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More points
More covariates
16x more pixels
MLA (ensemble)
HPC

Higher accuracy

30GB SoilGrids1lkm

N\
o0k owWhE

- g T S
am E

h G World Soil Information




SOILGRIDS o

A system for automated global soil mapping
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SoilGrids250m: global gridded soil information based on Machine
Learning
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Abstract. This paper describes the technical development and accuracy assessment of the most recent and improved version of
the SoilGrids system at 250 m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil
properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments)
at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution
5 of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total).
Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates
(primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology

maps), which were used to fit an ensemble of machine learning methods — random forest and gradient boosting and/or

multinomial logistic regression — as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold
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http://opendatacommons.org/licenses/odbl/summary/

MORE INFORMATION

ODC Open Database License o
(ODbL) Summary - Open Definitonfor Data

. , _ _ « Quick guide to making data open
This is a human-readable summary of the ODbL 1.0 license. Please see the disclaimer below. + Open Data Handbook

You are free:
—
i i To Share: To copy, distribute and use the datahase.

A,
‘.'3_"9": To Create: To produce works from the database.

-

f To Adapt: To modify, transform and build upon the database.

As long as you:

? Attribute: You must attribute any public use of the database, or works produced
from the database, in the manner specified in the ODbL. For any use or
redistribution of the database, or works produced from it, you must make clear to
others the license of the database and keep intact any notices on the original
database.

@ Share-Alike: If you publicly use any adapted version of this database, or works
produced from an adapted database, you must also offer that adapted database
under the ODbL.

Keep open: If you redistribute the database, or an adapted version of it, then you
L may use technological measures that restrict the work (such as DRM) as long as
you also redistribute a version without such measures.

e uses cookies No problem More info

—
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Global model library
(global model, local predictions)

Soil properties (soil information system)

®- physical and chemical soil properties, nutrient
capacity, water storage, acidity/salinity...

Live weather channel (meteorological forecasting)

—- anticipated temperature (min, max), rainfall, frost

hazard, drought hazard, flood hazard...

Plant monitoring channel (MODIS/ENVISAT)

Fertilization
Irrigation
Pest treatment
Best crop calendar
Yield estimates
Environmental risks GLOBAL
LAND INFORMATION
SYSTEM
2] !
v
Suggest the best [1]
land use practice Query site
. —
attributes
v
_. Information a Update with
E correct? [No] ground truth data

- Spatial location (site)

GPS- enabled mobile phone

®- current biomass production, biomass anomalies
(pest and diseases), plant health...

Socio-economic data (site-specific)

—- administrative units, new laws and regulations,

market activity, closest offices, agro-dealers...
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https://github.com/ISRICWorldSoil/

ISRICWorldSoil / SoilGrids250m @ Unwatch » 10

{» Code Issues 4 Pull requests 0 Wiki Pulse Graphs Setungs

Global spatial predictions of soil properties and classes at 250 m resolution — Edit
{£) 103 commits

L¥ 1 branch - 0 releases

Branch. master = New pull request Create new file  Upload files

.thengl Updated observed classes for SollGrids

B grids

8 profiles OTER / CanS|5 points
& .gitignore Preview PSCS predictions in QGIS

[E] README.md Update README.md

3 README.md

SoilGrids250m

Global spatial predictions of soil properties and classes at 250 m resolution

SOILGRIDS

A system for automated global soil mapping

www.sollgrids.org

World Soil Information

What can you find on this github repository:

+ R scripts documenting processing steps,

+ Sample code explaining the modelling framework,

» Functions for Cross-validation of ensemble models with examples,
+ Examples of predictions. outouts and visualizations.

-
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* Star 7 YFork 2

% 4 contributors

Latest commit ba7c9c2 16 days ago

1Ys ago

19 days ago

21 days ago


https://github.com/ISRICWorldSoil/

SollGrids Inputs

->ca 150,000 points ("World's largest”
compilation of soil profile / soil sample data
sets) based on national and international
datasets from over 45 countries.

=2>40TB repository of MODIS land products,
climatic images, DEM derivatives,
geological and geomorphological data (all
at 250 m resolution)

-> |SRIC's international network that can cross-
check and validate spatial prediction patterns /
e VAIUES,
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Data holdings in WoSIS 2

(December 2015)

About 98,000 unique profiles
Some 76,000 profiles are georeferenced within defined limits

Number of measured data for each property varies between profiles
with depth, generally depending on the purpose of the initial studies

Source data based on diverse (inter)national standards

Generally, limited quality information provided with the source
(analytical) data

Lineage:
 Datasets, reports & maps
Soil observations and measurements:
» Feature (georeferenced profiles &
layers)
~* Attribute (x-y-z-t, map, class, site,
layer-field, layer-lab)
* Method
I » Value, including units of expression
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Big thanks to:

O NRCS

Natural
Resources
Conservation
Service

USGS

science for a changing world

T 3? E. 1..“';".’319

.EBE_ World Soil Information

pagle TR —




AfSIS project

Bill & Melinda Gates
Foundation BILL¢MELINDA

Business Operation

Bill & Melinda Gates Foundation is one of the
largest private foundations in the world, founded
by Bill and Melinda Gates. It was launched in
2000 and is said to be the largest transparently
operated private foundation in the world.
Wikipedia

Nonprofit category: Private Grantmaking Foundations
Founded: 2000

Assets: 3679 billion USD (2010)

Income: 53 billion USD (2010)

Founders: Melinda Gates, Bill Gates
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National soil Regional soil Remote sensing data

profile DB \ / profile DB repositories
Standardize Aggregafe

and merge and tile

N
. C iat
(¥ 0SGeo | Somnees

Soil samples and

observations /
/ . o '/L>< Overlay z
. . <
* [ v
Fi
Fil
| :
Regression matrix
r——> (target variables, Yol X | X2 | | % MODIS land prf:ndu.cts,
| covariates) SRTM DEM derivatives,
| climatic images,
I lithological data...
I R
I l
I
| Machine learning: Fit 3
|« Random Forests prediction Model
:  Gradient Boosting \ /model (train) parameters
| e Neural Networks
I L ]
| Predfcr
'-n-:*":-rfr-;*-—--u e —— — —— — — values at all
locations

Compare and evaluate
(10-fold cross-validation)

Spatial predictions




Methods

> 2D and 3D soill properties: ensemble random
forest and gradient boosting (ranger,
Xgboost)

-> soll types: ensemble random forest and
nnet::multinom

-=> Cross-validation, post-processing, pseudo-
observations




ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C4++4+ and R

Marvin N. Wright Andreas Ziegler
Universitit zu Litbeck Universitit zu Lilbeck.
University of KwaZulu-Natal

Abstract

We introduce the C++ application and R package ranger. The software is a fast
implementation of random forests for high dimensional data. Ensembles of classification,
regression and survival trees are supported. We describe the implementation, provide
examples, validate the package with a reference implementation, and compare runtime
and memory usage with other implementations. The new software proves to scale best
with the number of features, samples, trees, and teatures tried for splitting. Finally, we
show that ranger iz the fastest and most memory efficient implementation of random
forests to analyze data on the scale of a genome-wide association study.

Keywords: C4++4, classification, machine learning, R, random forests, Repp, recursive parti-
tioning, survival analysis.

[stat. ML] 18 Aug 2015
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XGBoost: A Scalable Tree Boosting System

Tiangi Chen
University of Washington
tgchen@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree hoosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

CCS Concepts

eMethodologies — Machine learning; eInformation
systems — Data mining;

Keywords

Carlos Guestrin
University of Washington
guestrin@cs.washington.edu

many applications. Tree boosting has been shown to give
state-of-the-art results on many standard classification bench-
marks [14]. LambdaMART [4], a variant of tree boosting for
ranking, achieves state-of-the-art result for ranking prob-
lems. Besides being used as a stand-alone predictor. it is
also incorporated into real-world production pipelines for ad
click through rate prediction [13]. Finally, it is the de-facto
choice of ensemble method and is used in challenges such as
the Netflix prize [2].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package”. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions * published at Kaggle's
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
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Journal of Statistical Software

November 2008, Volume 28, Issue 5. hitp: /. jstatsoft. org/

Building Predictive Models in R Using the
caret Package

Max Kuhn
Phizer Global R&D

Abstract

The caret package, short for classification and regression training, contains numerous
tools for developing predictive models using the rich set of models available in R. The
package focuses on simplifying model training and tuning across a wide variety of modeling
techniques. It also includes methods for pre-processing training data, caleulating variable
importance, and model visualizations. An example from computational chemistry is used
to illustrate the functionality on a real data set and to benchmark the benefits of parallel
processing with several types of models.
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Keywords: model building, tuning parameters, parallel processing, R, Net WorkSpaces.

-'!gh

o ot




Results

P

AT T

iy
f

.EBE: World Soil Information



They would have been interested In
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The Russian School

Soil forming factors
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Soil forming processes
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Different Soils A System of
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._..?'.‘" Figure 6. Examples of fitted relationships for bulk density (above), pH (nuddle) and soil organic carbon (below). Plots show target variables

and top three most important covariates as reported by the random forest model. DEFTH. £ is the depth from soil surface, TO9MOD3 is mean
monthly temperature for September, TMDMOD3 is mean annual temperature, PRSMRG3 is total annual precipitation, M04M0D4 is mean monthly

ODIS NIR band reflectance, POTMRG3 is mean monthly precipitation for July, TO1M0D3 is mean monthly temperature for January, and
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Figure 5. Fitted variable importance plots for target variables. Generated as an average between using the ranger and xgboost packages,

(for soil types results are based on the ranger model only). DEPTH. £ is the depth from soil surface, T+*M0OD3 and N*++M0OD3 are mean

= iyl 1

- t‘-lg-ﬂ monthly temperatures daytime and nighttime (red color), TWI, DEM, VBF and VDP are DEM-parameters (bisque color), M*#M0D4 are mean




Soil organic carbon in g/kg (S1991CA055001) Bulk density in kg / cubic—-m (S1991CA055001) OC stock int/ ha (S1991CA055001)
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Figure 2. Example of soil variable-depth curves: original sampled soil profiles vs predicted values (SoilGrids) at seven standard depths (bro-
ken red line) and estimated soil organic carbon stock for depths 0-100 and 100-200 ¢cm. Locations of points: mineral soil S1991CA055001

(-122.37°W, 38.25°N), and an organic soil profile S2012CA067002 (-121.62°W, 38.13°N).
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Uncertainty in soil data can outweigh climate
Impact signals in global crop yield simulations

Christian Folberth, Rastislav Skalsky, Elena Moltchanova, Juraj Balkovié, Ligia B.
Azevedo, Michael Obersteiner & Marijn van der Velde

Affiliations | Contributions | Corresponding author

Mature Communications 7, Article number: 11872 | doi:10.1038/ncomms11872
Received 29 July 2015 | Accepted 04 May 2016 | Published 21 June 2016

poF ¥ citation & Reprints Q Rights & permissions Article metrics

Abstract

Abstract = Introduction = Results » Discussion = Methods - Additional information =
References « Acknowledgements = Author information « Supplementary information

Global gridded crop models (GGCMs) are increasingly used for agro-environmental
assessments and estimates of climate change impacts on food production. Recently, the
influence of climate data and weather variability on GGCM outcomes has come under detailed
scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil
type selected for GGCM simulations to weather-induced yield variability. Without fertilizer
application, soil-type-related yield variability generally outweighs the simulated inter-annual

". variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this

: variability until it is practically negligible. Importantly, estimated climate change effects on yield

can be either negative or positive depending on the chosen soil type. Soils thus have the

' capacity to either buffer or amplify these impacts. Cur findings call for improvements in sail

i A T

m data available for crop modelling and more explicit accounting for soil variability in GGCM
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= Search with SollGrids.org

SH98, Kurli, Chikodi taluk, Belgaum district, Karnataka, 591241,
& India
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Sei Baru Tewu, Central Kalimantan, Indonesia

114.038086, -2.537012

Soil classification

Predicted USDA Soil Taxonomy class (Twelfth

Edition; 2014)

Fibrists (20%)

(TAXOUSDA)

Histosals that are primarily made up of only
slightly decomposed organic materials, often
called peat.

Udults (13%) | Fluvents (10%)

Predicted World Reference Base (2006) soil class

Site characteristics

Physical soil properties

Fibric Histosols (13%)

(TAXNWRB)

Histosols = Soils consisting primarily of organic
materials, They are defined as having 40
centimetres or mere of organic soil material in
the upper 80 centimetres. Having, after rubbing,
two-thirds or more (by volume) of the arganic
material consisting of recognizable plant tissue
within 100 cm of the soil surface (in Histosols

only).
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Opxyc, Aarhus Municipality, Central Denmark Region, Denmark Q

Sebangau Permai, Central Kalimantan, Indonesia

Soil classification

Predicted USDA Soil Taxonomy class (Twelfth
Edition; 2014)

Fibrists (26%)
(TAXQUSDA)
Histosols that are primanly made up of only

slightly decomposed organic materials, often
called peat.

Hemists (14%) | Saprists (12%)

Predicted World Reference Base (2006) soil class

Fibric Histosols (18%)

(TAXNWRE)

Histosols = Soils consisting primarily of organic
materials. They are defined as having 40
centimetres or more of organic soil matenal in
the upper 80 centimetres. Having, after rubbing.
two-thirds or more (by volume) of the organic
material consisting of recognizable plant tissue
within 100 cm of the soil surface (in Histosols
only).

Haplic Acrisols (10%) | Hemic Histosols (10%)
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Conclusions




Conclusions

=> Traditional soll surveyors got it right! —

distribution of soll classes is mainly controlled
by DEM morphometry (especially hydrological
parameters).

=> Soll classification and polygon models of solls
seem to make sense — in many parts of the
world we see "soll groupings i.e. soil bodies"...
but there are also transition zones and small
individual patches... so it is really a hybrid that
we need.

= In the machine learning framework, much
~..more time needs to be spent on preparing data
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God's Word is like an iceberg-
there is more truth unseen than seen

= World Soil Information



Resolution
(metres)

The moderate-resolution imaging spectroradiometer (MODIS)
N | N N | 250

Shuttle Radar topography missions (SRTMGL3)

5 3 |

Landsat 8 TIRS bands

Sentinel-1,2 50
(bands 1, 9, 10)

ALOS Global Digital SRTMGL1
Surface Model aw3p30 .L
omm —_— 30

Landsat 8 MS bands

Sentinel-1,2 | "
(bands 5, 6, 7, 8a, 11, 12) T 10
WorldDEM

__---

s
|

2000 2010 2020




(
A 14374023, - J XL,
- 4 >335 13456

Towards ;OO hm 30 m resolutlon k

i‘.‘.--I

Aimagery 2016 NASA, TerraMetrics | Terms of Use | -




Get ready for the
Soil Data Revolution!

“-*-"-"_ weBlSe World Soil Information




	Automated soil mapping based on Machine Learning: towards a soil data
revolution
	Since the last time you saw me...
	Since the last time you saw me...
	Slide Number 4
	SoilGrids paper
	SoilGrids models
	Open Data license
	Slide Number 8
	2. Versioning (automated mapping system)
	Slide Number 10
	3. Reproducibility / open code
	Slide Number 12
	SoilGrids inputs
	ca 150,000 training points
	Big thanks to:
	AfSIS project 
	Also thanks to: 
	Machine learning as a framework for automated soil mapping
	Slide Number 19
	Methods
	ranger
	xgboost
	caret
	Results
	They would have been interested in this… 
	Slide Number 26
	Correlations
	Correlations
	Slide Number 29
	Slide Number 30
	Maps
	USDA suborders -> in Europe!
	WRB 2nd level -> in USA!
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Conclusions
	Conclusions
	Slide Number 51
	Slide Number 52
	Global data sets
	Towards 100 m, 30 m resolution...
	Get ready for the �Soil Data Revolution!

