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State of the national soil and soil Iandscape data
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Soil Landscapes of Canada (SLC)

Canada Land Inventory (CLI)

Detailed Soil Surveys (DSS)

Site (pedon) data

Polygon Attribute Map Unit
Table Table

Polygon | Map Unit Map Unit
Identifier | Identifier Identifier
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Soil Classification System for Canada

Map Unit—Component Table
Map Unit| Component | Component
Identifier | Identifier | Percentage

National soil carbon database
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- Geostatistic based approaches
Kriging and Co-Kriging
GLM etc.

Knowledge-based inference

Classification & Regression Tree
Random Forest

Fuzzy Set and Fuzzy Logic
Neural Networks

Bayesian Networks

Support Vector Machine (SVM)

Two approaches are not mutually
Exclusive.

Methods for future national soil data provision
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Diagram source: Hengl et al., 2016



hothesis and legacy data minino

Any location within each of
the single component
polygons of the detailed soill
survey can be used to
represent a spatial location of
the associated soil component
or type for that polygon.




n ve crop production on permeable
soils in sloping landscapes.

= High risk of groundwater contamination
by nutrients and agri-chemicals.

= Loss of productivity and water course
siltation due to soil erosion.
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Average nitrate concentration of well water (mg N/l)
(Based on 9512 samples from 2004 to 2008)
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=  Competition between irrigation and
environmental water uses.

25
kilometers




Data and methods

DEM & its derivatives Deposit layer

Z Soil group definitions ||
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20K Soil Survey Map

(three scales: 1x1, 3x3, 5x5, 7x7) =
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Training data sampling

Random Forest Classification

70% training data

30% validating data

Important Covariates

!

10-iteration Random Forest Classification

Independent testing data

Output from each RF iteration

Confusion matrix
Probability image
Classification image
Training data
Validating data

Output from 10 RF iterations
e Majority classification image
e Confusion matrix for the majority
classification image using testing data
e (Classification variation image
e Max/min probability image
e Average probability image
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Data and methods: multi-scale feature reduction

PR ) deposit_layer masked
o TRI_0_masked

Slope_3 masked
TRI_3_masked
LS_factor_0_masked
IP_Class12_0_masked
channel_network_base_level_7_masked
Pennock_0_masked
valley_depth_7_masked
valley_depth 5 masked
LS factor 3 masked
Elevation_7_masked
valley_depth 3 masked
channel_network_base level 5 masked
Elevation_3 masked
IP_Class12_3 masked
Elevation_0_masked
channel_network_base level 0 _masked
Elevation_5 masked
channel_network_base_level_3_masked
valley_depth_0_masked
vertical_distance_to_channel_network_5_masked
Slope_5 masked
vertical_distance_to_channel_network_7_masked
TRI_5_masked
aspect 7 _integer_masked
aspect_0_integer_masked
aspect_3 integer_masked
aspect_5_integer_masked
Elevation_hs_z4 0_masked

0 20 40 60 80 100 120
MeanDecreaseGini

Covariates selected: Surficial geological material, Topographic Rugedness
Index (TRI), Slope gradient and TRI at 90m resolution, and LS_factor.



Results and discussions
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- = Qverall accuracy is increased to 40% with simple sampling constraints
= Both soil type and probability maps are available
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Soil Class Map Based on 10 Iterations of RF

Maximum Probability Map Based on 10 Iterations of RF

Overall Accuracy 043 043 043 043 045 042 043 044 0.43 0.43 0.432
039 039 039 038 041 037 04 04 039 0.38 0.39



Results and discussions continued
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Soil types mapped and reported via legacy soil survey need to be examined and
regrouped

Machine learning based approach is more feasible in Canada
Independent validation data set(s) are vital
Repeatable methods as new training points and co-variants becoming available

Sources of training information for machine learning are many, but needs expert
analysis
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What’s next?

Across various resolutions (250m to 10m)
Training data and data mining

Canadian peatland mapping and carbon stocks
Changing environment and permafrost soils
Ensemble and multi-fold machine learning

From soil type to soil properties

Inference from soil properties vs via soil type
Representative data with residual Kriging

Validation and integrated use

Necessary field inspection and sampling

Sediment loading and nutrients management
BMPs research, design and evaluation
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International collaboration.and partnership
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Validation of Global 250m Soil Grid in Canada

Legend

+  fecd_join_all_lcc

+  SPD_join_all_lcc
Canada_ORCDRC_M_sl1_250m_lcc.tif

Value
= High : 474

Low - 15

Hengl, T., J. M. Jesus, G. B . M. Heuvelink, M. R. Gonzalez, M. Kilibarda, A. Blagoti, W. Shangguan, M. N. Wright, X. Geng, B.
Bauer-Marschallinger, M. A. Guevara, R. Vargas, R. A. MacMillan, N.H. Batjes, J.G.B. Leenaars, . Wheeler, S. Mantel, B. Kempen,
2016. SoilGrids250m: global gridded soil information based on Machine Learning
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Big data algorithms and advanced computing
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Contact: xiaoyuan.geng@agr.gc.ca

Tel. 613-759-1895

13


mailto:xiaoyuan.geng@agr.gc.ca

R and RGDAL based open environment

output:

1: classification result using RF models

2: confusion matrix for each iteration derived from testing points.

3: training and validation data (shapefile) for each iteration

4: variable importance

5: Confusion errors derived from RF
for (j in 1:10){
#step 2.1: to randomly sample 70% training points per class to implement RF and the rest to compute confusion matrix
i=1
subset.0=subset(points,points$GrouplD==levels(points$GroupID)[i])
training=subset.0[sample(1:nrow(subset.0),ceiling(length(subset.0)*0.7),replace=FALSE),] #spatialPointsDataFrame
validation=subset(subset.0,!subset.0$1D %in% training$ID)

for (i in 2:length(levels(points$GrouplD))) {
subset.0=subset(points,points$GrouplD==levels(points$GroupID)[i])
#str(subset.0)
training.sampled=subset.0[sample(1:nrow(subset.0),ceiling(length(subset.0)*0.7),replace=FALSE),] #spatialPointsDataFrame
validation.sampled=subset(subset.0,!subset.0$ID %in% training.sampled$I1D)
training=spRbind(training.sampled,training)
validation=spRbind(validation.sampled,validation)

writeOGR( training,dsn=wd,layer=paste("training_",toString(j),sep=""),driver="ESRI Shapefile",overwrite_layer =TRUE )
writeOGR( validation,dsn=wd, layer=paste("testing_",toString(j),sep=""),driver="ESRI Shapefile",overwrite_layer =TRUE )
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