
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Foundations of the SysML profile
for CPS modelling

Technical Note Number: D2.1a

Version: 0.8

Date: Month Year

Public Document

http://into-cps.au.dk

D2.1a - Foundations of SysML (Public)

Contributors:

Nuno Amálio, UY
Richard Payne, NCL
Ana Cavalcanti, UY
Etienne Brosse, ST
Jim Woodcock, UY

Editors:

Nuno Amálio, UY

Reviewers:

Stylianos Basagiannis, UTRC
Carl Gamble, UNEW
Bernhard Thiele, LIU

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D2.1a - Foundations of SysML (Public)

Document History

Ver Date Author Description
0.1 19-05-2015 Nuno Amálio Initial document version
0.2 14-08-2015 Nuno Amálio Metamodels of INTO-CPS/SysML

profile and initial literature review
0.3 07-09-2015 Nuno Amálio Minor corrections.
0.4 16-09-2015 Nuno Amálio Added support for variable defini-

tions in blocks
0.5 05-10-2015 Nuno Amálio Added CSP semantics and frag-

mented metamodels
0.6 12-11-2015 Etienne Brosse Added Modelio part
0.7 14-11-2015 Nuno Amálio Added introduction, and conclu-

sions. Revised abstract.
0.8 15-12-2015 Nuno Amálio Revised document according to feed-

back coming from internal project re-
views.

3

D2.1a - Foundations of SysML (Public)

Abstract

This report investigates the foundations of SysML and proposes a SysML
profile with a formal semantics for cyber-physical systems to be further de-
veloped and used in the context of the INTO-CPS project. The profile is
based on a subset of SysML notations, namely, block-definition and internal-
block diagrams, and is designed to embrace the project themes on multi- and
heterogenous modelling and co-simulation. The profile’s syntax is described
with UML class models that define the profile’s metamodels; the semantics is
described using the CSP process algebra, which denotes an underlying UTP
model based on the CPS’s UTP semantics. The report illustrates visual
modelling using the profile and its underlying CSP semantics with several
examples, and presents how the profile has been implemented in the Modelio
tool to enable the construction of SysML/INTO-CPS diagrams.

4

D2.1a - Foundations of SysML (Public)

Contents

1 Introduction 6

2 Related Work 8
2.1 Abstract Formal Semantics . 9
2.2 Semantics for co-simulation 10

3 Running Example 11

4 SysML Diagram Types 11

5 Metamodels 14
5.1 Architecture Structure Diagrams 14
5.2 Connections Diagrams . 19

6 Semantics 19
6.1 CSP . 20
6.2 Semantics Structures . 21
6.3 Running Example . 23

7 The INTO-CPS profile in the Modelio Tool 26
7.1 Modelio . 26
7.2 SysML/INTO-CPS Modelio profile 27

8 Conclusions 32

9 References 34

A Modelio Diagrams 37

B Further Examples 39
B.1 Water level . 39
B.2 Thermostat . 41
B.3 Railway Gate . 43

5

D2.1a - Foundations of SysML (Public)

1 Introduction

The systems modelling language (SysML) [OMG12] builds up on the Uni-
fied Modelling language (UML) to provide a general-purpose notation for
systems engineering. SysML aims at supporting systems that present hybrid
phenomena, mixing the continuous phenomena of physical systems and the
discrete phenomena of software systems, as is typical of cyber-physical sys-
tems (CPSs). Following suite on UML’s success, SysML is seen as a notation
that may have an impact on the mainstream development of CPSs.

A main difference and novelty with respect to UML lies in SysML’s emphasis
on communication ports and system architectures. Ports provide the means
for communication between components. SysML supports two different kinds
of ports: (i) standard ports, which support a communication mechanism
based on events and message passing that is typical of software systems, and
(ii) flow ports, which is closer to the way component communication works
in continuous systems, where information flows from one component to the
other through variables.

SysML
INTO-CPS

semi-formal or
unconstrained

rigorous (formal
semantics)

Figure 1: Usage of SysML in the INTO-CPS project is divided into zones.
The INTO-CPS (or rigorous zone) is given a formal semantics.

This reports investigates the foundations of SysML and proposes a SysML
profile for the INTO-CPS project with well-defined foundations. It is this
profile that includes a subset of SysML notations that are given a formal
semantics, which is also described here. The INTO-CPS project follows,
therefore, an approach to model-based systems development with SysML
that is hybrid with respect to the semantics as described in Figure 1: the
whole SysML may be used, but it is only the INTO-CPS profile that is given
a formal semantics, the remaining notations (such as use case diagrams) are
used in its semi-formal form.

6

D2.1a - Foundations of SysML (Public)

The profile has been designed to embrace the main themes of the INTO-CPS
project, namely multi- and heterogenous modelling and co-simulation. In the
first year of the INTO-CPS project, the profile’s diagram types specialise the
SysML notations of block-definition and internal-block diagrams to describe
architectures that take multi-modelling and co-simulation into account.

The syntax of the SysML/INTO-CPS profile is described using UML class
diagrams that define the metamodels of profile’s diagram types. To master
the complexity of the metamodels, we split them into fragments following
the Fragmenta theory [AdLG15]. The SysML/INTO-CPS profile is given
a semantics in the CSP process algebra [Hoa85], which acts as a front-end
for an underlying UTP (Unifying Theories of Programming [HJ98]) model
based on CSP’s UTP semantics. The SysML/INTO-CPS profile has been
implemented in the Modelio tool, which provides diagram editors that enable
the construction of SysML/INTO-CPS diagrams.

This remainder of this report is as follows:

• Section 2 surveys the literature in the area of SysML, but focussing on
semantics. This section is divided in two related but different themes:
abstract formal semantics, and semantics for co-simulation.

• Section 3 gives the report’s running example, which is used to illustrate
the SysML/INTO-CPS profile and its semantics.

• Section 4 presents the diagram types of the SysML/INTO-CPS profile,
namely architecture structure diagrams (ASDs) and connection dia-
grams (CDs), illustrating them with the report’s running example.

• Section 5 describes the metamodels of the diagrams types that make
the SysML/INTO-CPS profile.

• Section 6 presents the semantics of the SysML/INTO-CPS profile ex-
pressed in the CSP process algebra. It shows how the report’s running
example can be described in CSP using the profile’s CSP semantics.

• Section 7 describes the implementation of the profile in the Modelio
tool. It shows how the metamodels describing the syntax of SysML/INTO-
CPS have been translated into Modelio.

• Section 8 draws the report’s conclusions.

• Appendix A presents the SysML/INTO-CPS diagrams of this deliver-
able’s running example as drawn in the current implementation of the
SysML/INTO-CPS profile in the INTO-CPS tool Modelio.

7

D2.1a - Foundations of SysML (Public)

• Appendix B presents further illustrations of the SysML/INTO-CPS
profile, highlighting both the visual modelling using the profile’s dia-
grams and the underlying CSP semantics. These examples, together
with the report’s running example, have been used to design and vali-
date the profile presented here.

2 Related Work

The systems modelling language (SysML) [OMG12] extends a subset of the
Unified Modelling language (UML) to support modelling of heterogeneous
systems. Typically, such systems are hybrid in that they present both contin-
uous and discrete phenomena that characterises physical and software sys-
tems, respectively. SysML emphasises, therefore, systems engineering and
holistic modelling of cyber-physical systems (CPSs), in contrast to UML’s
traditional software-centric world and its emphasis on software engineer-
ing.

CPSs are integrations of computation and physical processes and they are in-
herently heterogenous [DLV12]. SysML targets CPSs and their heterogeneity
by aiming to support many underlying models of computations (MoCs). In
this respect, there is a substantial change from UML, which has a core MoC
based on the object-oriented (OO) paradigm with its procedural model of
component interaction based on interfaces made of methods (or procedures)
with type signatures [Lee03]; OO ends up being a MoC that is inclined to-
wards single processors and sequential computations. UML extensions build-
up in this core (for example, to support real-time systems). SysML embraces
CPSs intrinsic concurrency model where many things occur at the same time
and puts a big emphasis on interoperability, that is the ability of two or more
software components to interact despite differences in language, interface and
execution platform [Weg96].

Like UML, SysML is a semi-formal language: it has a formal syntax, but
no formal semantics. The standards defining both UML and SysML pro-
vide well-defined definitions of syntax accompanied by informal explanations
of semantics. It is, therefore, not a surprise that SysML follows UML’s
trend with respects to the semantics issue. Like UML, SysML needs to
be used in rigorous settings, hence it needs to be a precise language, and
it needs, therefore, a formal or mathematical semantic basis. Through-
out its development, the UML has been criticised for its semantics prob-
lems [EFLR98, Ste02, FGDT06, RF11, MB11]. This inherent semantic com-

8

D2.1a - Foundations of SysML (Public)

plexity, where resolution of semantics is a matter of interpretation in a given
usage setting, which is often not always clearly defined, appears to be aggra-
vated in SysML due to SysML’s inherent heterogeneity and its support for
its many underlying MoCs.

The next sections discuss related work in the area of SysML, emphasising
two distinct trends: abstract formal models of semantics and semantics for
co-simulation.

2.1 Abstract Formal Semantics

The SysML formalisation effort, like its UML predecessor, relies mostly on
the denotational approach to semantics. This is termed translation, whereby
diagrams are couched in a notation that has a formally defined seman-
tics.

Ding and Tang [DT10] formalise SysML block definition diagrams (BDDs)
into a description logic. This approach relies on blocks made up of attributes
and operations; the formalisation closely resembles logic-based formalisations
of UML class diagrams [AP03]. Similarly, Graves and Bijan [GB11] formalise
SysML into a description logic. The authors develop a semantic domain,
called abstract block diagram logic, to couch block-based SysML diagrams,
giving a treatment of SysML blocks that is akin to OO classes.

Bouabana-Tebibel et al [BTRB12] developed a formalisation of internal block
definition diagrams (IBDs) in Hierarchical Coloured Petri Nets, focussing on
IBD characteristics, such as block-nesting and port-communication.

Unlike the previous approaches, Chouali and Hammad [CH11] take a more
holistic approach to semantics by considering a subset of diagrams. Their for-
malisation into interface automata [dAH01] emphasises component assembly
to enable the verification of component interoperability. In this SysML-based
approach, component-based system architectures are specified using SysML
BDDs, composition links are specified using SysML IBDs, and component
protocols are described with sequence diagrams.

The formalisation of Miyazawa et al [MLC13] focusses on SysML blocks for-
malising them as CSP processes in the formal language CML [WCF+12], a
combination of VDM and CSP that is a spin-off of the Circus formal lan-
guage [WC02, CSW03], a combination of Z and CSP. This work is then
taken as the basis for a notion of formal refinement for SysML [MC14]. Sim-
ilar to [CH11], this work emphasises component assembly described as CSP

9

D2.1a - Foundations of SysML (Public)

parallel composition.

2.2 Semantics for co-simulation

One of the main ingredients of INTO-CPS’ approach to the interoperabil-
ity goal is model co-simulation. Many SysML works look at the semantics
question pragmatically and see semantics as a matter of direct support for
co-simulation, the ability to execute or simulate a model. INTO-CPS’s co-
simulation approach is based on the tool-independent Functional Mock-up
Interface (FMI) standard [FMI14, BOA+11, BOA+12]. FMI wraps models
from different tools in Functional Mock-up units (FMUs), enabling inter-
FMU communication and importing into hosting tools. The models are seen
as black boxes that need to comply with the FMU interface, ensuring pro-
tection of intellectual property and the required interoperability.

Feldman et al [FGP14] developed an approach to generate FMI code from
Rhapsody SysML models that wraps statecharts as FMUs. The authors ac-
knowledge problems with FMI co-simulation of statecharts due to the stan-
dard’s lack of support for instantaneous events and other subtle differences
that cause semantic discrepancies between FMI co-simulation and Rhapsody
settings.

Several approaches generate SystemC code from SysML with the purpose
of model simulation and executability [BJ11, CdSH+13, WCMG15]. This
follows the model driven engineering trend, where models are built with the
direct aim of code-generation to enable simulation (or executability). Sys-
temC [IEE12] is a C++ based framework that provides an event-based sim-
ulation environment being often described as a system-level modelling lan-
guage. Brasil et al [BJ11] generate SystemC models from SysML descriptions
made up of blocks, flow ports and operations. Café et al [CdSH+13] tackles
heterogeneity by generating co-simulation models described in SystemC-AMS
from SysML descriptions of different MoCs, the generated simulation mod-
els constituting the semantics of the SysML model. SystemC-AMS provides
pre-built MoCs allowing co-simulation of continuous and discrete compo-
nents. In [CdSH+13], the different SysML diagrams state the MoC setting,
resulting in the corresponding MoC encoding in SystemC-AMS. Wawrzik
et al [WCMG15] propose a framework that is similar to that of Café et
al [CdSH+13]; they translate SysML descriptions into SystemC to enable the
simulation of the modelled CPS, using specific dialects of System-C designed
to tackle the phenomena being modelled (e.g. hardware/software, network
and propagation and analog and physical processes).

10

D2.1a - Foundations of SysML (Public)

Valve

Tank 1

Tank 2

Tank 3

Figure 2: A sketch of the physical layout of the three cascading water tanks
system

3 Running Example

This document’s running example is the three cascading water tanks sketched
in Figure 2. This system controls three physical water tanks through a valve
that can turn the inflow of water into the first tank on and off, which results
in a chain of flows, with the outflow of one tank constituting the inflow of
the next. The valve is turned on and off periodically.

The next sections use this system to illustrate the SysML/INTO-CPS profile
presented here.

4 SysML Diagram Types

The INTO-CPS SysML profile embraces the project’s interoperability, CPS
and holistic modelling themes, emphasising the heterogeneity that exists be-
tween the continuous world of physical systems and the discrete world of
software systems. At this stage, the profile focusses on multi-modelling and
architectural specification.

The diagram types of INTO-CPS in year 1 are as follows:

• Architecture Structure Diagrams (ASDs). INTO-CPS ASDs
specialise SysML block-definition diagrams [OMG12] to support the
specification of a system architecture described in terms of a system’s

11

D2.1a - Foundations of SysML (Public)

components. A component is a logical or conceptual unit of the sys-
tem, corresponding to software or a physical entity. ASDs emphasise
multi-modelling by outlining that certain components encapsulate a
model; not all components have an associated model; some are part of
a larger component that has its own model. Components are classi-
fied as cyber, physical and sub-system. Cyber components encapsulate
some functional logic. A physical component represents an entity of
the physical world. A sub-system is an assembly of cyber and physical
components and possibly other sub-systems.

• Connections Diagrams (CDs). INTO-CPS CDs specialise SysML
internal block-definition diagrams [OMG12] to convey the internal con-
figuration of the system’s components in terms of the way they are
connected.

INTO-CPS SysML ASDs and CDs are illustrated with the three cascading
water tanks running example of Fig. 3. The diagrams are as follows:

• The ASD (Fig. 3(a)) introduces blocks representing the components of
the system. The system block represents the system as a whole; it
is divided into three components that have stand-alone models (they
include a co-modelling section in the block’s properties compartment):
the subsystems TanksControl1 and TanksControl2, both continuous
models described in 20-sim, and the cyber component Controller, a
discrete model described in VDM-RT. The physical blocks Valve and
WaterTank represent the corresponding physical elements of the system.
Component TanksControl1 controls one Valve and two WaterTanks;
component TanksControl2 controls one WaterTank. The section flow
ports defines the ports of each component. For instance, the Valve

block includes the valveI port, to represent the fact that the valve
may be turned on or off.

• The CD (Fig. 3(b)) describes the internal configuration of the system
and complements the description provided by the ASD. It indicates
how the different components are connected through ports and the
information (types) that flows through those ports.

The diagrams of Fig. 3 drawn in the current implementation of the profile in
the INTO-CPS tool Modelio are given in appendix A (Figure 19). Further
examples of usage of the INTO-CPS SysML profile presented here are given
in appendix B.

12

D2.1a - Foundations of SysML (Public)

<<System>>
WaterTanksSys

1

ASD::WaterTanks

kind = Subsystem
co-modelling

platform = 20sim
modelTy = continuous

<<EComponent>>
TanksControl1

2

1

kind = Subsystem
co-modelling

platform = 20sim
modelTy = continuous

<<EComponent>>
TanksControl2

1

kind = Cyber
flow ports

out v1 : OpenClosed = closed
co-modelling

platform = VDM/RT
modelTy = discrete

<<EComponent>>
Controller

kind = Physical
variables

v : OpenClosed
flow ports

in v2 : OpenClosed
out w : FlowRate ← v2

<<POComponent>>
Valve

open
closed

<<Enumeration>>
OpenClosed

unit = "m3/s"

<<ValueType>>
FlowRate⇨Realkind = Physical

variables
h : Height = 0
parameter a : Area
parameter r : Real

flow ports
in win : FlowRate
out wout : FlowRate ← win

<<POComponent>>
WaterTank

unit = "meters"

<<ValueType>>
Height⇨Real

unit = "m3"

<<ValueType>>
Area⇨Real

1 1

(a) Architecture Structure Diagram

WT: WaterTanksSys

TC1: TanksControl1

CD::WaterTanks

V : Valve WT1 : WaterTank

TC2 : TanksControl2

WT2 : WaterTank

C : ControllerOpenClose ◀

WT3 : WaterTank
FlowRate ▶ FlowRate ▶ FlowRate ▶

v2
w win wout

v1

win wout win wout

(b) Connections Diagram

Figure 3: The SysML/INTO-CPS architectural and connections diagrams of
the three cascading water tanks system.

13

D2.1a - Foundations of SysML (Public)

5 Metamodels

This section presents the metamodels of the SysML/INTO-CPS profile, which
are partitioned into fragments following the Fragmenta theory [AdLG15]
of model fragmentation. This eases the manipulation of metamodels that
are required for the semantics. Fragmenta uses a mechanism of proxies to
refer to model elements defined in some other fragment.

5.1 Architecture Structure Diagrams

ID Description OCL

WF1 At most one sys-
tem instance

context System inv:

System::allInstances()->size() = 1

WF2 Enumeration lit-
erals must be
distinct

context Enumeration inv :

literals->forall(l1, l2 |

l1 <> l2 implies l1.name <> l2.name)

WF3 Dependencies of
output Flow-

Ports

context FlowPort inv :

direction = Direction.in

implies depends.size() = 0

WF4 Subsystems are
instances of
EComponent

context Component inv:

kind = ComponentKind::subsystem implies

self in EComponent::allInstances()

WF5 Systems contain
EComponents
only

context Composition inv:

src in System::allInstances()

implies tgt in EComponent::allInstances()

WF6 EComponents
contain POCom-

ponents only

context Composition inv:

src in EComponent::allInstances()

implies tgt in POComponent::allInstances()

WF7 POComponents
cannot contain
other elements

context Composition inv:

not (src in POComponent::allInstances())

Table 1: OCL Well-formedness constraints of the metamodel of ASDs

The overall metamodel of ASDs is presented in Figure 4; the associated well-
formedness constraints, expressed in the object constraint language (OCL)
[WK03], are given in table 1. Instances of this metamodel are given in Fig-
ure 3(a) and in the example ASDs given in appendix B. The overall meta-
model of ASDs is partitioned into the following fragments: ASD, properties
and primitive types, blocks, value types, compositions.

14

D2.1a - Foundations of SysML (Public)

name : String
NamedElement

MultVal MultValMany
n : Nat
MultValNum

Mult

MultSingle
val ub

tgtMsrcMPOComponent
modelTy : ModelKind
platform: Platform

EComponent

discrete
continuous

<<Enum>>
ModelKind OM

20sim
VDM/RT

<<Enum>>
Platform

cyber
physical
subsystem

<<Enum>>
ComponentKind

kind : ComponentKind
Component

blocks

ValueType

Enumeration

super : PType
DType

name : String
Literal

*literals

in
out

<<Enum>>
Direction

direction : Direction
depends : String [*]

FlowPort
*

unit : String
UnitType

type : ValueType
init : String

Property

flowPorts

*
vars

props: Property[*]
StrtType

kind: VariableKind
Variable

varInit
varNoInit
parameter

<<Enum>>
VariableKind

Composition

lb: Nat
MultRange

compositions*

types
*

PTypeReal

Int

System

tgt

Block ArchitectureStructureDiagram
src

lb : Int
ub : Int

Interval

Bool

String

Nat

*

Figure 4: Metamodel of INTO-CPS SysML architectural structure diagrams

The ASD metamodel fragment (F ASD, Figure 5(a)) introduces an Archi-

tectureStructureDiagram, saying that it is a NamedElement and comprises
a collection of Blocks, value types (edges types connected to proxy Value-

Type) and Compositions. Here, we can see Fragmenta’s proxy mechanism
at play (proxies are represented as tick-lined boxes) to refer to elements
defined in other fragments; F ASD is a continuing fragment (symbol c© in
top-left corner), meaning that it is continued by other fragments, which will
define the proxies used in F ASD.

Fragment of Figure 5(b) describes the primitive types of SysML/INTO-
CPS. Abstract class PType represents a primitive type, subdivided into reals
(Real), integers (Int, which is subclassed by natural numbers, Nat), booleans
(Bool) and String.

Figure 5(c) presents the fragment that describes properties:

• At the top of the inheritance hierarchy we have NamedElement, an
abstract class representing a model element that has a name.

• Class Property specialises NamedElement; it has a type and an ini-
tial value (init). A Property is then subclassed by Variable and
FlowPort.

15

D2.1a - Foundations of SysML (Public)

©F_ASD

blocks

ValueTypeComposition

compositions * types*

Block

ArchitectureStructureDiagram

NamedElement

*

(a) ASD

F_PTypes

PType

Real Int

lb : Int
ub : Int

Interval

Bool

String

Nat

(b) Primitive types

F_Props

name : String
NamedElement

type : ValueType
init : String

Property

direction : Direction
depends : String [*]

FlowPort

kind: VariableKind
Variable

varInit
varNoInit
parameter

<<Enum>>
VariableKind

in
out

<<Enum>>
Direction

(c) Properties

F

Fragment

C

Class

P

Proxy

Legend

AC

Abstract Class inheritance composition association

Figure 5: Metamodel fragments of SysML/INTO-CPS

• A Variable comprises a kind property, which can have values of enu-
meration VariableKind indicating the type of variable, as follows:
parameter is a variable requiring an explicit initialisation that re-
mains constant, varInit is a variable requiring an initialisation, and
varNoInit is a variable not requiring an initialisation.

• A FlowPort represents a communication port and comprises proper-
ties direction to indicate kind of port — input (in) or output (out)
as defined by enumeration Direction — and dependencies on other
ports (depends), which apply to output ports only according to well-
formedness constraint WF3 (Table 1).

Fragment of Figure 6(a) describes blocks or components. It is as follows:

• A Block (an abstract class) is either a System or a Component. It
comprises several instances of FlowPort (proxy referring element of
fragment of Figure 5(c)) defining specific communication ports owned
by the block; such definitions show up under the section flow ports

of a block’s properties compartment. In Figure 3(a), blocks Valve and
WaterTank have port definitions.

• There is at most one System instance in any given model (see WF1 in
table 1). In Figure 3(a), WaterTanks is the system instance.

16

D2.1a - Foundations of SysML (Public)

F_Blocks

POComponentmodelTy : ModelKind
platform: Platform

EComponent

discrete
continuous

<<Enumeration>>
ModelKind

OM
20sim
VDM/RT

<<Enumeration>>
Platform

cyber
physical
subsystem

<<Enumeration>>
ComponentKind

kind : ComponentKind
Component

System

Block

NamedElement

FlowPort
*

flowProps

Variable
vars

*

(a) Blocks

F_VTypes

ValueType

Enumeration

*literals

unit : String
UnitType

NamedElement Property

StrtType

*props

PType
*

super

DType

Literal

(b) Value Types

Figure 6: Metamodel fragments of SysML/INTO-CPS

• Enumeration ComponentKind captures the three kinds of Components
supported by the profile: cyber, physical and subsystem. Component
is an abstract class that is itself divided into encapsulating components
(EComponet) that define a self-contained model, and part-of compo-
nents (POComponet) that are part of a model of some encapsulating
component.1

• An encapsulating component (EComponet) comprises a type of model
(discrete or continuous as defined by enumeration ModelKind) and
a platform (either OpenModelica, 20sim or VDM-RT as defined in enu-
meration PlatformKind). Components of kind subsystem must be
instances of EComponet (WF4 in table 1) and they must contain com-
ponents of kind cyber and physical only (WF5 in table 1).

Figure 6(b) presents the fragments describing value types:

• ValueType, a subclass of NamedElement, is an abstract class that is
divided into enumerations, derived types (DType) and structural types
(StrtType).

• An Enumeration is defined as a collection of distinct literals (WF2 in
Table 1). A DType refers to the base primitive type (proxy PType; it
is subclassed by UnitType, which comprises a measuring unit (such as
“kg”) – ASD of Fig. 3(a) defines the FlowRate derived type from the

1In terms of the FMI, only EComponents result in FMUs.

17

D2.1a - Foundations of SysML (Public)

F_Comps

MultVal

MultValManyn : Nat
MultValNum

Mult

MultSingle

val ub

tgtMsrcM

Composition

lb: Nat
MultRange

tgt

Block
src

(a) Compositions

F_CD

*

src

blocks*insideBlocks

connectors*

*

ports
Block

type

NamedElement

BlockInstance

ValueTypeDef

flowType

ConnectionsDiagram

FlowPort
Port

Connector

type
tgt

(b) Connections Diagram

F_ASD

F_Props

F_VTypes

F_BlockF_Comp

C

F_CD

C

C

C

I I

I

I
I

(c) GFG of SysML/INTO-CPS

Figure 7: Metamodel fragments of SysML/INTO-CPS

SysML Real primitive type.

• A StrtType comprises several value properties (represented by Prop-

erty) — ASD of Figure 21 defines StrtType instances Date and Time.

The compositions metamodel fragment (Figure 7(a)) is as follows:

• Compositions deal with whole-part relationships between Blocks; they
have source (src) and a target (tgt) block.

• Compositions have multiplicities (class Mult), which are subdivided
into single multiplicities (MultSingle to hold a single value) and range
multiplicities (MultRange). The actual values of multiplicities attached
to composition relations are instances of class MultVal.

18

D2.1a - Foundations of SysML (Public)

Figure 7(c) gives Fragmenta’s global fragment graph (GFG) that depicts
the relations between the different fragments that make the metamodel; these
relations can be imports (symbol I) or continues (symbol C).

5.2 Connections Diagrams

The metamodel of INTO-CPS/SysML CDs is presented in Figure 7(b). In-
stances of this metamodel are given in Figure 3(b) and in the example ASDs
of appendix B. The metamodel is as follows:

• A ConnectionsDiagram has a name (it is a NamedElement) and it
comprises several instances of blocks connected through connectors.
A BlockInstance is also NamedElement and refers to a block defined
in the ASD (its type). In Figure 3(b), the block instance named TC1

refers to the ASD type TanksControl1.

• A BlockInstance can enclose several other block instances (role in-

sideBlocks). In Figure 3(b), block instance TC1 encloses block in-
stances V and WT1.

• A BlockInstance can have several ports. A Port has a name, corre-
sponding to one of the block properties of the corresponding block in
the ASD. In Figure 3(b), V has ports valveI and flowO.

• Connectors carry a type that corresponds to the information that is
carried through the connected ports. This type must be consistent with
the connected ports. In Figure 3(b), we say that the connector from
the port of V to the port of WT1 carries information of type FlowRate.

6 Semantics

This section presents the semantics of the SysML/INTO-CPS profile, which
is expressed in the formal language CSP [Hoa85].

The semantics uses a version of CSP that is amenable to an analysis with
the FDR3 refinement-checker [GRABR14]. A consequence of this is that we
loose some precision because we need to represent reals as integers. This
constraint is to be removed in the next version of the semantics, which is to
be expressed in INTO-CPS, which has support for reals.

19

D2.1a - Foundations of SysML (Public)

We start by giving a brief overview of CSP. Then, we present the struc-
tures that define the main constructs of a generic semantics (section 6.2) and
then we instantiate these constructs to describe the semantics of our running
example of three cascading water tanks of section 3 (section 6.3). Further
illustrations of the semantics are provided in appendix B to accompany the
SysML/INTO-CPS models of the case studies presented there.

6.1 CSP

Communicating Sequential Processes (CSP) [Hoa85, Sch00, Ros10b], a for-
mal specification language introduced by Hoare [Hoa85] that is part of a
class of languages that are known as process algebras, aims at describing
communicating processes and interaction-driven computations.

CSP’s domain of discourse consists of processes, which are self-contained
components with particular interfaces through which they interact with their
environment. The interface of a process is described as a set of events,
which describe atomic, indivisible and instantaneous actions. A process is,
therefore, characterised by the events it can engage in and their ordering.
CSP is supported by an underlying theory to enable reasoning and model
analysis about interaction and communication in this event-based model of
interaction.

In CSP, events are transmitted along communication channels, which carry
messages of particular types. A channel has a set of associated events, cor-
responding to all messages that may be carried through the channel.

Process expressions are built out of events using a number of operators:

• Event prefixing, expressed in CSP as e → P , describes a process that
expects event e and then behaves as process P .

• Interleaving, described in CSP as P1 ||| P2, defines a composition of
two processes that execute in parallel without any synchronisation.
The iterated version of interleaving, applies interleaving to any number
of indexed processes: ||| i : N • P(i).

• Parallel, P1 ‖
A

P2, describes the composition of two processes that exe-

cute in parallel synchronising on the set A of events.

• Sequential, P1; P2, describes a process that executes P1 until it termi-
nates, and then executes P2.

20

D2.1a - Foundations of SysML (Public)

• Hiding, P \ N , makes a set N of events internal to a process P .

• Interrupt, P1 4 P2, defines a composition that behaves like P1, but can
be interrupted by a synchronisation on one of the initial events of P2,
which then takes over.

• Throw, P1 Θ
A

P2, a relatively recent CSP operator [Ros10a], defines a

form of interrupt where any occurrence of an event e ∈ A within P1

hands control to P2.

Every CSP process P has an alphabet αP . Its semantics is given using four
models: traces, failures, divergences and infinite traces. These are under-
stood as observations of possible executions of the process P, in terms of the
events from αP that it can engage in, refuse, or lead to divergence.

6.2 Semantics Structures

This section represents the semantics in terms of generic structures that are
to be instantiated for each specific example.

The components or subsystems introduced at the level of SysML/INTO-
CPS are represented as CSP processes that are initialised, receive inputs,
transmit outputs and respond to simulation steps. The next channels support
initialisation and step execution:

channel initSys , doStepSys

We define the external choice of a set of events, which yields SKIP when
the set is empty:

ExtChoiceEvents(evs) =

if empty(evs) then SKIP else 2 e : evs • e → SKIP

The interleaving of a set of events is defined as:

InterleaveEvents(evs) =||| e : evs • e → SKIP

We define a function that yields a process to initialise a sequence of outputs
with the given values.

initOfOuts(〈〉) = SKIP

initOfOuts(〈o.v〉a initos) = o.v → initOfOuts(initos)

21

D2.1a - Foundations of SysML (Public)

The semantics treats components or subsystems as black boxes. It takes into
account the fact that the current version of the SysML/INTO-CPS profile
identifies the components that make up a design, describing how they are
connected, but says very little about their actual behaviour. All the profile’s
diagrams say is that components receive specific inputs, produce specific
outputs, have some state variables and are connected with other compo-
nents. This is reflected in the definitions of the components as processes,
which identify these known pieces of information, but abstracting from the
unknown.

The CSP definition of a component is split into local and composite: local
specifies the internal processing of the component in terms of the inputs,
outputs and step, and composite says how the parts are joined to make the
overall component behaviour.

The local portion of a component is described by the following process:

System0(ins , outs , initOuts) =
let

Init = initSys → initOfOuts(initOuts); Inputs
Inputs = ExtChoiceEvents(ins); Step
Step = doStepSys → Outputs
Outputs = ExtChoiceEvents(outs); Inputs

within
Init

A local component receives as parameters a set of input (ins) and output
ports (outs), and a sequence of output initialisations (initOuts). The process
description is subdivided into: initialisation, inputs, step and outputs. The
initialisation (Init) expects the event initSys , then it initialises the outputs
that require an initialisation (initOfOuts), and proceeds with the inputs. The
processing of inputs (Inputs) expects values in the input ports (parameter
ins) described as an external choice of all events and then proceeds with
a step. The step (Step) expects a doStepSys event and proceeds with the
outputs. The processing of outputs (Outputs) does an external choice of all
the outputs and then proceeds with the inputs. The local behaviour of a
system (System0) starts with the initialisation.

A composite component needs to put together local and composite behaviours.
It takes a set of input ports (ins), a set of output ports (outs), a sequence
of output initialisations (initOuts), a set of initialisation events of the compo-
nent’s parts (initEvs), a set of step events of the component’s parts (doStepEvs)

22

D2.1a - Foundations of SysML (Public)

and a process describing the internal composition of the component (IntComp):

SystemComposite(ins , outs , initOuts , initEvs , doStepEvs , IntComp) =
let

EvLinker(initEvs , doStepEvs) =
let

Init = initSys → InterleaveEvents(initEvs); Step
Step = doStepSys → InterleaveEvents(doStepEvs); Step

within
Init

SysLinked = System0(ins , outs , initOuts)
‖

{|initSys,doStepSys|}
EvLinker(initEvs , doStepEvs)

within

(SysLinked ‖
initEvs∪doStepEvs∪ins

IntComp) \ (initEvs ∪ doStepEvs)

The internal process EvLinker states the dependencies between initialisation
and step in the component and its parts. An initialisation in the component
(initSys), is followed by an interleaving of initialisations in its parts; likewise
for the step (Step). Internal process SysLinked does the parallel composition
of the local portion of the component (System0) with EvLinker , synchronis-
ing on the events of the component, so that initialisation and step on the
component is followed by initialisation and step on the parts. The actual
composite process is defined as the parallel composition of SysLinked and
process IntComp with a synchronisation on the internal initialisation and
step events, and input ports. The internal initialisation and step events are
then hidden.

6.3 Running Example

We illustrate the CSP semantics with the SysML/INTO-CPS ASD and CD
for the cascading water tanks example introduced in section 3 and which are
given in Figure 3.

The first CSP snippet defines the types of the ASD (Fig. 3(a)). Enumera-
tion OpenClosed is represented as a CSP datatype. All the remaining value
types, derived from the reals, are represented in this version of CSP as inte-

23

D2.1a - Foundations of SysML (Public)

gers.

nametype Real = Int
datatype OpenClosed = open | closed
nametype FlowRate = Real
nametype Area = Real
nametype Height = Real

We introduce a type to represent the indexing of WaterTank instances, reflect-
ing the CD (Fig. 3(b)), which states that there are three such instances:

nametype WaterTanksIx = {1 . . 3}

The CSP specification turns to the definition of channels that describe the
ports of the ASD; each flow port of each ASD component (Fig. 3(a)) has a
corresponding channel:

channel w : FlowRate
channel win,wout : WaterTanksIx .FlowRate
channel v1, v2 : OpenClosed

Above, the definitions specify the types of the values transmitted through
the channel. For example, channel w carries values of type FlowRate. The
channels of WaterTank carry two values: one from WaterTanksIx indicating
the water tank instance and another from FlowRate.

We now define the channels corresponding to meaningful events in the exe-
cution or simulation of a system’s components. We consider that there are
two such events: initialisation and step execution.

channel initWaterTank : WaterTanksIx
channel doStepWaterTank : WaterTanksIx
channel initValve, doStepValve
channel initTanksControl1, doStepTanksControl1
channel initTanksControl2, doStepTanksControl2
channel initController , doStepController
channel initWaterTanksSys , doStepWaterTanksSys

Above, the channel definitions of components with more than one instance
(WaterTank) include the indexing type to identify the appropriate instance.

24

D2.1a - Foundations of SysML (Public)

The different components are specified as CSP processes by instantiating the
appropriate semantic structures. The CSP process defining the Valve takes
into account that it is an atomic component:

Valve =

System0({|v2|}, {|w |}, 〈〉)[[initSys, doStepSys/initValve, doStepValve]]

This customises the general System0 for Valve using renaming.

The WaterTank is defined similarly. The process’s parameter represents the
fact that it has several instances:

WaterTank(i) = System0({|win.i |}, {|wout .i |},
〈〉)[[initSys, doStepSys/initWaterTank .i , doStepWaterTank .i]]

To represent the composite TanksControl1, we start by representing the
internal configuration of this component as described in the CD (Fig. 3(b)),
stating how the sub-components are wired through the flow ports:

TanksControl1Comp = Valve ‖
{|w |}

WaterTank(1)[[win.1/w]]

Above, the wiring of the connected ports is specified using the CSP renaming
operator; win.1 of process WaterTank(1) is renamed to w of Valve.

The process TanksControl1 is defined as a composite component:

TanksControl1 = SystemComposite({||}, {||}, 〈〉,
{|initValve, initWaterTank .1|},
{|doStepValve, doStepWaterTank .1|},TanksControl1sComp)

[[initSys, doStepSys/initTanksControl1, doStepTanksControl1]] \ {|w |}
The renaming customises the general SystemComposite to the purpose of
TanksControl1; once Valve and WaterTank are wired the channel w is hidden
so that it becomes an internal channel not visible to the outside world.

The internal configuration of TanksControl2, as described in the CD (Fig. 3(b)),
is described as the following CSP process:

TanksControl2Comp = WaterTank(2) ‖
{|wout .2|}

WaterTank(3)[[win.3/wout .2]]

The composite component TanksControl2 is defined as:

TanksControl20 = SystemComposite({||}, {||}, 〈〉,
{|initWaterTank .2, initWaterTank .3|},
{|doStepWaterTank .2, doStepWaterTank .3|},TanksControl2Comp)

[[initSys, doStepSys/initTanksControl2, doStepTanksControl2]] \ {|wout .2|}

25

D2.1a - Foundations of SysML (Public)

Controller is an atomic component:

Controller = System0({||}, {|v1|}, 〈v1.closed〉)
[[initSys, doStepSys/initController , doStepController]]

Above, the initial value of output port v1 is set in the initialisation, as
described in the ASD (Fig. 3(a))

Finally, the overall system is specified as a composite component:

WaterTanksSysComp = Controller [[v1/v2]]

‖
{|v2|}

(TanksControl1 ‖
{|wout .1|}

TanksControl2[[win.2/wout .1]])

WaterTanksSys = SystemComposite({||}, {||}, 〈〉,
{|initTanksControl1, initTanksControl2, initController |},
{|doStepTanksControl1, doStepTanksControl2, doStepController |},
WaterTanksSysComp)

[[initSys, doStepSys/initWaterTanksSys, doStepWaterTanksSys]]{|wout .1,wout .3, v2|}

7 The INTO-CPS profile in the Modelio Tool

This section gives some details on Modelio’s implementation of the profile
presented here. The SysML/INTO-CPS diagrams of this deliverable’s run-
ning example drawn using the current version of Modelio’s implementation
are given in appendix A.

The following starts by describing Modelio’s extension mechanisms, and
then shows how Modelio has been extended to accommodate SysML/INTO-
CPS.

7.1 Modelio

Modelio is an Open Source MDE workbench tool, which supports UML2.x
and BPMN 2.0 standards. It provides an implementation of the UML2.x
profile mechanism, which makes Modelio extendable and capable of accom-
modating other profiles by customising the constructs provided by UML2.x
or BPMN2.0. Figure 8 presents part of the metamodel of UML2.x that
underpins Modelio’s UML2.x-based extensions.

26

D2.1a - Foundations of SysML (Public)

Figure 8: Some UML2.x Metaclasses

Figure 9: SysML Block and FlowPort stereotypes. (Black-pointed arrows
denote stereotype extension.)

Two extensions supported by Modelio, SysML and MARTE, dedicated, re-
spectively, to systems and real time modelling, are the closest to the INTO-
CPS modelling domain. Figure 9 illustrates Modelio’s extension approach:
UML metaclasses Class and Port are extended by SysML Block and Flow-

Port stereotypes, respectively.

7.2 SysML/INTO-CPS Modelio profile

The modelio SysML/INTO-CPS extension is organised around the following
logical groups: block, type, instance, library and diagram.

27

D2.1a - Foundations of SysML (Public)

Figure 10: The different kind of INTO-CPS blocks

Figure 10 presents the block group, which realises the Blocks metamodel
fragment of Figure 6(a). This is based on specialising the SysML Block

stereotype, which enables us to incorporate the metamodel elements of the
fragment that is given Figure 6(a).

Figure 11 presents a realisation of the metamodel fragments of Figures 6(a),
5(c) and 7(a). It describes the inheritance relations that exist between Block,
System, Component, EComponent and POComponent. As defined in the INTO-
CPS metamodel, a Block can be composed of several FlowPorts and Vari-

ables (Figure 6(a)). It can also be the source (src) and the target (trt)
of Composition. An INTO-CPS Composition extends the UML2.x Asso-
ciation metaclass, and then inherits its multiplicities mechanism, which is
represented in the metamodel (Figure 7(a)) but not in Modelio’s profile def-
inition.

The types group of Figure 12 realises the metamodel fragment of Figure 6(b).

28

D2.1a - Foundations of SysML (Public)

Figure 11: The INTO-CPS block structure

It comprises several stereotypes that are mainly used to type FlowPorts and
Variables presented in Figure 11 but also the Connections defined at the
instance level (Figure 14). Figure 13 shows how the different type metaclasses
of the profile extend the UML2.x metaclasses.

Figure 12: The INTO-CPS Types specification

29

D2.1a - Foundations of SysML (Public)

Figure 13: The INTO-CPS Types extensions

UML distinguishes between the class or type level and the instance or object
level. This distinction also takes place in the INTO-CPS profile; with the
block and type stereotype groups on one hand, and instances group on the
other hand, which is presented in Figure 14. The instances group realises the
metamodel fragment corresponding to connections diagrams (Figure 7(b)).
Here, Block and FlowPort concepts are instantiated by BlockInstance and
Port, respectively. A connection between ports can be set thanks to the
Connector stereotype which can be typed with a reference to a ValueType.

Figure 14: The INTO-CPS instance relationship

The INTO-CPS metamodel also define new primitive types in the meta-

30

D2.1a - Foundations of SysML (Public)

Figure 15: INTO-CPS primitive type library

model fragment of Figure 5(b). UML has four primitive types, Integer,
Boolean, String, and UnlimitedNatural; INTO-CPS adds a Real and In-

terval primitive types as shown in Figure 15.

The INTO-CPS profile defines two kinds of diagrams ASDs and CDs. As
shows in Figure 16, these diagram types extend UML Class and Object dia-
grams. To support the creation of blocks and types of an ASD Figure 17, the
ASD editor in Modelio includes two palette groups. Instance concepts have
been grouped in the CD editor (an example is given in Figure 18).

Figure 16: INTO-CPS diagrams

31

D2.1a - Foundations of SysML (Public)

Figure 17: A Block definition inside an INTO-CPS architecture diagram

Figure 18: Connection diagram example

8 Conclusions

This reports describes the efforts of INTO-CPS’s WP2 on the foundations of
SysML for cyber-physical systems (CPS). The report surveys the literature in
the area of SysML for CPS with an emphasis on semantic foundations, and

32

D2.1a - Foundations of SysML (Public)

presents the SysML/INTO-CPS profile, to be further developed and used
in the context of the INTO-CPS project, by providing the profile’s syntac-
tic definitions based on UML class metamodels and the profile’s semantics
expressed in the CSP process algebra.

The report illustrated visual modelling based on the profile’s metamodels
and the semantics with several examples. The semantic foundations of the
SysML/INTO-CPS profile presented here denote an underlying UTP model
based on the CSP’s UTP semantics.

The work presented here paves the way to an integration of the profile with
the functional mock-up interface (FMI) [FMI14] based on formal semantic
foundations, as both the SysML/INTO-CPS profile and FMI [ACWK15]
have been given a CSP semantics with an underlying UTP model. This
allows us to establish a refinement relation between the more abstract SysML
phenomena and the more concrete FMI co-simulations, allowing us to reason
about properties at the more abstract SysML level that are preserved at the
level of the FMI.

In the year 2 of INTO-CPS, we expect to introduce more diagram types and
to exploit the formal semantics presented here for the purpose of verification
and validation of SysML/INTO-CPS models.

33

D2.1a - Foundations of SysML (Public)

9 References

[Abr96] Jean-Raymond Abrial. Steam-boiler control specification prob-
lem. In Formal Methods for Industrial Applications, 1996.

[ACWK15] Nuno Amálio, Ana Cavalcanti, Jim Woodcock, and Christian
König. Foundations for FMI co-modelling. Technical Report
D2.1d, INTO-CPS project, 2015.

[AdLG15] Nuno Amálio, Juan de Lara, and Esther Guerra. FRAG-
MENTA: A theory of fragmentation for MDE. In MODELS
2015. IEEE, 2015.

[AP03] Nuno Amálio and Fiona Polack. Comparison of formalisation
approaches of UML class constructs in Z and object-Z. In ZB
2003, LNCS. Springer, 2003.

[BJ11] Keyla Brasil and Diógenes Silva Junior. Automatic transla-
tion of SysML models to systemc executable specification. In
WCAS, 2011.

[BOA+11] Torsten Blochwitz, Martin Otter, M. Arnold, C. Bausch,
C. Clauß, Hilding Elmqvist, A. Junghanns, J. Mauss, M. Mon-
teiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and
S. Wolf. The functional mockup interface for tool independent
exchange of simulation models. In Modelica Conference, 2011.

[BOA+12] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, and A. Viel. Functional mockup
interface 2.0: The standard for tool independent exchange of
simulation models. In Modelica Conference, 2012.

[BTRB12] Thouraya Bouabana-Tebibel, Stuart H. Rubin, and Miloud
Bennama. Formal modeling with SysML. In Int Conf Reuse
Integration. IEEE, 2012.

[CdSH+13] Daniel Chaves Café, Filipe Vinci dos Santos, Cécile Hardebolle,
Christophe Jacuet, and Frédéric Boulanger. Multi-paradigm
semantics for simulating SysML models using SystemC-AMS.
In FDL 2013. IEEE, 2013.

[CH11] Samir Chouali and Ahmed Hammad. Formal verification of
components assembly based on SysML and interface automata.

34

D2.1a - Foundations of SysML (Public)

Innovations in Systems and Software Engineering, 7(4):265–
274, 2011.

[CSW03] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A
refinement strategy for Circus. Formal aspects of computing,
15(2–3):146–181, 2003.

[dAH01] Luca de Alfaro and Thomas Henzinger. Interface automata. In
ESEC/FSE 2001. ACM, 2001.

[DLV12] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vin-
centelli. Modeling cyber-physical systems. Proceedings of IEEE:
special issue on CPS, 100(1):13–28, 2012.

[DT10] Song Ding and Sheng-Qun Tang. An approach for formal rep-
resentation of SysML block diagram with description logic SH-
IOQ(D). In Industrial and Information systems. IEEE, 2010.

[EFLR98] Andy Evans, Robert France, Kevin Lano, and Bernhard
Rumpe. The UML as a formal modeling notation. In UML’98,
volume 1618 of LNCS, pages 336–348. Springer, 1998.

[FGDT06] Robert France, Sudipto Ghosh, and Trung Dinh-Trong. Model-
driven development using UML 2.0: Promises and pitfalls.
IEEE Computer, 39(2):59–66, 2006.

[FGP14] Yishai A. Feldman, Lev Greenberg, and Eldad Palachi. Simu-
lating rhapsody SysML blocks in hybrid models with FMI. In
Modelica Conference, 2014.

[FMI14] FMI development group. Functional mock-up interface
for model exchange and co-simulation, 2.0. https://www.

fmi-standard.org, 2014.

[GB11] Henson Graves and Yvonne Bijan. Using formal methods with
SysML in aerospace design and engineering. Annals of Mathe-
matics and Artificial Intelligence, 63(1):53–102, 2011.

[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boul-
gakov, and A.W. Roscoe. FDR3 — A Modern Refinement
Checker for CSP. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 8413 of LNCS, pages 187–201,
2014.

[Hen96] Thomas Henzinger. The theory of hybrid automata. In
LICS’96, 1996.

35

https://www.fmi-standard.org
https://www.fmi-standard.org

D2.1a - Foundations of SysML (Public)

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Program-
ming. Prentice-Hall, 1998.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[IEE12] IEEE. IEEE 1666 standard SystemC language reference man-
ual. http://dx.doi.org/10.1109/IEEESTD.2012.6134619,
2012.

[Jif94] He Jifeng. From CSP to hybrid systems. In A Classical Mind:
Essays in Honour of C. A. R. Hoare, 1994.

[Lee03] Edward A. Lee. Model-driven development – from object-
oriented design to actor-oriented design. In Workshop on Soft-
ware Engineering for Embedded systems, 2003.

[MB11] Maŕıa Victoria Cengarle Manfred Broy. UML formal semantics:
lessons learned. Software and Systems Modeling, 10(4):441–446,
2011.

[MC14] Alvaro Miyazawa and Ana Cavalcanti. Formal refinement in
SysML. In IFM 2014, LNCS. Springer, 2014.

[MLC13] Alvaro Miyazawa, Lucas Lima, and Ana Cavalcanti. Formal
models of SysML blocks. In ICFEM, LNCS. Springer, 2013.

[OMG12] OMG. OMG systems modeling language, version 1.3. Technical
report, OMG, 2012.

[RF11] Bernhard Rumpe and Robert France. Variability in UML
language and semantics. Software and Systems Modeling,
10(4):439–440, 2011.

[Ros10a] A. W. Roscoe. CSP is expressive enough for π. In Reflections
on the Work of C.A.R. Hoare. Springer, 2010.

[Ros10b] A. W. Roscoe. Understanding Concurrent Systems. Springer,
2010.

[Sch00] Steve Schneider. Concurrent and Real-Time Systems. Wiley,
2000.

[Ste02] Perdita Stevens. On the interpretation of binary associations in
the unified modelling language. Software and Systems Modeling,
1(1):68–79, 2002.

36

http://dx.doi.org/10.1109/IEEESTD.2012.6134619

D2.1a - Foundations of SysML (Public)

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of Circus.
In ZB 2002. Springer, 2002.

[WCF+12] Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Peter Larsen,
Alvaro Miyazawa, and Simon Perry. Features of CML: A formal
modelling language for systems of systems. In SoSE. IEEE,
2012.

[WCMG15] Frank Wawrzik, William Chipman, Javier Moreno Molina, and
Christoph Grimm. Modeling and simulation of cyber-physical
systems with SICYPHOS. In DTIS, 2015.

[Weg96] Peter Wegner. Interoperability. ACM Computing Surveys,
28(1):285–287, 1996.

[WK03] Jos Warner and Anneke Kleppe. The object constraint language:
getting your models ready for MDA. Addison-Wesley, 2003.

A Modelio Diagrams

This appendix presents the SysML/INTO-CPS diagrams of this deliverable’s
running example (given section 4) as drawn in the current version of Modelio’s
implementation of the SysML/INTO-CPS profile.

37

D2.1a - Foundations of SysML (Public)

(a) Architecture Structure Diagram

(b) Connections Diagram

Figure 19: The SysML/INTO-CPS architectural and connections diagrams
of the three cascading water tanks system as drawn in Modelio

38

D2.1a - Foundations of SysML (Public)

B Further Examples

B.1 Water level

This example is taken from He Jifeng’s Hybrid-CSP paper [Jif94], a part of
the larger steam-boiler case study [Abr96], the Water Level system controls
the level of water in a water tank through a control valve that can be switched
on or off.

B.1.1 SysML

Figure 20 presents the system’s ASD and CD; the subsystem TanksCon-

trol governs the interaction between the physical WaterTank and the cyber-
component Controller.

<<System>>
WaterLevel

1

ASD::WaterLevel

co-modelling
modelTy = continuous
platform = OM

<<Subsystem>>
TankControl

1 1

open
close

<<Enumeration>>
OpenClose

<<ValueType>>
Height⇨Real

variables
h : Height = 0

flow ports
in v2 : OpenClose
out h2 : Height ←v2

<<Physical>>
WaterTank

flow ports
in h1 : Height
out v1 : OpenClose = open ← h1

<<Cyber>>
Controller

(a) Architectural Structure Diagram

CD::WaterLevel

TC : TankControl

Height▼

WT:WaterTank

C:Controller
v1

v2

h1

h2
OpenClose �

(b) Connections Diagram

Figure 20: The INTO-CPS SysML ASD and CD of the Water Level system.

B.1.2 CSP Semantics

The CSP definitions of the types defined in Fig. 20(a) are as follows:

nametype Real = Int
nametype Height = Real
datatype OpenClosed = open | closed

39

D2.1a - Foundations of SysML (Public)

The CSP definitions of flow ports is as follows:

channel vi : OpenClosed
channel ho : Height
channel hi : Height
channel vo : OpenClosed

The CSP definitions of event channels is as follows:

channel initWaterTank , doStepWaterTank
channel initController , doStepController
channel initTanksControl , doStepTanksControl
channel initWaterLevel , doStepWaterLevel

The CSP definition of component WaterTank is as follows:

WaterTank = System0({|vi |}, {|ho|}, 〈〉)
[[initSys, doStepSys/initWaterTank , doStepWaterTank]]

The CSP definition of component Controller is as follows:

Controller = System0({|hi |}, {|vo|}, 〈vo.open〉)
[[initSys, doStepSys/initController , doStepController]]

The CSP definition of the internal composition of subsystem TanksControl

is:

TanksControlComp = WaterTank [[v2/v1]] ‖
{|v1,h2|}

Controller [[h1/h2]]

The CSP definition of TanksControl is:

TanksControl = SystemComposite({||}, {||}, 〈〉,
{|initWaterTank , initController |},
{|doStepWaterTank , doStepController |},TanksControlComp)

[[initSys, doStepSys/initTanksControl , doStepTanksControl]] \ {|v1, h2|}

The internal composition of WaterLevel is:

WaterLevelComp = TanksControl

40

D2.1a - Foundations of SysML (Public)

The CSP definition of overall WaterLevel system is as follows:

WaterLevel0 = SystemComposite({||}, {||}, 〈〉,
{|initTanksControl |},
{|doStepTanksControl |},WaterLevelComp)

[[initSys, doStepSys/initWaterLevel , doStepWaterLevel]]

B.2 Thermostat

This example is a variation of the temperature control case study that is
given in [Hen96]. A user interacts with the system using a software controlled
interface that enables switching the heating on and off, setting the current
date and time, and desired room temperature.

B.2.1 SysML

A design of this system, highlighting two subsystems, Heating and Con-

trols, is given in Fig. 21. Controls takes the thermostat’s user settings,
which are channeled to the Heating subsystem to purvey the desired room
temperature.

B.2.2 CSP Semantics

The CSP definition of the types of Fig. 21(a) are as follows:

nametype Real = Int
nametype Temp = Int
datatype OnOff = on | off
datatype HeatingSt = heating | notHeating
nametype Date = ({1 . . 31}, {1 . . 12}, Int)
nametype Time = ({0 . . 24}, {0 . . 60})

The CSP definitions of flow ports is as follows:

channel d1, d2 : Date
channel ti1, ti2 : Time
channel t1, t2, t3, t4 : Temp
channel s1, s2, s3, s4 : OnOff

41

D2.1a - Foundations of SysML (Public)

ASD:: Thermostat

variables
ct : Temp
dt : Temp [init]
s : OnOff [init]
hst : HeatingSt

flow ports
in t4 : Temp
in s4 : OnOff

co-modelling
platform = OM
modelTy = continuous

<<Subsystem>>
Heating

1

variables
cd : Date
ct : Time

flow ports
in d2 : Date
in ti2 : Time
in t2 : Temp
in s2 : OnOff
out t3 : Temp ← t2
out s3 : OnOff ← s2

co-modelling
platform = VDM/RT
modelTy = discrete

<<Subsystem>>
Controls

1

unit = "C"

<<ValueType>>
Temp⇨Real

on
off

<<Enumeration>>
OnOff

flow properties
in d1 : Date
in ti1: Time
in s1 : OnOff
in t1 : Temp

<<System>>
Thermostat

heating
notHeating

<<Enumeration>>
HeatingSt

values
day : 1..31
month : 1..12
year : Int

<<ValueType>>
Date

values
hour : Nat
minute : Nat

<<ValueType>>
Time

(a) Architecture Structure Diagram

TS: Thermostat

C: Controls

CD::Thermostat

H: Heating

Temp ◀

t4 t3

Temp ▲
OnOff ▲OnOff ◀

s1 t1

d1Date◀

Time ◀
ti1

d2

ti2
t2

s2
s3s4

(b) Connections Diagram

Figure 21: The INTO-CPS SysML ASD and CD of the temperature control
system

The CSP definitions of sub-system events is as follows:

channel initHeating : Temp.OnOff
channel doStepHeating
channel initControls , doStepControls
channel initThermostat , doStepThermostat

Subsystem Heating is as follows:

Heating = System0({|t4, s4|}, {||}, 〈〉)
[[initSys, doStepSys/initHeating , doStepHeating]]

Likewise, for system Controls:

Controls = System0({|d2, ti2, t2, s2|}, {|t3, s3|}, 〈〉)
[[initSys, doStepSys/initControls, doStepControls]]

The internal composition of Thermostat is as follows:

ThermostatComp = (Heating [[[t4, s4/t3, s3]] ‖
{|t3,s3|}

Controls)

[[ti2, d2, t2, s2/ti1, d1, t1, s1]]

42

D2.1a - Foundations of SysML (Public)

The overall system Thermostat is defined as follows:

Thermostat = SystemComposite({|d1, ti1, s1, t1|}, {||}, 〈〉,
{|initHeating , initControls|},
{|doStepHeating , doStepControls|},ThermostatComp)

[[initSys, doStepSys/initThermostat , doStepThermostat]] \ {|t3, s3|}

B.3 Railway Gate

<<System>>
RailwayGate

ASD:: RailwayGate

variables
dist : Distance

flow ports
out te1 : TrainEvent

co-modelling
platform = OM
modelTy = continuous

<<Physical>>
Train

1

variables
position : Degree

flow ports
in ge1 : GateEvent

co-modelling
platform = 20sim
modelTy = continuous

<<Physical>>
Gate

1

flow ports
in te2 : TrainEvent
out ge2 : GateEvent ← te2

co-modelling
platform = VDM/RT
modelTy = discrete

<<Cyber>>
Controller

approach
exit

<<Enumeration>>
TrainEvent

1

lower
raise

<<Enumeration>>
GateEvent

unit = "m'

<<ValueType>>
Distance⇨Real

unit = "º"

<<ValueType>>
Degrees⇨Real

(a) Architectural Diagram

RG: RailwayGate

T: Train
G: Gate

C: Controller

GateEvent �

TrainEvent �

CD::RailwayGate

te1

te2

ge1

ge2

(b) Connections Diagram

Figure 22: The INTO-CPS SysML ASD and CD of the railway gate system.

This example is taken from [Hen96]. The INTO-CPS/SysML model is given
in Fig. 22.

43

	Introduction
	Related Work
	Abstract Formal Semantics
	Semantics for co-simulation

	Running Example
	SysML Diagram Types
	Metamodels
	Architecture Structure Diagrams
	Connections Diagrams

	Semantics
	CSP
	Semantics Structures
	Running Example

	The INTO-CPS profile in the Modelio Tool
	Modelio
	SysML/INTO-CPS Modelio profile

	Conclusions
	References
	Modelio Diagrams
	Further Examples
	Water level
	Thermostat
	Railway Gate

