuous modelling.
Our work is influenced by a number of keys works in the area of semantics for hybrid
systems which we now briefly survey.

4.1 Formal approaches to hybrid systems

Our framework takes input from several main sources that we briefly now describe. The
majority of the work on hybrid systems takes inspiration from Hybrid Automata [Hen96],
an extension of finite state automata that also allow the specification of continuous be-
haviour. A hybrid automaton consists of a finite set of states that are each labelled by a
system of ODEs, a state invariant, and initial conditions. An example of such a hybrid
automaton is shown in figure 17 representing a simple thermostat, with variable x mea-
suring the current temperature. The states (or “modes”) are connected by transitions
that are labelled with jump conditions and (optionally) events.

Whilst in a state the continuous variables evolve according to the system of ODEs and
the given invariant; this is known as a flow as the variables values continuous flow. In
the example there are two states On and Off, that are both annotated with an ODE and
an invariant. When one of the jump conditions of an outgoing edge is satisfied the event
is instantaneously executed, potentially resulting in a discontinuity, and the targeted
hybrid state is activated. For the thermostat, when the temperature drops below 19
in state Off the transition can be triggered, causing a change of mode to On. Thus a
hybrid automata is characterised by behaviour that both flows along a given trajectory
(continuous behaviour) and also jumps (discrete behaviour). Hybrid automata are usually
given a denotational semantics in terms of piecewise continuous functions [Hen96, EP07].
A piecewise continuous function is continuous except for in a finite number of places
where a discontinuous jump can occur. These jumps represent the instantaneous update
of state variables.

Verification of hybrid systems was made possible through the seminal work of Platzer [Pla08,
Pla10b]. This work develops a logic called differential dynamic logic (dL), an extension
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of dynamic logic that allows one to specify invariants over both discrete and continuous
variables. Hybrid systems are modelled using a language of hybrid programs, that com-
bines the usual operators of an imperative language with continuous behaviour specified
by differential equations. Hybrid programs are equipped with a relational semantics, and
a proof calculus for dL is created that allows reasoning about hybrid programs. A critical
design choice made in the creation of the dL semantics seems to be the use of a semantic
model that does not explicitly represent trajectories of continuous variables [Pla07]. In
dL a program simply denoted by a a set of input-output variable pairs, as is usual for
relational program semantics. This relatively coarse semantics effectively circumvents
problems associated with super-dense time models, for example by allowing variable as-
signment to be instantaneous, though this may make it inadequate for specifying real-time
properties.

A further extension to dL is also created called differential-algebraic dynamic logic [Pla10a]
(DAL), that allows one to reason about differential equations, without the need for ex-
plicit solutions, through the use of differential invariants. An implementation of DAL
called KeYmaera [Pla10b] allows the automated verification of systems modelled as hy-
brid programs. We base our own notion of hybrid programs around Platzer’s work. A
difference though is our focus on UTP denotational semantics, the use of pre-emption to
drive the interaction between discrete and continuous, and our eventual desire to integrate
concurrency into our model.

Hybrid CSP [He94, ZJR96] (HCSP) is an extension of Hoare’s process calculus CSP [Hoa85]
that adds support for continuous variables as described by differential equations, in a
similar manner to hybrid automata. This work enables algebraic modelling of hybrid
concurrent systems in contrast to Platzer’s work [Pla10b] which allows only the specifica-
tion of sequential hybrid systems. The initial paper on HCSP [He94] extends CSP with
continuous variables whose behaviour is described by differential equations of the form
F(ṡ, s) = 0. Interaction between the discrete and continuous in HCSP can take the form
of pre-emption conditions on continuous variables, timeouts, and interruption of a contin-
uous evolution through CSP events. This new language is equipped with a denotational
semantics that is presented in a predicative style similar to the UTP [HH98].

Further work on HCSP [ZJR96] enriched the language to allow explicit interaction be-
tween discrete and continuous variables. This is achieved through a novel denotational
semantics in terms of the extended duration calculus [ZRH93] which treats variables as
piecewise continuous functions. This allows a more precise semantics for operators like
pre-emption that are defined in terms of suitable variable limits. A Hoare logic for this
calculus was developed in [LLQ+10] through the adoption of Platzer’s differential invari-
ants, along with an operational semantics. This later work uses a simplified version of
HCSP [ZJR96], a grammar of which is shown in Table 6.

An associated theorem prover for HCSP called HHL Prover [ZZWF15] based in Is-
abelle/HOL (extended with axioms) has also been developed and applied to verification
of Simulink diagrams through a mapping from Simulink/Stateflow into HCSP [ZYZ+14].
The suite of tools for HCSP (called “MARS”) can be obtained from the website of Naijun
Zhan9. More recently, the original author [He94] has undertaken to explore the funda-
mentals of hybrid system modelling purely relational setting, again similar to the UTP.
This work has produced a prototype language called the Hybrid Relational Modelling

9Naijun Zhan’s Homepage. http://lcs.ios.ac.cn/~znj/
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Language [He15] (HRML), which draws on HCSP though emphasises signals rather than
CSP’s events as the main communication abstraction. Our work is heavily influenced by
HCSP , though we initially focus on the sequential aspects of hybrid systems, and thus
concentrate on just the a few of the HCSP operators.

We also take substantial input from the Duration Calculus [ZHR91] in this work, a cal-
culus designed to describe logical invariants over continuous domains for the purposes
of verifying real-time systems. Duration calculus is an interval temporal logic [Mos85],
meaning that specifications range over a particular non-empty period of time. For ex-
ample, we can write the interval �x2 > 7� which specifies all possible intervals of time
over which x2 > 7 holds. This could for instance be used to specify an invariant over
the execution of a program. The chop operator P • Q specifies that an interval may be
broken into two subsequent intervals, over which P and then Q hold respectively.

Duration calculus can also be used to give an account to typical modalities of temporal
logics like LTL [Pne77], and is thus well suited to specification. Duration calculus has
been extended several times, notably to provide a semantics for hybrid real-time systems
modelling [ZRH93] that is then used to give the semantics to HCSP [ZJR96]. It is fur-
ther extended to support super-dense computation [ZH96, ZGZ99], so that instantaneous
discrete changes can be mapped to the neighbourhood of a given time point. This, for
instance, allows the retention of identities like

x := x + 1 ; x := x + 2 = x := x + 3

from the laws of programming [HH98], as they demonstrate through giving a semantics
to a simplified HCSP like language [ZH96]. Nevertheless, assignment must take non-zero
time in this model and it is thus not clear if the model is truly super-dense.

4.2 Continuous time theory domain

We now proceed to describe our theory of differential equations, in the form of a calculus
for modelling sequential hybrid processes. Our initial theory possesses a rich semantic
model for continuous time, which may need to be refined in the future. We thus focus
in our initial work on the signature of this theory, leaving the definition of healthiness
conditions to future work. DAEs, as we have said, are used to describe continuously
evolving dynamic behaviour of a system. Thus, in the context of the UTP, we must
first introduce a theory of continuous time processes to provide this kind of theoretical
framework. A key part of this is the embedding of trajectories into alphabetised predicates
that show how continuous variables evolve over a given interval. These intervals will be
used to divide up the trace of a system into piecewise continuous regions.

Our theory of continuous time introduces observational variables time, time� : R that
define the start and end time of the current computation interval. We also introduce
the expression � to denote the duration of the current interval, i.e. � � time� − time.
UTP divides the alphabet of a predicate P into input variables x, y, z ∈ inα(P ) and
output variables x�, y�, z� ∈ outα(P ). Inspired by [He15] we add a further subdivision
x, y, z ∈ conα(P ), the set of continuous variables that is orthogonal to discrete variables,
that is conα(P ) ∩ (inα(P ) ∪ inα(Q)) = ∅. The elements of conα(P ) are the variables
to be used in differential equations and other continuous constructs. We assume that
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all variables consist of a name, type, and decoration. For example the name in the
variables x, x�, and x is the same – x – but the decorations differ. We introduce the
distinguished continuous variable t that denotes the current instant in an algebraic or
differential equation. An alphabetised predicate P whose alphabet can be so partitioned,
i.e. α(P ) = inα(P ) ∪ outα(P ) ∪ conα(P ), is called a hybrid relation.

We also propose two healthiness conditions for hybrid relations:
Definition 4.1. Hybrid relation healthiness conditions

HCT1(P ) � P ∧ time ≤ time� (11)
HCT2(P ) � P ∧ (

�

v∈conα(P )
• v = v(time) ∧ v� = v(time�)) (12)

HCT1 states that time may only ever go forward, as should be the case, and thus an
interval of time is always defined for any relation. HCT2 states the intuition explained
above – that every continuous variable has two corresponding discrete variables measuring
the variable before and after the interval. The latter healthiness condition is satisfied only
by constructs that produce continuous evolution (such as DAEs).

Continuous variables come in two varieties which will allow us to talk respectively about
both a particular instant and over the whole time continuum:

• flat variables – these are regular variables of any type;

• lifted variables – these are variables of type R → T and define variables values in
the trajectory.

In our calculus we assume that each lifted continuous variable x : R → T is accompanied
by before and after variables with the same name – x, x� : T – that give the values at the
beginning and end of the current interval. This allows us to use the standard operators
of relational calculus for manipulating continuous variables by preserving discrete copies.
We introduce the following @ operator borrowed from [Fid99] that lifts a predicate in
only flat variables to one in lifted variables:
Definition 4.2. Continuous variable lifting

P @ τ � P † {x �→ x(τ) | x ∈ conα(P ) \ {t}}

The dagger (†) operator is a nominal substitution operator. It applies the given func-
tion, which maps variables to expressions, as a substitution to the given predicate. We
construct a substitution that maps every flat continuous variable (other than the distin-
guished time variable t) to a corresponding variable lifted over the time domain. The
effect of this is to state that the predicate holds for values of continuous variables at a par-
ticular instant τ , a variable which is potentially free in P . Each flat continuous variable
x : T is thus transformed to have time-dependent function x : R → T type.

4.3 Hybrid relational calculus

We next begin to define the operators of our hybrid calculus, which is effectively the
imperative subset of HCSP [ZJR96] (which is itself similar to Platzer’s hybrid program-
ming language [Pla10b]), but extended with a version of the interval operator [ZHR91]
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P, Q ::= P ; Q | P � b�Q | x := e | P � | P ω |
�P � | � Fn | b � | P [ b ] Q | P �d Q

Table 7: Signature of hybrid programs

that provides with a continuous specification statement. The signature of our theory is
given in 7. It consists of the standard operators of the alphabetised relational calculus
together with operators to specify intervals �P �, differential algebraic equations � Fn | b �,
pre-emption P [ b ] Q, and timeoutP �d Q.

Using this calculus, we can describe a simple example, the bouncing ball as modelled in
Modelica in section 2.6.7:
Example 4.1. Bouncing ball in hybrid relational calculus

p, v := 2, 0 ;
��

ṗ = v; v̇ = −9.81
� �

p ≤ 0
�

v := −v ∗ .8)
�ω

The hybrid program has two continuous variables: p representing the position (in meters)
of the ball above the ground, and v describing the velocity of the ball. Initially we set
these two variable to 2 and 0 respectively, and then initiate the system of ODEs. This
states that the derivative of ṗ is v, and the derivative of v is −9.81, i.e. the earth’s
gravitational acceleration. The system is allowed to evolve until p ≤ 0, i.e. the ball
impacts the ground. At this point a discrete command is executed that assigns −v ∗ .8 to
v; the velocity is reversed with a dampening factor. The system then infinitely iterates,
allowing the system dynamics to continue evolving but with new initial values. Moreover,
as in the Modelica example this bouncing ball exhibits Zeno effects.

4.4 Denotational semantics

We note that many of the standard operators of the alphabetised relational calculus
(imperative programs) retain their standard definitions in this setting as illustrated pre-
viously in table 5, but over the expanded alphabet. Indeed, it is easy to see that an alpha-
betised relation is simply a hybrid relation with the degenerate alphabet conα(P ) = ∅.
For continuous variables sequential composition behaves like conjunction. In particular,
if we have P ; Q, with P and Q representing evolutions over disjoint intervals then their
sequential composition combines the corresponding trajectories when they agree on vari-
able valuations. Put another way, the final condition P also defines the initial condition
for Q.

Similarly, other operators like the Kleene star and omega iteration operators P � and P ω,
being defined solely in terms of sequential composition, disjunction (internal choice), II,
and fixed point operators, also remain valid in this context. This observation means
that we already have the core operators of an imperative programming language at our
disposal. We will prove that these core operators satisfy our two healthiness conditions
in Isabelle in section 5.
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�true� = � > 0 (13)
�false� = false (14)

�P ∧ Q� = �P � ∧ �Q� (15)
�P ∨ Q� � �P � ∨ �Q� (16)

�P � � �P � ; �P � (17)

Table 8: Algebraic laws of durations

We will now give the denotational semantics for each of the additional operators of our
calculus. First we define the interval operator from duration calculus [ZHR91]:
Definition 4.3. Interval operator

�P � � � > 0 ⇒
(∀t ∈ [time, time�) • P @ t

∧
�

v∈conα(P )
v = v(time) ∧ v� = v(time�))

The interval operator states that P holds at every instant over all non-empty right-open
intervals from time to time�. It can be considered analogous to a continuous specification
statement. All continuous variables are paired with a discrete variable at the start and
end of the interval, as required by HCT2 . Intervals satisfy a number of standard laws of
duration calculus illustrated in table 8, which we will also prove in section 5.

We next introduce the following operator, adapted from HCSP [ZJR96, LLQ+10], to
describe the evolution of a system of DAEs.
Definition 4.4. Differential Algebraic Equation system

� v̇1 = f1; · · · ; v̇n = fn | B � � �(∀1 ≤ i ≤ n • v̇i(t) = fi(t, v1(t), · · · , vn(t))) ∧ B�
∧ IIA\{v1···vn}

A DAE (� Fn | B �) consists of a set of n ODEs characterised by functions fi : R×Rn → R
each of which defines the derivative of variable vi in terms of the independent time variable
t and the n dependent variables. It also contains an algebraic constraint B that must
be invariant for any solution and does not refer to derivatives. When B is predicate
true we will simply abbreviate to � Fn �. We can, for example, use the DAE operator to
describe the behaviour of the Cartesian pendulum from section 2.6.2 (assuming the prior
definition of appropriate constants):

�
ẋ = u; u̇ = λ · x; ẏ = v; v̇ = λ · y − g

��� x2 + y2 = l2
�

The behaviour of a DAE is given in terms of the interval operator which contains an
invariant showing how the continuous variables evolve with respect to the present time
instant t. At the initial time (time) each continuous variable vi of the system is assigned
the value of the corresponding discrete input variable vi, which provides the DAE with
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an initial value problem. The system is then allowed to evolve from this point in the
interval between time and time� according to the DAEs. At the end of the interval, the
corresponding output discrete variables are assigned. During the evolution all discrete
variables and unconstrained continuous variables are held constant, hence the conjoined
II.

We also define the following pre-emption operator, whose definition is also taken from
HCSP .
Definition 4.5. Pre-emption operator

P [ B ] Q � (Q�B @ time�(P ∧ �¬B�)) ∨
((�¬B� ∧ B @ time� ∧ P ) ; Q)

Intuitively, P is a continuous process that evolves until predicate B is satisfied, at which
point Q is activated. This operator can, for example, be used to capture the idea of
events from Modelica. The semantics is defined as a disjunction of two predicates. The
first predicate states that if B holds in the initial state of time then Q is activated imme-
diately. Otherwise, P is activated and can evolve while ever B remains false (potentially
indefinitely). The second predicate states that ¬B holds on the interval [time, time�) until
instant time� when B switches to a true valuation, during which P is executing. Following
this, P is terminated and Q is activated.

Assignment to variables can introduce discontinuities when applied to the discrete part-
ners of continuous variables. When several assignments take place this can lead to a
sequence of variable valuations at a single time instant. For example, a naive implemen-
tation of an instantaneous x := v (for continuous variable x) might be:

x := v � x� = v ∧ x(time�) = v ∧ time� = time

That is, we assign the value to both the continuous and discrete variable at time�, whilst
ensuring that no time is expended. However, it is clear to see that x := 1 ; x := 2 will
yield a contradiction, since x can have two values at time� (1 = 2) which is a contradiction,
and thus the miraculous process false will result. Several implementations of assignment
are possible that overcome this issue depending on the underlying model. We could, for
example, extend our variable type to be explicitly super-dense: x : R × N → T , so that
at each instant x can possess several values. However, we wish to retain a simpler model
for now, and so we instead we define a simple form of timed assignment, which is also
adopted from HCSP, that must expend a non-zero amount of time.
Definition 4.6. Timed assignment

(x :=A v)≤d � 0 < � ≤ d ∧ x� = v ∧ (∀y ∈ in(A) \ {x} • y� = y)

This operator assigns the expression v to the variable x in no more than d time units.
Finally we also define the following timeout operator:
Definition 4.7. Timeout operator

P �d Q � (P ∧ (� ≤ d)) ∨ ((P ∧ (� ≤ d)) ; Q)

This operator behaves like P until d time units have elapsed, at which point Q is acti-
vated.
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5 Mechanisation

In this section we describe a partial implementation of the theory from Section 4 in the
Isabelle/HOL theorem prover [NWP02] presented using the latter’s automated document
preparation system. The contents of this section has therefore passed Isabelle’s automatic
checks and the proofs are valid. We will implement most of the operators of our UTP
theory, though their presentation differs slightly for technical reasons. Our implementa-
tion of the hybrid calculus builds on Isabelle’s existing libraries for real analysis and thus
we first provide a brief survey of these.

5.1 Mechanised Real Analysis

Real analysis has been implemented in various theorem provers, including Coq, Isabelle,
Mizar, and PVS. A recent survey of these mechanisations [BLM15] provides a detailed
comparison of the state-of-the-art. All these implementations provide exact real arith-
metic and do not rely on approximations. Moreover, the majority of them (Isabelle
included) are introduced contructively rather than by axiomatisation. We chose to use
Isabelle as it is most familiar to us from our work with the UTP, it provides powerful auto-
mated reasoning facilities, and its implementation of analysis is at least comparable with
other implementations. Real numbers were first constructed in Isabelle using Dedekind
cuts [Fle00], that is via a partitioning of the rational numbers (Q) into two sets – those
strictly less than and greater the given real-number. A more recent implementation in
the Isabelle standard library uses Cauchy sequences, whereby a real number n is denoted
as an infinite sequence of rational numbers converging towards n. Isabelle also provides
the basis for non-standard analysis in an implementation of the hyperreals [Fle00]; that
is R extended with infinitesimals. For now, we focus on the standard analysis libraries in
Isabelle since our semantics requires only standard reals.

Calculus and multivariate analysis was first mechanised in an impressive HOL develop-
ment by John Harrison [Har98, Har05], and then later adapted to Isabelle [Fle00]. This
implementation of analysis permits differentiation over real vector spaces through the
provision of a function (f has-vector-derivative f �)F that defines when a particular func-
tion f � is a solution to a system of differential equations f over a given range F . For
example, we can express and prove the following derivative:
lemma power2-deriv:

fixes t :: real
shows ((λ t. t2) has-vector-derivative (2 ∗ t)) (at t within {0 ..< n})

proof −
have ((λt. t ∗ t) has-vector-derivative (t ∗ 1 + 1 ∗ t)) (at t within {0 ..< n})

by (rule derivative-intros)+
thus ?thesis

by (simp add: power2-eq-square)
qed

This shows that the equation t2 (for independent variable t) has solution 2t, within the
range [0..n), a fact of elementary calculus. Building on Harrison’s work, Immler later
mechanised an Isabelle library for analysis of ODEs [IH12, Imm14], including the speci-
fication of initial value problems and an implementation of Euler’s method for numerical

44



D2.1c - UTP Differential Equations (Public)

integration. The latter is implemented through a principled conversion of the constructed
real numbers to an Isabelle implementation of floating point numbers. All this taken
together provides an excellent foundation for reasoning about continuous models in Is-
abelle.

5.2 Theory of hybrid relations

Our implementation presented in this section is a shallow embedding of our UTP theory
in Isabelle which acts as a proof of concept of the theory in Section 4, and could be
further developed into a theorem prover for hybrid systems. Our encoding is based on
Isabelle’s implementation of binary relations, for which a large library of proven algebraic
laws already exists. However, this means that we need to embed the (non-relational)
continuous trajectories into this model. We will do this by constraining relations so that
the variable storing the trajectory remains constant throughout the relation. We first
introduce types to represent hybrid states and programs.
record ( �a, �c) hyst =

time :: real
disc :: �a × �c
cont :: real ⇒ �c

A hybrid state ( �a, �c) hyst is a type with type two parameters: �a that describes the
discrete state of a program, represented in inα and outα, and �c that describes the con-
tinuous state of a program, represented in conα. Unlike in our UTP theory of Section 4
we have to split the variables in this way since the shallow embedding does not allow
variables as first class citizens. The discrete state can, for example, be an Isabelle record
constituting the discrete program variables, and the continuous state will usually be a
suitable n-ary vector of real numbers, Rn. The hybrid state record has three fields repre-
senting respectively, a real-valued time bound, a snapshot of the discrete and continuous
state (represented as a product), and a trajectory over the continuous state (represented
as a real function).

We then use this type to encode our two healthiness conditions:
abbreviation isHCT1 ≡ (λ (s, s �). time s ≤ time s �)
abbreviation isHCT2 ≡ (λ (s, s �). snd (disc s) = cont s (time s)

∧ snd (disc s �) = cont s (time s �))

For simplicity of presentation we encode the healthiness conditions not as idempotent
functions but as predicates. The healthiness conditions are defined with respect to the
before state and after states, s and s�. HCT1 states that time cannot move in reverse
as the state transitions advance, and follows the same structure as in section 4. HCT2
states that the discrete variables must match the continuous variables at the start and
end of the given interval. We encode this by stating that the second component of the
discrete state snapshot (i.e. the continuous variables) should be the same as the trajectory
values at the beginning and end of the interval. We now use our hybrid state type and
healthiness conditions to encode hybrid relations.
typedef ( �a, �c) hrel =

{( R :: ( �a, �c) hyst rel). ∀ (s, s �) ∈ R. cont s = cont s � ∧ isHCT1 (s,s �) ∧ isHCT2 (s,s �)}
by (auto)
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The hybrid relation type ( �a, �c) hrel is a subset of the binary relations ( �t rel) over the
hybrid state type, such that the trajectory function is unchanged and the two healthiness
conditions are respected. We define the type using the typedef command to be the
subset of the binary relations over the hybrid state type (( �a, �c) hyst rel) that also respect
the constraints. These constraints are defined by quantifying over all members (s, s�) of
the given relation R and imposing three constraint formulae. Specifically, we require
that the continuum function remains unchanged cont s = cont s �, effectively making it
non-relational, and that the two healthiness conditions are satisfied.

5.3 Operators

With our type of hybrid relations defined, we begin to define the operators of our lan-
guage. Most of the operators are defined as “lifted” definitions using Huffman’s lifting
package [HK13]. A lifted definition defines a new constant in terms of the base type of
the underlying type definition (in this case binary relations), and requires that any addi-
tional constraints imposed are respected by the value. The latter is supported by a proof
that must accompany the definition. Thus the definitions in this section also encapsulate
certification of their closure under our healthiness conditions.

We first encode the interval operator �P � in this way using the lift-definition com-
mand:
lift-definition hInt :: (real × �c ⇒ bool) ⇒ ( �a, �c) hrel (�-�H) is
λ P. {(s, s �). time s < time s �

∧ (∀ t ∈ {time s ..< time s �}. P (t, cont s t))
∧ cont s = cont s �

∧ isHCT2 (s,s �)}
by auto

This lifted definition take a type for the new construct, and a definition (“is”) in terms
of the base type, which in this case is ( �a, �c) hyst rel. Since the interval operator has a
function type, we must introduce a λ-abstraction that introduces the predicate param-
eter P . Since relations are just sets of pairs, we use the set comprehension notation to
quantify each element pair (s, s�) and then impose four constraints on these elements
that characterise the semantics of an interval. Respectively they impose that the interval
be non-empty, that at each point t in the interval the predicate P is satisfied, that the
trajectory remains constant and that HCT2 is satisfied. HCT1 is automatically satisfied
by the first constraint. Definitions can also specify pretty-printer syntax, and in this case
we allow intervals to be written as �P�H .

The proof of closure under of our type constraints for hInt is simply obtained by the
application of the auto tactic. The interval function hInt thus takes a predicate over
the current time (real) and continuous state �c, and yields a continuous relation with all
intervals over which the predicate is invariant. It also imposes HCT2 ensuring that the
corresponding discrete variables mirror the continuum at the beginning and end of the
interval.

We also implement a special construct to constrain the domain of a duration:
lift-definition hDur :: (real ⇒ bool) ⇒ ( �a, �c) hrel (L[-]H) is
λ P. {(s, s �). P (time s � − time s)
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∧ cont s = cont s �

∧ isHCT1 (s, s �) ∧ isHCT2 (s, s �)}
by auto

This construct takes a predicate over a real value time instant and produces all intervals
whose duration satisfies the constraint. We use this construct to encode formula like
� > 0 the like of which is often used in duration calculus. Next, we define some simple
logical operators for hybrid relations.
lift-definition hTrue :: ( �a, �c) hrel (trueH) is
{(s, s �). cont s = cont s � ∧ isHCT1 (s,s �) ∧ isHCT2 (s,s �)}

by auto

The trueH (trueH) operator is the bottom of the refinement lattice. It represents the most
non-deterministic hybrid relation, requiring only that the continuum remains constant
and the two healthiness conditions are satisfied.
lift-definition hFalse :: ( �a, �c) hrel (falseH) is {}

by auto

The falseH (falseH) operator is the top of the refinement lattice and has no possible
observations; it is obtained by lifting the empty relation.
lift-definition hDisj :: ( �a, �b) hrel ⇒ ( �a, �b) hrel ⇒ ( �a, �b) hrel (infixl ∨H 60 )

is op ∪ by auto

lift-definition hConj :: ( �a, �b) hrel ⇒ ( �a, �b) hrel ⇒ ( �a, �b) hrel (infixl ∧H 60 )
is op ∩ by auto

We also define the disjunction (P ∨H Q) and conjunction (P ∧H Q) operators that are
obtained simply by lifting union and intersection on relations.
abbreviation hChoice :: ( �a, �b) hrel ⇒ ( �a, �b) hrel ⇒ ( �a, �b) hrel (infixl �H 60 )

where P �H Q ≡ P ∨H Q

lift-definition hCond ::
( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ ( �a, �c) hrel (infixl � - � 65 )
is λ P b Q. ((b ∩ P) ∪ (− b ∩ Q))
by auto

We obtain the non-deterministic choice operator P �H Q simply as an abbreviation
to disjunction. We also define the if-then-else conditional operator, P � b � Q which
behaves as P if b is true and Q otherwise. Next we define the operators of relations.
lift-definition

hSeq :: ( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ ( �a, �c) hrel (infixl ;H 85 )
is relcomp using order .trans by fastforce

The sequential composition operator op ;H (P ;H Q) is obtained by lifting the standard
relational composition function op O. The proof is little more involved as we need to
make use of order transitivity to show that time ≤ time� in terms of the two sequential
components. The proof is still, however, automated using the fastforce tactic.
lift-definition hSkip :: ( �a, �c) hrel (II H) is
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{(s, s �). cont s = cont s � ∧ disc s = disc s � ∧ time s = time s � ∧ isHCT2 (s,s �)}
by auto

The II H (II H) operator is the unit of sequential composition. Unlike sequential compo-
sition we cannot lift the relational identity Id as this does not respect HCT2 . Instead,
we identify each of the components of the skip and impose HCT2 manually.
lift-definition hAssign :: ( �a × �c ⇒ �a × �c) ⇒ ( �a, �c) hrel is
λ f . {(s, s �). disc s � = f (disc s) ∧ time s � > time s ∧ cont s � = cont s ∧ isHCT2 (s, s �)}

by auto

The hAssign operator is implemented using an update function over the discrete and
continuous state. The discrete state afterwards is set to the function applied to the
discrete state before. Assignment in this setting is not instantaneous – it must expend a
non-zero amount of time. Next we define the operator for differential equations.
lift-definition hODE ::

(real × �c :: real-normed-vector ⇒ �c) ⇒ ( �a, �c) hrel (�-�H)
is λ f �. {(s, s �). (∀ τ ∈ {time s ..< time s �}.

((cont s) has-vector-derivative f � (τ , cont s τ))
(at τ within {time s ..< time s �}))

∧ cont s = cont s � ∧ isHCT1 (s,s �) ∧ isHCT2 (s,s �)}
by auto

In our current implementation we are limited to expression of ODEs only. This is because
algebraic variables, which can change continuously but do not have derivatives, would
require a further type parameter, which we wish to avoid for now.

The hODE operator takes a function representing an ordinary differential equation and
produces the relation that accordingly evolves over all possible intervals. It is imple-
mented using the has-vector-derivative function from Isabelle’s implementation of analy-
sis [Fle00]. The definition states that, given an ODE function f �, at each instant τ within
the time interval, the solution to f � at τ for said variable valuations is given by the func-
tion cont s, that is, the state trajectory, over the interval [time, time�). Such a function
thus defines a trajectory or flow over a given domain, as in hybrid automata [Hen96]. As
before we also require that the continuum function remains constant, the time interval is
well-defined, and the discrete variable copies match their continuous counterparts.

Finally, we define the preemption operator.
lift-definition hInit :: ( �c ⇒ bool) ⇒ ( �a, �c) hrel is
λ P. {(s, s �). P (cont s (time s)) ∧ cont s = cont s � ∧ isHCT1 (s, s �) ∧ isHCT2 (s, s �)}

by auto

lift-definition hFinal :: ( �c ⇒ bool) ⇒ ( �a, �c) hrel is
λ P. {(s, s �). P (cont s (time s �)) ∧ cont s = cont s � ∧ isHCT1 (s, s �) ∧ isHCT2 (s, s �)}

by auto

definition hPreempt ::
( �a, �c) hrel ⇒ ( �c ⇒ bool) ⇒ ( �a, �c) hrel ⇒ ( �a, �c) hrel
(infixr [-]H 90 ) where

P [B]H Q = (Q � hInit B � (�(λ (τ , v). ¬ B v)�H ∧H P))
∨H ((�(λ (τ , v). ¬ B v)�H ∧H hFinal B ∧H P) ;H Q)
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For the sake of simplicity in this implementation, we define preemption in terms of two
auxiliary operators. The hInit and hFinal operators both take a predicate over the
continuous state, and assert that this predicate is true at, respectively, the beginning and
end of the interval. The hPreempt operator is then defined following the definition in
Section 4. Unlike previous operators we do not need to obtain this by lifting, but define
it purely in terms of previous operators.

5.4 Complete lattice of hybrid relations

With all the core operators defined, we now proceed to prove that our theory of hybrid
relations forms a complete lattice, which will, amongst other things, provide us with the
ability to express recursive and iterative behaviours in the form of fixed points. We first
show that hybrid relations form a partially ordered set, which we do by demonstrating
that the hrel type is an instance of the order type class. The order and strict order
operators for hybrid relations are defined by lifting the subset and proper subset operators,
respectively.
instantiation hrel :: (type, type) order
begin

lift-definition less-eq-hrel :: ( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ bool is op ⊆ .
lift-definition less-hrel :: ( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ bool is op ⊂ .

instance proof
fix x y z :: ( �a, �c) hrel

— Reflexivity
show x ≤ x

by (transfer , auto)

— Transitivity
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z

by (transfer , auto)

— Antisymmetry
show x ≤ y =⇒ y ≤ x =⇒ x = y

by (transfer , auto)

— Soundness of strict order
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)

by (transfer , auto)
qed
end

abbreviation hRefine :: ( �a, �c) hrel ⇒ ( �a, �c) hrel ⇒ bool (infixl �H 60 ) where
hRefine x y ≡ y ≤ x

This also allows us to define the refinement relation for hybrid relations, P �H Q, which is
simply the inverse order relation. This, along with the interval operator, provides us with
the ability to state invariants of hybrid relations through a suitable refinement statement.
For example, we below prove that the formula x = −t2 satisfies the invariant x < 10.
This is achieved through a transfer, followed by application of auto to simply the proof
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structure, and finally application of the Z3 SMT solver to the resulting mathematical
formula.
lemma cont-inv1 : �λ (t,x::real). x < 10 �H �H �λ (t,x). x = −t2�H

by (transfer , auto, smt realpow-square-minus-le)

We next show that hybrid relations form a complete lattice by instantiating the corre-
sponding type class. The lattice classes in Isabelle characterise the inverse lattice to the
typical refinement lattice, and so infimum and supremum are swapped.
instantiation hrel :: (type, type) complete-lattice
begin

definition inf-hrel-def [simp]: inf P Q = (P ∧H Q)
definition sup-hrel-def [simp]: sup P Q = (P �H Q)

The infimum and supremum operators are defined to be conjunction and non-deterministic
choice, respectively.

definition bot-hrel-def [simp]: bot = falseH

definition top-hrel-def [simp]: top = trueH

The bottom and top of the lattice are falseH , the most deterministic hybrid relation, and
trueH , the most non-determistic hybrid relation.

lift-definition Inf-hrel :: ( �a, �c) hrel set ⇒ ( �a, �c) hrel is
λ A. if (A = {}) then {(s, s �). cont s = cont s � ∧ isHCT1 (s, s �) ∧ isHCT2 (s, s �)}

else Inter A
by (rename-tac set prod, case-tac set = {}, auto)

The big infimum operator is similar to the big set intersection operator (�
A), however

we have to explicitly define that � ∅ is not the universal relation (which is not closed
under our healthiness conditions), but rather corresponds to trueH .

lift-definition Sup-hrel :: ( �a, �c) hrel set ⇒ ( �a, �c) hrel is Union
by auto

Finally, the big supremum operator is simply big union (�
A). We then prove the requisite

properties of a complete lattice (though the proof is omitted).
instance proof

— proof omitted qed (transfer , auto)+
end

5.5 Algebraic laws of hybrid relations

In this section we will show that several of the key laws of programming are retained by
our hybrid relational calculus, and also demonstrate that the laws of duration calculus
hold. This section thus serves to perform some preliminary validation of our model. We
first show some simple properties about non-deterministic choice.
theorem hChoice-comm: P �H Q = Q �H P

by (transfer , auto)

theorem hChoice-idem: P �H P = P
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by (transfer , auto)

Non-deterministic choice is commutative and idempotent. This follows directly from our
definition of the operator in terms of the set union.
theorem hSeq-assoc: P ;H (Q ;H R) = (P ;H Q) ;H R

by (transfer , auto)

Sequential composition is associative; this is both a law of programming and of duration
calculus. This fact also follows from the fact that sequential composition is simply lifted
relational composition.
theorem hSeq-mono:

assumes P �H P � Q �H Q �

shows P ;H Q �H P � ;H Q �

using assms by (transfer , auto)

Sequential composition is also monotone with respect to refinement. Intuitively this
means that if we can demonstrate a refinement of the whole through a refinement of the
parts.
theorem hFalse-zero [simp]:

falseH ;H P = falseH P ;H falseH = falseH

by (transfer , auto)+

We can also show that falseH is both a left and right zero of sequential composition. If
we at any point in a sequential program exhibit miraculous behaviour, then the whole
program is miraculous.
theorem hSkip-left-unit [simp]: II H ;H P = P
— apply-style proof omitted
theorem hSkip-right-unit [simp]: P ;H II H = P
— apply-style proof omitted

Proof of the next two properties is a little involved so we omit them. We show that the
skip operator is both a left and right unit of sequential composition. This does not follow
automatically, since we have redefined skip, hence we perform a manual proof.
theorem hChoice-dist: (P �H Q) ;H R = (P ;H R) �H (Q ;H R)

by (transfer , auto)

The next law is a distributivity law. It states that if we make a choice between P and Q
and then perform R, this is really just the same as making a choice between P ; R and
Q ; R. Having proved a few facts about our calculus, we now proceed to show that it
satisfies some more substantial algebras, to aid in validation of soundness. We first show
that our calculus forms a quantale [Ros90], which follows through a simple automated
proof.
instantiation hrel :: (type, type) unital-quantale-plus
begin

definition one-hrel-def [simp]: 1 = II H

definition times-hrel-def [simp]: P · Q = P ;H Q
instance — proof omitted end
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A quantale is a combination of a complete lattice and multiplicative monoid, that con-
nects the two via laws that show how multiplication composition distributes through
the supremum operator. Quantales are very useful and general algebraic structures for
characterising imperative programs with iteration and non-deterministic choice. Here, we
use a pre-existing implementation of quantales in Isabelle [AS12]. The quantale that we
define augments the previously defined complete lattice with the multiplication operator
defined to be sequential composition, and the unit of sequential composition to be skip.
We then use the fact that our structure is a quantale to derive some further algebraic
structures.
instantiation hrel :: (type, type) dioid-one-zero
begin

definition zero-hrel-def [simp]: 0 = falseH

definition plus-hrel-def [simp]: P + Q = P �H Q
instance

by (intro-classes, simp-all) (transfer , auto)+
end

Dioids correspond to idempotent semirings and have also proved useful structures for de-
scribing imperative programs [FSW11]. In addition to the multiplication operator already
defined, they also include a plus operator (and a unit) that in this setting corresponds
to the non-deterministic choice. The proof of this is fully automatic. We next move on
from this to consider Kleene algebras [Koz90].

instantiation hrel :: (type, type) kleene-algebra
begin

definition star-hrel :: ( �a, �c) hrel ⇒ ( �a, �c) hrel where
star-hrel P = qstar P

instance proof
fix x y z
show x� �H 1 + x · x�

by (simp only: star-hrel-def hrel-plus-sup star-unfoldl)
show y �H z + x · y −→ y �H x� · z

using unital-quantale-class.star-inductl
by (unfold star-hrel-def hrel-plus-sup, blast)

show y �H z + y · x −→ y �H z · x�

using unital-quantale-class.star-inductr
by (unfold star-hrel-def hrel-plus-sup, blast)

qed
end

Kleene algebras augment dioids with a closure operation called Kleene star (P �) that
is used to axiomatise finite iteration. That is to say, P � corresponds to all possible
finite iterations of P . Recall that multiplication corresponds to sequential composition,
1 corresponds to skip, and plus corresponds to non-deterministic choice. It is necessary
to prove three laws about these operators:

1. the star unfold law, that shows how an iteration either exits (i.e. skips) or else
makes a copy of the body and then iterates;

2. the left-hand star induction law, that effectively shows that the star is the least
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(strongest) fixed point of x = a + x · b;

3. the right-hand star induction law, that is the dual of the above.

All these properties can be discharged from laws we’ve already proved about quantales.
Showing that our calculus is a Kleene algebra serves to valid that we follow the usual laws
of imperative programming, and also opens the door to a wealth of program verification
techniques in Isabelle (see for example [ASW13]). We also show that our calculus forms
an Omega algebra.
instantiation hrel :: (type, type) omega-algebra
begin

definition omega-hrel :: ( �a, �c) hrel ⇒ ( �a, �c) hrel where
omega-hrel P = qomega P

instance proof
fix x y z
show x · xω �H xω

by (metis eq-iff omega-hrel-def qomega-unfold)
show z + x · y �H y −→ xω + x� · z �H y

using qomega-coinduct[of y z x]
by (metis (no-types) hrel-plus-sup omega-hrel-def star-hrel-def )

qed
end

Omega algebras further extend Kleene algebras with a closure operator called Omega
(P ω), that is used to axiomatise infinite iteration. This is evidence by the first of the two
laws that shows that an omega continues to unfold with no termination state reached.
Omega thus corresponds to the greatest fixed point, as illustrated by the second of our
two laws. Both these properties can again be discharged through the quantale laws.

5.6 Duration calculus laws

We now turn our attention to the laws of duration calculus. A collection of axioms for
the interval operator is given in [ZRH93] and we will here reproduce some of the most
important of these.
theorem hInt-true: �λ x. True�H = L[λ t. t > 0 ]H

by (transfer , auto)

This laws shows that the interval with predicate true specifies all possible intervals with
a non-zero duration.
theorem hInt-false: �λ x. False�H = falseH

by (transfer , auto)

This laws shows that the interval with predicate false denotes the miraculous hybrid
program.
theorem hInt-conj: �λ x. P(x) ∧ Q(x)�H = �P�H ∧H �Q�H

by (transfer , auto)

This laws shows that the conjunction of two predicates (over a common alphabet) equates
to the conjunction of the two intervals. Intuitively, P and Q are both true for the whole
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interval, if and only if P is true for the whole interval, and Q is also true for the whole
interval.
theorem hInt-disj: �λ x. P(x) ∨ Q(x)�H �H (�P�H ∨H �Q�H)

by (transfer , auto)

This law is similar to the law above, but is an inequality rather than an equality. Specif-
ically, if P is true for the whole interval, or Q is true for the whole interval, then at each
point each P is true or Q is true. However, the inverse is not necessarily the case.
theorem hInt-seq: �P�H �H �P�H ;H �P�H

by (transfer , auto simp add: relcomp-unfold)

This law states that an interval can be refined by splitting it into two intervals possessing
the same property. Thus we have mechanised the main operators of our language, and
proved key algebraic properties about them. In the future we will continue to refinement
and extend this language and use it to reason about some example hybrid dynamical
systems.

5.7 Discussion

Our present mechanisation, as mentioned, is a relatively shallow embedding of the hybrid
relational calculus. The advantages and disadvantages of such a nature of implementation
are well-known and are discussed in our previous paper [FZW14]. Shallow embeddings
provide quick access to all the proof facilities of the object logic, in this case Isabelle/HOL.
Thus they are of most use when applied to verification because of their lightweight nature.
In the future we will explore whether this kind of shallow embedding is sufficient to
both prove laws of programming and perform program verification, or whether a deeper
embedding is needed like the one explored in [FZW14]. Nevertheless, we feel the results
obtain in this section are promising, and hope we could use this as the basis to build a
hybrid theorem prover building on ideas from tools like KeYmaera [Pla10b].

6 Conclusion

This deliverable summarised our current work towards the creation of a denotational se-
mantics for Modelica based in the Unifying Theories of Programming. We first described
the existing semantics for Modelica, and thus set some aspirations for the work we hope
to accomplish in this task. We then presented an initial version of our UTP of differ-
ential equations and hybrid behaviour, accompanied by a preliminary mechanisation in
Isabelle. The latter allowed us to also show that our calculus satisfied well known laws
of programming. We also hope that by combining continuous invariants with timed re-
active designs [HDM10, CW15], that we can develop a refinement technique for hybrid
systems.

In the following years we will continue to develop and refine this theory, and attempt to
use it to model and prove properties of some more substantial examples. Our eventual
aim is that this theory will provide the basis for the Modelica semantics, that we will
continue to develop in deliverables D2.2c and D2.3b. Moreover, this work will form the
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basis for our lingua franca language INTO-CSP, that will allow mathematically principled
integration of the different notations and languages in INTO-CPS. We will in future also
begin to link this semantics to the parallel work on VDM-RT (in D2.1b) and FMI (in
D2.1d). This in turn will allow us to ensure the soundness of our co-modelling approach
in the other parts of INTO-CPS.
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